

Stable Market Segmentation against Price Discrimination

Zhonghong Kuang¹, Sanxi Li¹, Yi Liu², Yang Yu²

¹Renmin University of China, ²Tsinghua University

Motivation	Model	Welfare Consequences
 Online Price Discrimination: Online sellers. They can generate a sequence of tags by data inference to 	• If there are multiple optimal prices in one segment, the producer will take the minimum optimal one, which favors	Main Theorem
 denote the features of consumers. Preference, taste, etc. They claim that these tags can be used to improve their services, such as accurately recommending the goods. 	 consumers the most. φ^{min}(x) denotes the minimum optimal price for market segment x. The surplus of producer is defined as 	The surplus of the producer and consumers (π, u) can be achieved by a stable segmentation iff $\pi = \pi^*$ and $u \in [u^*, w^* - \pi^*]$. No consumer is worse off compared with uniform

 $\Sigma = \phi(--) = \Sigma$

100 (

Regulations on Data Protection:

- General Data Protection Regulation (GDPR), EU, 2018
- Grants consumers the right to rectify their data. (Art.16)
- Grants consumers the right to erase their data. (Art.17)
- Also known as **Right to Be Forgotten**.
- Internet Information Service Algorithmic Recommendation Management Provisions, China, 2022
- Allows consumers to delete their tags after registration.
- Once allows consumers to change their tags after registration.

Research Questions:

- A monopolist producer can charge different prices in different markets that are divided by tags. (3rd Price Discrimination)
- **Strategic** consumers can manipulate their tags in an online environment.
- Non-cooperative $GT + Collusion \implies Stable Market Segmentation$
- The producer sets an optimal price in each market.
 Can consumers fight against a monopolist producer?
 Is it necessary for consumers to stand united?
- What are those market equilibria look like? (Preliminary)
- What are the possible welfare consequences? (Core)
 The limits of price discrimination (BBM2015@AER) + Strategic and

• Uniform Monopoly A. The producer sets a uniform price to all consumers. (NO market segmentation and NO price discrimination)

Uniform monopoly price is φ^{min}(**x***).
Producer surplus is denoted by π* = φ^{min}(**x***) Σ_{j:vj≥φ}(**x***) x_j.
Consumer surplus is denoted by u* = Σ_{j:vj≥φ^{min}(**x***)}(v_j - φ^{min}(**x***))x_j.

Tag-editable Framework

Timeline:

• Strategic consumers choose their tags

simultaneously. Alternatively, a producer/mediator designs a market segmentation, which should be robust to strategic

Further Analysis

Stable at the buyer-optimal outcome:

- Stable and weak-stable are equivalent definitions.
- Full characterization of all stable, social-optimal, and direct (SSD) segmentations with geometrical characterization.
 For a SSD segmentation, σ(x*) = {x₁, · · · , x_t}.

mobile consumers

Social-optimal? Buyer-optimal?Anyone is worse off compared with uniform monopoly?

Model

Basic model:

• The producer sells homogeneous products to a continuum of consumers.

• Homogeneous products.

- Unit demand.
- Consumers' reservation price can take values from a finite set $\{v_1, v_2, \cdots, v_K\}$ with $0 < v_1 < v_2 < \cdots < v_K$.
- Constant marginal cost, which can be normalized to zero.
- The producer and all consumers can learn value distributions in each market.

Market Segmentation:

- A market (segment) can be represented by a vector $\mathbf{x} = (x_1, \dots, x_k, \dots, x_K)$, where $x_k \ge 0$ is the proportion of consumers with reservation price v_k .
- There is an **aggregate market**:

consumers.

• The producer chooses the **minimum** optimal price. (Robust)

Stable Segmentation

A segmentation $\sigma(\mathbf{x}^*) = \{\mathbf{x}_1, \dots, \mathbf{x}_t\}$ is **stable**, if for any group of consumers \mathbf{y} , there is no decomposition $\mathbf{y} = \boldsymbol{z}_{i=1}^t \mathbf{y}_i'$ such that all consumers in \mathbf{y} have **strictly** higher utility in the segmentation $\{\mathbf{x}_1 - \mathbf{y}_1 + \mathbf{y}_1', \dots, \mathbf{x}_t - \mathbf{y}_t + \mathbf{y}_t'\}$ than in $\sigma(\mathbf{x}^*)$.

- We require each group to have a positive measure.
- We assume any group of consumers cannot build a new market. This assumption is not a loss of generality since the consumer with the lowest valuation within the group must have zero utility by establishing a new market.

Weak-Stable Segmentation: A segmentation $\sigma(\mathbf{x}^*) = \{\mathbf{x}_1, \dots, \mathbf{x}_t\}$ is weak-stable, if for a small group of consumers with the same valuation in market \mathbf{x}_i , it is not profitable for them to deviate to any other market.

• "Small" indicates the measure of them is positive but arbitrarily • No consumer is close to zero.

Price profile: {φ^{min}(**x**₁), · · · , φ^{min}(**x**_t)}
Revenue profile: {π₁, · · · , π_t}, π_i is the revenue of market **x**_i.

• For SSD segmentation, revenue profile and price profile are identical which are characterized as following figures. We define revenue function:

Robustness:

- Relaxing minimum pricing rule, i.e. any **ex-post rational** pricing rule.
- Producer surplus is fixed at the uniform monopoly level.
- Consumer surplus is at least at the uniform monopoly level (point A) but the upper bound may shrink.
- No consumer is worse off compared with uniform monopoly.

 $\mathbf{x}^* = (x_1^*, \cdots, x_k^*, \cdots, x_K^*)$

where $\|\mathbf{x}^*\|_1$ is normalized to 1.

• A segmentation of the aggregate market, denoted by $\sigma(\mathbf{x}^*)$, is a collection (possibly not a set) of segments $\{\mathbf{x}_1, \cdots, \mathbf{x}_t\}$ such that $\boldsymbol{z}_{i=1}^t \mathbf{x}_i = \mathbf{x}^*$.

Pricing & Surplus (Baseline):

- Third-degree Price Discrimination. (i) In each market segment, the producer offers a take-it-or-leave-it price. (ii) Each consumer will buy the product if the price is NO LARGER THAN his reservation price.
- The price v_i is optimal for a given market **x** *iff*

 $v_i \sum_{j \ge i} x_j \ge v_k \sum_{j \ge k} x_j, \quad \forall k.$

- A relaxed concept that facilitates our analysis.
- Manifest individual deviation scenario. Since individual in real world has small but non-negligible market share.

Verification Condition

- Weak-stable verification: If $\phi^{\min}(\mathbf{x}_i) < \phi^{\min}(\mathbf{x}_j)$, $v \in \operatorname{supp}\{\mathbf{x}_j\} \cap (\phi^{\min}(\mathbf{x}_i), \phi^{\min}(\mathbf{x}_j)]$, v should be optimal in market \mathbf{x}_i . Stable: no-inflow condition: The segmentation $\sigma(\mathbf{x}^*)$ is sta-
- ble **iff** the following **no-inflow** condition holds: For any market $\mathbf{x}_i \in \sigma(\mathbf{x}^*)$, there is not a group of consumers $\mathbf{y} \neq \mathbf{0}$ from other markets such that all consumers in \mathbf{y} have strictly higher utility in market $\mathbf{x}_i + \mathbf{y}$ than before.

Policy Implications

- Release prohibitions on price discrimination.
 Enabling price discrimination is **Pareto-improving**.
 Empower consumers with more freedom to edit their tags.
 Free circulation is desirable.
- The Right to be **partially** Forgotten should be mandated.
 First-degree price discrimination outcome is stable if only the Right to be **entirely** Forgotten is enforced.
- Promoting frictionless second-hand markets may be harmful.
- Prevent ex-post arbitrage, which originally protects consumers.
- **5** Data brokers help solve the equilibrium selection problem.
 - A mediator is helpful in selecting the best equilibrium.