The CO2 Question:

Technical Progress and the Climate Crisis¹

Patrick Bolton*

Marcin Kacperczyk $^{\Omega}$ Moritz Wiedemann $^{\Delta}$

May 5, 2023

Abstract

We analyze green and brown R&D activity worldwide and its effects in reducing carbon emissions. Innovating companies with higher carbon emissions engage more in brown R&D and less in green R&D. Despite a steady rise in the share of green R&D, green innovation does not predict future reductions in carbon emissions of innovating firms, non-innovating firms in the same sector, firms in other sectors, and across countries, whether in the short term (one year after filing a green patent) or in the medium term (three or five years out). Rather, green innovation predicts *higher* indirect emissions in related industries.

JEL codes G12, G23, G30, D62, D83

Keywords: carbon emissions, green patents, brown efficiency patents, path dependence of innovation, Jevons paradox, displacement effect.

* Columbia University, Imperial College, CEPR, and NBER.

 Ω Imperial College and CEPR

Δ Imperial College

¹ We are grateful to Trucost for giving us access to their corporate carbon emissions data. We thank Rob Engle, Stefano Giglio, Po-Hsuan Hsu, Raj Iyer, Mirabelle Muuls, Ramana Nanda, and participants at numerous conferences and seminars for their useful feedback. This project has received funding from the European Research Council (ERC) under the ERC Advanced Grant program (grant agreement No. 885552 *Investors and Climate Change*).

We are in the early stages of a sustainability revolution. It will have the magnitude of the industrial revolution yet the speed of the digital revolution. Al Gore (2020)

There is no doubt that the energy sector will only reach net-zero emissions if there is a significant and concerted global push to accelerate innovation Energy Policy Perspectives 2020 IEA

1. Introduction

How are innovation activities and technological advances shaped by the prospect of an approaching climate change crisis? In this paper, we explore corporate green innovation activity around the world and its effects on corporate behavior, in particular on future corporate carbon emissions. According to the latest IPCC (2021) report, to avoid an increase in average temperatures greater than 1.5° C, global net carbon emissions must be reduced to zero by 2050. To have any hope of attaining this goal, governments around the world have stepped up their policies to curb carbon emissions and accelerate the transition to renewable energy sources.

Yet nearly all analysts agree that a successful global decarbonization cannot be founded only on regulations. It necessarily entails major technical advances in substitute energy sources and other technologies to reduce or capture carbon emissions. According to the IEA (2020), "Reducing global CO2 emissions will require a broad range of different technologies working across all sectors of the economy in various combinations and applications. These technologies are at widely varying stages of development."

Much R&D that is touted as green mainly takes the form of efficiency improvements in energy use. Primary examples are fuel efficiency gains in transport, electricity efficiency gains in refrigeration, air-conditioning, computing, lighting, and heating. The promise of these technological improvements is that the environmental impact of consumption in terms of carbon emissions will become smaller and smaller. However, as Jevons (1865) first noted about coal consumption, greater energy efficiency—by lowering the energy cost of consumption—could induce an increase in aggregate demand for energy, which could undo the anticipated reduction in energy use: "It is wholly a confusion of ideas to suppose that the economical use of fuel is equivalent to a diminished consumption." Indeed, despite all the technological improvements in fossil energy use, we have still not seen a global decoupling of economic growth and carbon emissions.

The title of our paper is a reference to the title of Jevon's (1865) book, *The Coal Question*, as the same economic problem he saw for the consumption of coal, which is only available in limited supply, arises for CO2 concentration in the atmosphere, which can only be accumulated

to a limited amount if we are to avoid global overheating. The main question we are concerned with in this study is the impact of green innovation on future corporate carbon emissions. What has come to be known as the *Jevons paradox* (and is also referred to as the *rebound effect*) is a warning that green technological progress is not necessarily synonymous with carbon emission reductions because technological improvements that reduce fossil fuel energy reliance also boost economic activity. It is unclear a priori what the net effect is on carbon emissions of respectively green R&D (that is not related to fossil fuels) and brown efficiency-improving R&D (that improves the energy efficiency of fossil fuel-based technologies), given that consumption and production are endogenous, and that any successful innovation generates additional economic activity. Even pure green innovations, that reduce direct or downstream emissions, may cause an increase in brown electricity production (scope 2 emissions) or emissions in the supply chain (especially upstream), an impact we define as the *displacement effect*.

A related question we are concerned with is the extent to which companies with high carbon emissions move away from fossil fuel-based technologies and embrace green innovation. More generally, how much do corporate characteristics (the line of business the company is in; the technologies it is using) determine the innovation activities a company engages in? What companies, in which sectors, have been the source of most green R&D?

We can address these questions by combining three global datasets on respectively corporate patent filings, corporate financial reports, and corporate (direct and indirect) carbon emissions covering the period from 2005 to 2020. All in all, our data covers more than 136 million patents held by 2.3 million firms. Based on a patent's Cooperative Patent Classification (CPC), we can sort patents into three broad categories, *green patents* (which concern technological improvements in environmental impacts of economic activities), *brown efficiency-improving patents* (which achieve advances in fossil energy efficiency), and other patents that are not directly related to the environment or to energy. For each firm we can determine the intensity of their green or brown innovation activities by calculating the ratio of the number of their green (respectively brown efficiency) patents to the total number of patents they have filed. We calculate these ratios based on either worldwide patent filings or on filings with the European patent office, which are known to be more reliable. We can also weigh the importance of each patent based on the number of citations.

We begin our analysis by exploring how these measures of corporate green (or brown) innovation activity are associated with firm characteristics (our analysis covers corporate innovative activity around the world, which allows us to control for country, sector, and firm characteristics). A first contribution of our study is to provide a picture of green innovation activity across countries, sectors, firms, and over time. For example, we find that 22.3% of publicly listed

companies engage in innovation, while only 1.6% of private companies file patents in a given year. Furthermore, we find that the distribution of countries contributing at least one green patent is highly skewed, with the top ten countries contributing most green patents. This is also true for the distribution across sectors and firms, with some sectors, such as multi-Utilities, Electric Utilities, Oil, Gas & Consumable Fuels, and Independent Power and Renewable Electricity production standing out for their high ratios of green to total number of patents. Across sectors just over 1% of all firms have filed at least one green patent. We also find that green innovation activity has steadily risen over our sample period, with the average patent ratio rising from 0.080 in 2005 to 0.130 in 2020.

A central idea in the economics of innovation literature is the *Arrow replacement effect* (Arrow 1962), which refers to the lower incentive to innovate for an established firm with market power if the innovation replaces an existing technology that is working and is profitable. Another important idea for our analysis is learning-by-doing (Arrow 1971), which means that companies master the technologies they use better, the more they have been using them. A key prediction for our analysis that derives from these two effects is that profitable companies with operations based on fossil fuel energy are less likely to engage in green innovation, a new technology they are less familiar with. If a company engages in green innovation, it is more likely to be a new entrant that is less dependent on fossil fuel-based technologies.

Consistent with these predictions, we find that companies with greater experience with brown technologies (as measured by the stock of brown efficiency patents they already own) are less likely to engage in green innovation and companies with greater experience with green technologies (as measured by the stock of green patents they already own) are less likely to engage in brown efficiency innovation. Furthermore, we find that that brown companies (with higher emissions and that are older) do not tend to engage in green R&D. This is true in particular for companies with higher indirect (scope 3) emissions, which suggests that there is a broader replacement effect at work than the one identified by Arrow: brown companies appear to be locked into fossil-fuel dependent technologies through their production networks. If input suppliers or downstream firms/customers also rely on fossil fuel-dependent technologies, it is more difficult for an individual firm in the supply chain to switch to green technologies. A key implication from this latter finding is that, in order to induce firms to transition from brown to

_

¹ A case in point is the energy company Halliburton. In response to a recent SEC question on its exposure to carbon transition risk it stated that "We believe that one of the significant risks that we face in energy transition is that we will be unable to innovate in a timely, cost-efficient manner, or at all." (See *Climate risks gain corporate acknowledgment after SEC prodding* by Patrick Temple-West, Financial Times 30 December 2022). We show in Figure IA.II that most of Halliburton's innovation activity in recent years has been in brown innovation, which has steadily increased over time.

green technologies, industrial policy may be necessary to coordinate this transition across all firms linked through the supply chain.

Our findings that green R&D is more likely to be undertaken by new entrants and brown efficiency R&D is more likely for established companies with operations that are based on fossil fuel energy are consistent with earlier studies that find evidence that innovation is path dependent (Acemoglu, 2002, Popp, 2002, and Aghion et al. 2016). Aghion et al. (2016) consider a panel of automobile manufacturers and explore the extent to which these companies produce innovations on combustion-engine cars versus electric, hydrogen or hybrid engine vehicles. Their main finding is that specialization in innovation activity in clean (vs brown) technologies is self-reinforcing. Our study extends this evidence in support of the path-dependency view of innovation to all sectors, across countries, not just the automobile sector.

Even if innovation is path dependent, and even if brown firms are less likely to undertake green R&D, we find that there has been a steady rise in the number of green patent filings (as shown in Figure 2). It is therefore possible that the promise of a *sustainability revolution* could be fulfilled. We explore this question next by looking at the effects of green R&D on future corporate carbon emissions and other policy outcomes. How has green R&D affected corporate carbon emissions, capital expenditures, and other policies? According to the IEA (2020) "Around half of the cumulative emissions reductions that would move the world onto a sustainable trajectory come from four main technology approaches. These are the electrification of end-use sectors such as heating and transport; the application of carbon capture, utilization and storage; the use of low-carbon hydrogen and hydrogen-derived fuels; and the use of bioenergy. However, each of these areas faces challenges in making all parts of its value chain commercially viable in the sectors where reducing emissions is hardest". Another issue is the extent to which the benefits of technological improvements in terms of carbon efficiency are undone by rebound effects (Jevons, 1865). Finally, some of the green innovations may lead to a displacement in emissions.

Our main finding on the effects of green innovation on corporate outcomes is that there has been no significant impact on future carbon emissions reductions. Whether in the short run (one year), or medium run (three & five years ahead), we do not find any significant effect of green innovation on direct and indirect corporate carbon emissions of the innovating firms. Consistent with the Jevons paradox, we find that brown efficiency innovation does result in lower future carbon intensity, but this benefit is undone by higher sales, which overall result in higher future emissions.

We also analyse how aggregate sectoral changes in emissions are associated with green R&D on the presupposition that innovation could be of use not just for the innovator but also for other firms operating in the same sector. However, we do not find any significant spillover effects

of green innovation on the carbon emissions of either innovating or non-innovating firms in the same (GICS-6) sector. Yet, consistent with the displacement effect and the greater reliance on brown electricity, we do find that green innovation is associated with subsequent increases in scope 2 emissions of the same sector. In contrast, brown efficiency innovation does not predict future emission changes of other innovating firms in the same sector. However, it does benefit non-innovating firms whose direct and indirect emissions go down. But this decrease is mostly a consequence of lower sales for this group of firms.

We also find that the association of innovation activity by publicly listed companies and their future emissions is not strongly correlated with the same association of innovation and future emissions by privately held firms. That is, innovation by publicly listed companies has a stronger positive effect on their future scope 2 emissions than the innovation by privately held firms on their future scope 2 emissions. Furthermore, we do not find any spillover effects broadly speaking across sectors or across countries. The one notable exception is our finding that an increase in green innovation predicts subsequent reductions in scope 3 downstream emissions of *broadly* related industries.

Another indirect channel through which innovation can affect future emissions of non-innovating firms is through changes in the market shares of innovating firms. We find that firms with higher green patent ratios tend to lose market share to other firms that have higher emissions, a form of displacement effect. Finally, our third main finding on the effects of green innovation on future corporate carbon emissions is that to a large extent green innovation has little to contribute to decarbonization. Where we see significant reductions in corporate carbon emissions, we find that these reductions are for the most part not due to green innovation. Overall, green innovation contributes only 1% to corporate carbon emission reductions. In sum, green innovation may be necessary for the sustainability revolution, but it is far from sufficient. The overwhelming conclusion of our analysis is that the green industrial revolution has not materialized over our sample period and the promise that green innovation will set the global economy on a sustainable path to net zero has not yet borne fruit.

Our paper contributes to a growing recent literature on the firm-level implications of the transition to a green economy. A closely related study by Cohen et al. (2022), who also look at green innovation by U.S. listed companies, draws somewhat different conclusions. They find that green innovation activity in the energy sector is higher than that in other sectors and conclude that this is evidence against path dependency of innovation. We confirm some of their cross-industry variation, but our main finding is that *within* each sector brown companies (those with higher emissions) do less green R&D. This is true across all sectors and countries. More specific differences are that we extend our sample to firms that also file for patents outside the USPTO,

and to firms that are located outside the U.S. We further distinguish between green and brown efficiency patents, which allows us to evaluate the path-dependency hypothesis more explicitly. In this regard, we note that the classification of green patents used in their study tends to nest what we define as brown efficiency patents. Finally, their study takes ESG scores as a metric of environmental performance, which they motivate by the fact that asset managers tend to focus on such scores in their divestment screens. Our focus instead is on carbon emission outcomes.

A parallel literature in finance explores the effect of green innovation of U.S. firms on firm value (e.g., Hege et al. (2022); Kuang and Liang (2022); Reza and Wu (2022)). More broadly, Bolton and Kacperczyk (2021, 2022a) show that the transition risk, which embeds technological progress, is already reflected to a large extent in equity markets. Ilhan et al. (2021) show that carbon risk is also priced in options. Engle et al. (2020) have constructed an index of climate news through textual analysis of the Wall Street Journal and other media and show how a dynamic portfolio strategy can be implemented that hedges transition risk with respect to climate change news. Sautner et al. (2022) show that companies that report positive sentiment towards climate in their conference calls subsequently produce a greater number of green patents. In contrast to these studies, our focus is on the effects of green patents in decarbonization.

Earlier studies on rebound effects have focused on specific activities or on sector or country-level data. Our study is the first to explore the effects of technological change on carbon emissions based on firm-level data.² The findings on rebound effects in this earlier literature are mixed. For example, Schipper and Grubb (2000) have looked at aggregate data on energy use and found that car use and energy use in other activities have not changed much in response to technological improvements in energy efficiency. Based on these findings they conclude that rebound effects are likely to be small. Sorrell et al. (2009) provide a review of prior empirical studies on rebound effects. They argue that many studies only look at partial rebound effects over limited time periods and over restricted consumption responses. For example, studies on the consumption response to fuel-efficiency improvements in automobiles only measure changes in mileage travelled and do not consider more long-term changes in vehicle size. By looking at firm-level data and at cross-firm and cross-industry effects of green innovation we can identify substantially larger and more diverse forms of rebound effects.

_

² An important aspect of green innovation is the role of government policies in supporting innovation (for a literature review, see Greaker and Popp, 2022). These policies are important and can induce a shift to green innovation (e.g., Popp, 2002; Aghion et al., 2016). Our study focuses on firm-level responses and how they depend on their characteristics, especially their carbon emissions. We absorb the impact of innovation policies using industry and country fixed effects, making an implicit assumption here that innovation policies are industry-wide and not firm-specific. Our findings reveal how firms in an industry differentially respond to these policy interventions and how their differential response is linked to firm characteristics such as carbon emissions.

The remainder of the paper is organized as follows. Section 2 provides the conceptual framing for our analysis. Section 3 describes the data and provides summary statistics. Section 4 discusses the results on the drivers of green innovation. Section 5 provides the results on the impact of innovation on future emissions and other corporate decisions. Section 6 concludes.

2. Conceptual Framework

We begin with a conceptual discussion of green innovation and the transition to a net-zero economy. There are three key guiding concepts that help us understand the various connections between green innovation and carbon emissions. The first, as already highlighted, is the Jevons paradox and other rebound effects of green innovation on energy consumption, one of which is the *displacement effect* defined above. The narrow notion of the Jevons paradox is that an energy efficiency gain, or a carbon intensity gain, from a better technology will of course reduce emissions for a given level of operations, but if the new technology invites more users and larger operations then the overall reduction may be limited or may not materialize at all.

We expect to find direct evidence of such a rebound effect if a brown efficiency innovation subsequently improves the carbon intensity of operations, but overall carbon emissions are not significantly affected or are higher. A general reason why one should expect a positive effect on operations and sales from a brown efficiency innovation is that the innovation improves profitability and the competitiveness of the innovating company, which are likely to result in an expansion of the business.

There are other, more indirect, and more subtle, displacement effects to be expected. A concrete and highly relevant example is the transition to electric vehicles (EV). This is one of the major new green innovations. If, as is likely to be the case, the share of EV grows significantly in the next few years then scope 1 emissions from transportation should be expected to decline. However, if the increased demand for electricity is met by increased production from coal-fired power plants, as is likely to be the case in states where coal-fired power plants are still responsible for the lion share of electricity production (such as West Virginia, with a 91% share, Missouri with 75%, Wyoming with 74%, and Kentucky with 71%)³, then the green EV revolution will result in an increase of scope 2 emissions. What does not get burned by the vehicle will get burned by the power company, with a likely net increase in total emissions given that coal is far more carbon intensive than oil. Similarly, the production of all the parts that go into an EV, from the wheels, tyres, chassis, body, engine, and batteries, etc, will generate carbon emissions, so that green innovation could also result in higher upstream scope 3 emissions. These higher emissions will be

-

³ See https://www.eia.gov/todayinenergy/detail.php?id=54919

fully offset by lower scope 1 emissions than a combustion engine vehicle only after the EV has clocked up many thousands of miles.


Other rebound effects operate through product market competition. If green innovation involves higher costs than brown efficiency innovation (or no innovation), then the green innovating firm will be at a cost disadvantage relative to its industry peers. It may as a result lose market share. This would translate into lower carbon emissions for the green innovating firm, but higher carbon emissions for its competitors that are gaining market share. Alternatively, green innovation could spur adoption of green technologies by industry peers, leading to an industry-wide reduction in carbon emissions. In sum, green innovation is likely to have spillover effects, positive or negative, which could affect carbon emissions of non-innovating firms with the industry or across industries. To understand the overall impact of green innovation on carbon emissions it is therefore important to explore the link between green innovation activity and carbon emissions within and across industries.

The second and third guiding concepts for our analysis are closely related. They are both associated with founding ideas first proposed by Kenneth Arrow (1962, 1971). One concept is commonly known as Arrow's replacement effect (Arrow 1962), which refers to the idea that established firms, monopolies, have a lower incentive to innovate because their innovation mostly replaces their existing technology that is working and is profitable. The other concept, learning-by-doing (Arrow 1971), has broader applications. But in the context of innovation, it means that companies understand the technologies they already use better, which induces them to continue to improve something they already master rather than explore new directions which seem more obscure. One key general prediction that follows from these two concepts is that profitable companies with operations based on fossil fuel energy (brown companies) are less likely to engage in green innovation, a new technology they are less familiar with, and less likely to replace their brown operations with green operations. A related general prediction is that innovation is likely to be path dependent: a company that has already been actively researching brown efficiency innovations is more likely to continue to do brown R&D. Green innovation, therefore is most likely to be undertaken by companies that are new entrants.

Arrow (1962) focuses his analysis on an individual firm's technology and the replacement of the firm's own technology. When it comes to green and brown innovation, however, replacement has a broader scope and involves complementary technologies upstream and downstream. Replacement is not just confined to one firm. It may require technological changes in an entire ecosystem. Following the development of a new green technology an individual firm might be ready to replace its old technology if all the other firms it depends on also make the switch. A case in point is again electric vehicles. Switching to EV requires major changes not only

in the supply chain but also downstream, with new charging station networks, maintenance, servicing, etc. Thus, the more dependent upstream and downstream industries are on fossil fuels, the less likely it is that an individual firm in one sector will transition to green technologies. A major general prediction that follows from this observation is that an individual company is less likely to do green R&D the higher are its upstream and downstream scope 3 emissions.

Finally, another key consideration in exploring the link between green innovation and future carbon emissions is the timing of deployment of new technologies. There can be a major time-to-build lag between the discovery and development of a new technology and its deployment. Part of this lag may be due to the time it takes to go from a working prototype to a mature technology. According to the latest research by the IEA (2021), many new green technologies in the energy sector are still at the prototype stage. Their impact on future carbon emission reductions is therefore likely to be small in the immediate future (see the IEA figure below).

Given the relatively short and finite time interval of our study, it is not possible to account for impacts that are far into the future. We cannot rule out the possibility that these impacts will be very large, and that green innovation will fully deliver on its promises. Still, it is important to find out whether, and the extent to which, green innovation is already having an impact on reducing carbon emissions, given the small and rapidly shrinking remaining carbon budget, which according to the latest climate research is less than 300 gigatons (Gt) of CO2 as of 2020 if temperature rise is to be limited to less than 1.5°C with an 83% probability (IPCC 2021). Given that annual energy-related emissions have been around 31.5 GtCO2 in 2020 (IEA 2021) and given that projected annual energy-related emissions for the next few years will remain at that level, there are only a few years left for green innovation to deliver on its promises before it is too late.

3. Data

Our data construction starts with all global firms, both publicly listed and private, identified between 2005 and 2020 in the following data bases: Orbis Intellectual Property Financial, Orbis, Factset, and Worldscope for financial information (balance sheets and income statements). The financial data for public firms is based on all four. The financial data for private firms is based solely on Orbis IP Financial and Orbis. The latter data sets only cover the ten most recent years. The overall dataset is termed "full sample". We merge these datasets with the Orbis Intellectual Property dataset, which provides a comprehensive coverage of patent filings and corporate ownership of patents by listed and unlisted companies in 81 countries. This dataset includes 136 million patents held by 2.3 million firms. It also provides patent citations, which are a good measure of the importance of the innovation protected by the patent. Henceforth, we refer to this dataset as the "patenting sample".

We further combine the full sample with data from Trucost on firm-level carbon and other greenhouse gas emissions. Trucost reports yearly firm-level carbon and greenhouse gas emissions data for scope 1, 2, and 3 emissions in units of tons of CO2 equivalent. Scope 1 emissions are direct emissions from operations of affiliates that are owned or controlled by the company. Scope 2 emissions are those that come from the generation of purchased heat, steam, and electricity used by the company. Scope 3 emissions are indirect emissions caused by the company's operations and the use of its products. These include emissions from the production of purchased materials, product use, waste disposal, and outsourced activities. Establishing the scope 3 emissions of a company requires a detailed analysis of the share of emissions of producers in the supply chain that is attributable to the company's input purchases. This involves estimating an input-output model with sector-level emission factors. Our data allows us to distinguish between scope 3 emissions coming from upstream and downstream activities although the latter are only available from 2017 onwards; hence, total scope 3 emissions prior to 2017 reflect upstream emissions only. Finally, we include world index constituent data from MSCI. We use the ISIN identifier and company names to match these datasets.

3.1 Aggregate data by country

Internet Appendix Table IA.I provides a breakdown of our aggregate data by country. In Panel A, we report a breakdown of the number of firms in each country that are respectively, publicly listed, privately held, and have carbon emissions data. The total number of firms in our sample is 788,983, of which 54,009 are publicly listed companies and 734,974 are privately held firms. There are 18,819 firms for which we have carbon emissions data through Trucost. The limited coverage reflects the fact that Trucost has collected emissions data mostly from listed and larger companies. Countries with the largest number of firms in the full sample include China, Italy, Denmark, and

France, each of them having more than 50,000 companies in the full sample. Even excluding these countries, our sample has a wide cross-country representation. Notably, in the matched Trucost sample, the U.S. has the largest representation of all countries, which is consistent with the fact that it has the relatively larger fraction of publicly listed companies. In columns 5-8, we further restrict the full sample to observations for which we have patent data from Orbis. Throughout our main analysis, we focus on patents registered with the European Patent Office (EUPO). As is well known, the filing process is most rigorous at the EUPO, so that these filings reflect more significant and enduring innovations. In the Appendix, we provide additional robustness results using patents registered with any patent office worldwide. The total number of firms in this subset of patenting firms represents roughly 3% of the universe of companies in our data, which reveals the fact that most companies do not get involved in any innovation activity. Interestingly, publicly listed patenting companies comprise about the same fraction of the sample with patents as privately held patenting firms. Still, private companies represent a significantly larger population of all firms. These numbers therefore indicate that public firms are significantly more likely to engage in innovative activities.

In Panel B we report the distribution of patent counts across countries. Most patents came from publicly listed companies, which provides further evidence that innovation is typically produced within large companies. Notably, the fraction of patents registered by companies that are part of the Trucost data is over 75%. The two countries with the highest number of patents in our sample are the United States and Japan, each one having more than 300,000 patents registered. The next three countries are Germany, France, and South Korea, each with more than 100,000 patents. In columns 5-8, we show the average number of patents per firm, for companies that do engage in patenting activity. An average company in our sample registered more than 17 patents over the sample period. The fraction is significantly larger for public firms, which register more than 24 patents per firm in contrast to private firms where this number is 5.7.

Table IA.II further shows the country-level breakdown into firm-year observations. To be included in the final sample, we require firm-year observations to have values for assets, book leverage, ROE, and country of incorporation. We lose about 3,700,000 firm-year observations due to this restriction. In addition, we require public firms to have records for capex, previous year's December return, volatility, and market capitalization. This leads to another 200,000 firm-year observations being lost. In the paper, we refer to this filtered dataset with 5.3 million firm-year observations as the "full sample". Columns 1-4 present the numbers for the full set of public and private companies. The number of observations in the full sample is 5,318,818, of which 390,985 are observations from public firms and 4,927,833 are observations from private firms. In columns

5-8, we restrict the sample to companies with at least one listed patent. That sample includes 88,727 observations, 63% of which are from publicly listed companies.

3.2 Green and brown innovation

We make a key distinction between green innovation, targeting technologies that substitute carbon dioxide emitting technologies for carbon dioxide-free technologies (or that make carbon-dioxidefree technologies more accessible), and brown innovation, which targets improvements in fossil-fuel based technologies. For this patent classification we rely on the description of the patent and four technology classification sources on patents relating to the environmental impact of technologies, namely the environmental technologies classified by the Organization of Economic Co-operation and Development (OECD)⁴, the International Patent Classification (IPC) Green Inventory⁵, the efficiency-improving fossil fuel-technology categories of Lanzi et al. (2011), as well as a selfidentified classification based on patents from the Corporate Knights Clean 200. We classify patents into three broad categories⁶: i) green patents for environmental technologies; ii) general efficiency improvement patents that deal with technologies that improve process efficiency and therefore could reduce emission intensity; iii) brown patents that deal with technological innovation for fossil fuel-based technologies. For robustness, we also consider the OECD classification of green patents, which includes technologies related to environmental applications, such as climate mitigation, biodiversity, and wastewater management, as well as green and general efficiency improvements patents.

Prior research (e.g., Cohen et al., 2022; Aghion et al., 2016) has relied on the OECD classification of green patents only. But the OECD classification does not always distinguish between patents on renewable energy technologies and brown efficiency improvement patents. Some green patents within the OECD classification are brown efficiency patents. To illustrate this point, we conduct a cloud-of-words analysis of patent descriptions using the term frequency—inverse document frequency (TFIDF) algorithm. We search for the dominant words in our green patent classifier, stripping out common words in the OECD classification, and we do the same for the OECD classification, searching for the dominant words and stripping out the common words from our classification. We present the resulting clouds in Figure 1.

In the left figure, we show the words that are uniquely dominant to our classification. Words, such as mri, magnetoresistive, or magnetometer are very common to fusion reactions and underlie the green nature of the patent. In the right figure, we start with the OECD words and

⁴ https://www.oecd.org/env/indicators-modelling-outlooks/green-patents.htm

⁵ https://www.wipo.int/classifications/ipc/green-inventory/home

⁶ We provide a detailed description of our approach and the underlying IPC/ CPC classes in the following online document: https://wiedemannm.github.io/documents/DescriptionPatentClassification.pdf

filter out common words from our classification. The dominant words of this process include exhaust gas, internal combustion, or abradable, all three likely attributed to efficiency gains of brown technology. Overall, this analysis suggests that our classification is more accurate in identifying purely green patents. The OECD classification misclassifies some patents as green when they are more likely to be brown patents. For the rest of the analysis, we will thus rely on our classification, but we also check the robustness of our findings to using the OECD classification.

In Table IA.III, we report the distribution of firms and patents conditional on a firm filing a green or brown patent. In Panel A, we analyze the distribution of firms by country. In columns 1-4, we report the statistics for firms which file a green patent, and in columns 5-8 the statistics for firms which file a brown patent. Only about 1% (0.4%) of all firms have at least one green (brown) patent. In the cross-section, the U.S., Japan, and Germany (the U.S., Japan, and China) have the largest number of firms with green (brown) patents, each of them representing 7%-20% (7%-28%) of the total number of patenting firms. The distribution of countries contributing at least one green (brown) patent is skewed, with the top 10 countries contributing most green (brown) patents. Publicly listed companies account for 63% (66%) of firms with green (brown) patents. The fraction of firms with at least one green (brown) patent that is covered by Trucost is roughly 42% (48%).

In Panel B, we provide a similar breakdown for the total and average (per firm) number of green patents. In the full sample, over the period 2005-2020, companies have filed 162,039 green patents. In this group, a large number (144,614) of green patents is registered with publicly listed companies, and only 17,368 patents are registered with private companies. More than 131,000 of green patents have been filed by companies with emission data in Trucost. The highest number of green patents by firm comes from Saudi Arabia, South Korea, and Germany, each of them having more than 10 patents per firm. In Panel C, we provide a similar breakdown for brown patents. In the full sample, we observe 63,689 brown patents in total; 56,556 of those patents have been filed by publicly listed companies and the remaining 7131 are those filed by private companies. Saudi Arabia, Germany, and the United Kingdom are the three countries with the highest number of brown patents per firm.

In Figure 2, Panel A we show the year-by-year distribution of patenting activity, measured by green and brown patent counts, based on the sample of all firms with patent data. We observe a steady increase in patenting activity over time at least until 2018, especially for green patents. Green patents also represent a larger share of patenting activity. We also separate the data into different regions. The two regions with the largest number of either green or brown patents are Asia and Europe. At the peak of 2018, each region contributed almost 10,000 patents each. The

equivalent number for North America is significantly less and accounts for about 5,000 patents. Notably, countries outside these three regions, which include Africa, Australia, and South America, contribute almost no patents to the overall patent count. This fact underlies the importance of any innovation spillovers from patenting to non-patenting regions, especially because these non-patenting regions are responsible for significant fraction of global emissions. Panel B presents observations for all firms that are available in Trucost. The subsample quite closely mimics the behavior of the unconditional sample. We observe a steady increase in observations from 2005 until 2015. More pronounced is the sharp increase in observations starting from 2016. This increase can be largely explained by the change in firm coverage by Trucost that took place post-Paris agreement. This can be better observed in Panel C, in which we restrict our observations to firms that are featured in Trucost prior to 2016. We still observe the increase in firm observations over time but the sharp increase in 2016 is no longer as pronounced.

3.3 Innovation Capacity: scale & scope

The summary statistics in Section 3.1 suggest that the probability of a firm filing a patent is skewed towards larger firms. This result is not entirely surprising. To be able to innovate firms need to build research teams, laboratories, and other facilities. It is to be expected that bigger firms can build bigger research facilities, and therefore can produce more patents. What is more, firms are more likely to continue incurring these fixed costs if their innovative activities have been successful. And so, a plausible hypothesis is that the past stock of patents along with the size of the firm predict future patenting activity. If firms' innovation capacities are limited by their size, one would also expect to see some substitution between different R&D directions. Not all promising research and development projects can be pursued at the same time. Firms choose the projects that show the greatest promise given their state of knowledge and know-how. Thus, another plausible hypothesis is that firms specialize in the R&D they become good at.

We begin our analysis by formally exploring these two hypotheses. First, we associate a firm's number of new patent filings at the European patent office in year *t* (ANYCOUNTEP) with its stock of European patents up to year *t* (PASTSTOCKANYEP), its size, number of employees, assets, and its age, using a Poisson pseudo-maximum likelihood model (which allows for non-trivial numbers of zeros in dependent variables). We report our findings in Table 1, Panel A. In columns 1 to 3, we look at the extensive margin by including all firms, whether they have any patents or not. In columns 4 to 6, we look at the intensive margin, by including only firms that have engaged in innovation activities in the past and own some patents. Specifications 1 and 4 include country and year fixed effects, specifications 2 and 5 additionally include industry-year fixed effects, and specifications 3 and 6 use firm fixed effects instead of industry-year fixed effects.

In all models, we double cluster standard errors at the firm and year dimensions to allow for cross-correlation and serial correlation of residuals.

Consistent with our first hypothesis, we find that the stock of patents already owned prior to year *t* (PATSTOCKANYEP), the age of the company, and the three measures of firm size (market cap, number of employees and total assets), all positively predict future patenting activity when we add industry-year fixed effects. This is true both at the extensive and intensive margins. In other words, innovative activities of firms are constrained by their innovative capacity, which is greater for larger firms and for firms that have greater R&D experience (as reflected in the patent stock and firm age variables). As others have pointed out (e.g., Acs and Audretsch 1988, 1991), much innovation activity takes place at large companies. Our findings confirm these observations (albeit based on broader and more recent data). These results provide important context for our other findings below on the path-dependency of R&D activity.

In Panel B of Table 1 we turn to our second hypothesis, specialization through learningby-doing. Here we distinguish between the number of green patents a firm files in year t (GREENCOUNTEP) in columns 1 to 3, and the number of brown patents (BROWNEFFCOUNTEP) it files, in columns 4 to 6. We also break down the patent stock variable into the stock of green patents (PATSTOCKGREENEP) the firm holds up to year t, and the stock of brown patents (PATSTOCKBROWNEFFEP). Consistent with our hypothesis, we find strong evidence of specialization, with a higher stock of green patents (resp. brown patents) positively predicting future green innovation activity (resp. brown innovation activity). Moreover, a higher stock of green patents (resp. brown patents) negatively predicts future brown innovation activity (resp. green innovation activity). This latter finding in particular reveals both the presence of scope constraints for innovation and the effects of learning-by-doing. Overall, this latter finding uncovers strong path-dependency for innovation: greater experience with brown technology reduces the likelihood of future green innovation activity; similarly, greater experience with green technology reduces the likelihood of future brown efficiency innovation. This evidence is consistent with the path-dependency findings of Aghion et al. (2016) for the auto industry. Path dependency is not just a feature of that industry. It extends across industries and around the world.

3.4 Green and brown innovation ratios

As we have shown, patenting activity in any given year is significantly driven by a firm's innovation capacity. Moreover, the different directions in which a firm can pursue R&D are constrained by the firm's innovation capacity, so that there is some substitution between different R&D directions. Accordingly, new patent filings must be related to the firm's innovation capacity to get a more accurate picture of the intensive margin of innovation activity. For that reason, we

normalize the number of green (respectively brown) patent filings by the total number of patent filings and define the following two variables: GREENRATIOEP is the ratio of green patents filed at EUPO over the total number of patent filings in that year; BROWNEFFRATIOEP is the ratio of brown patents filed at EUPO over the total number of patent filings in that year.

Table IA.IV, Panel A provides information on the ratios of green or brown patent filings for each country. In columns 1-4 we focus on green patent ratios. The average green patent ratio equals approximately 11%. Interestingly, the ratios do not differ greatly between publicly listed and private companies, with the former having an average ratio of 11.4% and the latter 10.3%. For the Trucost sample, the numbers are slightly higher. Furthermore, innovation activity (as measured by the number of firms with at least one patent) is proportional to the size of the economy. Among the countries with more than 300 public or private companies, some of the ones with the highest ratios of green to total number of patents are: Norway with a ratio of 16.4%, Canada with a ratio of 15%, and Denmark with a ratio of 14.5%. In comparison China has a ratio of 12.9%, and the U.S. an even lower ratio of 10%. Notably, Saudi Arabia reports a large fraction of green patents 14.9%, and the UAE an even higher ratio of 23.5%, which is interesting given their strong reliance on oil production. In columns 5-8 we provide respective summary statistics for brown patents. On average, brown patent ratios are significantly smaller. The average number for the EUPO patents equals 3.33%. The unconditional numbers do not deviate much from those based on the Trucost sample. Notable countries for significant brown patenting activity include Malaysia, Australia, India, Greece, Singapore, and the U.K. The numbers for the U.S. and China are about the same 2.61%.

Panel B breaks patent activity down by sector (GICS6-industry). In columns 1-4 we present the results for green patents. Some sectors stand out for the intensity of their innovation activities. The Independent Power and Renewable Electricity Producers industry has the highest ratio of green patents filed at EUPO, with 53.78%, followed by Electric Utilities, Multi-Utilities, and Gas Utilities. These results are broadly consistent with those in Cohen, Gurun, and Nguyen (2022) for the U.S. On the other end of the green R&D spectrum, IT and healthcare sectors are the two industry groups with the lowest green patent ratios. The ratios are broadly within the same range for public and private firms. They are also not markedly different when we restrict our sample to Trucost observations, which is reassuring about any selection concerns one might have. In columns 5-8 we report the results for brown patents. The ratios are generally larger for publicly listed firms, especially in those sectors with higher ratios. Among the most active industries, Energy Equipment & Services leads with the highest ratio of 19.95%, followed by Automobiles at 14.38%, and Independent Power and Renewable Electricity Producers at 12.5%.

In Panel C, we report the distribution of patenting activity by year, with columns 1-4 providing green patenting activity over time and columns 5-8 providing brown patenting activity. Green patent ratios have steadily increased over time. For example, in column 1 we see that this ratio was below the average of 11% in 2005, with a ratio 8%, but above average in 2020 with a ratio of 12.9%. The same increasing trend in green patent activity can be observed for listed companies (in column 2), private companies (column 3), and for Trucost companies, which are mostly listed companies (in column 4). When it comes to brown patent filings, we see the opposite trend and a decline in R&D activity over time for brown technologies, but the rate of reduction is very small. In Figure 3 we display the patent ratios across time by region and find broadly similar patterns.

3.5 Summary Statistics

In this section we provide summary statistics for the main variables in our models, conditional on whether firms file patents. In addition, we report complete summary statistics for publicly listed firms with carbon emissions data (those that can be matched to the Trucost dataset). Our empirical analysis in the subsequent sections is based on this restricted sample. Accordingly, these summary statistics provide information on how the broader universe of firms may differ from the Trucost universe.

We begin by defining all the variables. Our first category is variables related to innovation activity. Besides the variables measuring general innovation activity and respectively green innovation, and brown efficiency improvements that we defined above, we also include variables measuring the impact of patents by how widely cited they are. GREENRATIOEP2 is defined as the number of granted or purchased "green" or "general efficiency" patents over the total number of granted or purchased patents; OECDRATIOEP is a patent ratio based on OECD green Envtech classification, calculated as the number of granted or purchased OECD patents over the total number of granted or purchased patents; GREENCITMAXEP (BROWNEFFCITMAXEP) is the maximum number of forward citations any green (brown) patent of a firm received; GREENBBCOUNTEP (BROWNEFFBBCOUNTEP) is the number of green (brown) blockbuster patents patents patent per firm, where blockbuster patents are defined as patents in the 95th percentile based on the number of forward citations in a given grant year and classification.⁷

.

⁷ Measuring the importance of patent value is generally a challenging question and, in this paper, we rely on the most basic measure of citation, particularly because of our global focus in the paper. Kogan et al. (2017) is an excellent study providing a more detailed discussion of these issues.

In our second category we include variables measuring corporate carbon emissions (direct and indirect) when available, and standard variables capturing key corporate characteristics.⁸ Thus, LOGS1TOT, LOGS2TOT, LOGS3TOT, LOGS3UPTOT, and LOGS3DOWNTOT respectively stand for the natural logarithm of firm-level scope 1, 2, and 3 (also upstream and downstream) total carbon emissions, and S1INT, S2INT, S3INT, S3UPINT, and S3DOWNINT are firm-level scope 1, 2, and 3 emission intensity variables defined as the level of emission divided by firm sales. In our third category we include the main variables reflecting key corporate characteristics: i) LOGSIZE stands for the natural logarithm of a listed company's market capitalization (price times shares outstanding); ii) LOGPPE is given by the natural logarithm, of the firm's property, plant, and equipment (in \$ million); iii) LEVERAGE is the ratio of debt to book value of assets; iv) ROE is given by the ratio of firm is net yearly income divided by the value of its equity; v) M/B is the end of year market cap divided by the firm's book value; vi) BETA is the market beta of individual companies calculated over the preceding 12-month period; vii) VOLAT is the standard deviation of returns based on the past 12 monthly returns; viii) momentum, MOM is given by the average of the most recent 12 months' returns on stock i, leading up to and including month t-1; ix) short-term reversal, RET is the past year's December return on stock i; x) capital expenditure INVEST/A is the firm's capital expenditures divided by the book value of its assets; xi) MSCI is an indicator variable equal to one if a stock is part of the MSCI ACWI index in year t, and zero otherwise; xii) LOGCAPEX is the natural logarithm of firm-level capital expenditures; and xiii) LOGCASH is the natural logarithm of firm-level cash positions. To mitigate the impact of outliers we winsorize M/B, LEVERAGE, INVEST/A, and ROE at the 2.5% level, and MOM and VOLAT at the 0.5% level.

In Table IA.V we report the sample averages, medians, and standard deviations of these variables. Panel A is based on all public and private firms, and Panel B on firms with available emission data. Columns 1 to 3 aggregate all firms with at least one patent. Columns 4 to 6 aggregate firms without any patents. Columns 7 to 9 aggregate firms in the bottom decile based on firms' average GREENRATIOEP across the whole period. The bottom decile covers only firms with no green patents and represents around 35% of observations. Columns 10 to 12 aggregate firms in the top decile based on firms' average GREENRATIOEP across the whole period. Both Panels A and B reveal considerable heterogeneity in innovative activity. Among the firms that hold at least one patent, there is a wide dispersion in green innovation as reflected in the standard deviation of GREENRATIOEP of 26.08% and the standard deviation of GREENCITMAXEP of 155.89.

_

⁸ Note that we do not have a complete coverage of all corporate emissions. The Trucost data covers around 85% of listed companies worldwide, and almost no privately held companies. The numbers we report are therefore an underestimate of total corporate emissions, and since a growing fraction of high emitting companies (or their affiliates) have delisted over the period we cover, this underestimate is likely to be larger in later years.

Interestingly, the average level of emissions of innovating firms is significantly larger than that of non-innovating firms, with the mean of LOGS1TOT equal to 6.13 for innovating firms but only 4.85 for non-innovating firms. A similar difference holds for scope 2 and 3 emissions. Partly this difference could be attributed to the fact that innovating firms are slightly larger (mean LOGSIZE is 7.86 for innovating firms versus 6.93 for non-innovating firms). Patenting firms have also greater values of LOGPPE, LOGCAPEX, and LOGCASH, and slightly higher values of M/B than non-patenting firms do. At the same time, they do not differ much in terms of their BETA, VOLAT, MOM, and INVEST/A. Notably, we observe similar relationships for variables that are observed for the full and restricted samples, which suggests that the relationships we identify based on our restricted samples are not less likely driven by specific selections along different observables.

We now turn to the analysis of innovation and the carbon transition. Our analysis will be guided by three fundamental insights, the *Arrow replacement effect* (Arrow, 1962), *Jevons' paradox* (Jevons 1865), and the *displacement effect*. Arrow (1962) has pointed out that "The pre-invention monopoly power acts as a strong disincentive to further innovation." More generally, the incentive to innovate is reduced if the innovation replaces an existing technology that is working and is profitable. By that principle one should expect companies that master technologies based on fossil fuels to be less motivated to engage in green innovation that would replace a technology and knowhow that is already working. This is even more likely if green innovation involves retooling and abandoning a knowledge base around fossil fuel-based technology. If there is an incentive to innovate for an incumbent firm with a fossil fuel-dependent installed base it is more likely to take the form of efficiency improvements in the use of fossil fuels, what we refer to as *brown efficiency improvements*. Indeed, this innovative activity plays into the strengths of the incumbent firm, its expertise with brown technologies, which it has built through learning by doing (Arrow 1971).

Carbon emissions can be reduced by replacing brown with green energy or by improving the carbon efficiency of brown energy. Thus, both green and brown efficiency innovations are central to the drive to decarbonize the economy. But, as Jevons (1865) has pointed out, brown efficiency improvements do not necessarily translate into carbon emission reductions because the very efficiency gain is also inviting greater use. Furthermore, the displacement effect from green innovation may displace scope 1 emissions to scope 2 and scope 3 emissions, as is for example the case for electric vehicles.

In the next section we explore how green innovation activity is shaped by Arrow's replacement effect. In the following section we turn to Jevons' paradox and the displacement

19

⁹ Kenneth Arrow "Economic Welfare and the Allocation of Resources for Invention," page 620, in *The Rate and Direction of Inventive Activity: Economic and Social Factors*, NBER.

effect to explore the link between green innovation and the future decarbonization of the economy.

4. Green Innovation Activity: Arrow's replacement effect and path-dependent innovation

Basic economic analysis would suggest that firms engage in green R&D if it is more profitable than both no R&D and other R&D. Another consideration is comparative advantage—some firms, such as renewable energy companies, may be both better equipped and benefit more from green R&D. Brown companies that rely on fossil fuel energy may be better at squeezing out efficiency gains in brown technologies. Alternatively, "khaki" R&D, that is, green innovation by brown companies, may be most profitable if fossil fuel energy is increasingly regulated and expected to become obsolete. We explore these hypotheses in this section and point to some key factors driving green R&D across sectors and around the world. Overall, the picture that emerges is the importance of path-dependency in understanding green innovation activity at the firm level. As we will show, green firms (that are already familiar with green technologies) are more likely to produce green patents, whereas brown firms (which have expertise in fossil fuel-dependent technologies) are more likely to produce brown patents. Similarly, older companies (the industry incumbents) are more likely to engage in brown efficiency innovation, while younger companies (the new entrants) are more likely to engage in green innovation. We also find that a key predictor of patenting activity is the stock of past patents that a company holds. Companies that have been successful innovators in the past have capacities that allow them to continue to innovate. However, as we have shown, innovation capacities are limited. Companies cannot innovate in all promising directions. If their past innovative activities tended to be specialized in brown efficiency innovations, they will continue to innovate in that direction. In sum, innovation activity is characterized by path-dependence consistent with the findings of (Popp, 2002) and Aghion et al., 2016).

4.1 Green vs Brown Innovation: Firm type and Path-dependency

The sustainable energy technological revolution necessarily involves substituting fossil fuel-based technology for green technology. Is this substitution taking place within firms (with the greening of brown firms) or across firms (with the replacement of brown firms by green firms)? This is the question we explore in this section.

Our working definition of a *brown* firm is a firm with high carbon emissions, that is older, may have larger assets, and may be a value company. Similarly, a *green* firm is one that has low carbon emissions, is younger, may have smaller asset size, and may be a growth firm. These characteristics are not the only possible ways to define a firm type, these are more to illustrate the

point that companies' emissions may be systematically driven by some ex-ante metrics. As the histograms in Figure 4 show, our green vs brown firm type classification is broadly descriptive of our universe of companies. Each panel shows the distribution of scope 1 emissions for companies in the lowest and the highest quintile of the distribution that is conditional on three different characteristics. In Panel A we show how younger firms (in the bottom quintile) have a distribution of scope 1 emissions that is skewed towards lower levels than the distribution for older firms (in the top quintile). Similarly, in Panels B and C we show that firms with respectively larger asset size and larger M/B ratios have also lower means and medians of their emissions.

Our question, rephrased with reference to these two firm types, then will be the extent to which we see green innovation activity at *green* versus *brown* firms, and whether we see brown firms greening themselves through green R&D. Given that firms have limited innovation capacities and given that the research projects that are most promising in view of individual firms' accumulated know-how tend to crowd out other R&D, it is natural to measure the amount of green (resp. brown efficiency) R&D in terms of the ratio of green-to-total patent filings (resp. brown efficiency-to-total patent filings).

How are green (resp. brown) patent ratios linked to firm type, specifically the firm's corporate carbon emissions, its age, and green and brown patent stocks? To answer this question, we estimate the following Pseudo Poisson Maximum Likelihood model with firm (*i*) and year (*f*) as units of observation¹⁰:

Patent Ratio_{i,t} =
$$a + b*Firm Type_{i,t-1} + c*Controls_{i,t-1} + Fixed Effects + \epsilon_{i,t}$$
 (1)

where *Patent Ratio* is a generic variable that allows for different types of patents to be related to the total number of patent filings. *Firm Type* (a continuous variable measuring the share of a firm's green and brown activities) is proxied by a combination of i) LOGS1TOT (and other carbon emission variables); ii) PATSTOCKGREENEP and PATSTOCKBROWNEFFEP, and iii) AGE/100. *Controls* is a vector of the following variables: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI. We include country and year fixed effects. In some specifications, we also include industry-year or firm fixed effects. Our baseline specification uses the Trucost sector classification of 431 industries. To allow for the cross-sectional and serial dependence in the residuals we double cluster standard errors at the firm and year dimensions. Our coefficient of primary interest is *b*.

¹⁰ Since many companies do not report any green patents a standard OLS regression is not suitable to estimate this relationship.

We report our findings for the extensive margin (which includes all firms, whether they own any green, respectively brown, patents or not) in Table 2. In columns 1-3, we present the results for green innovation activity (GREENRATIOEP), and in columns 4-6 the results for brown innovation activity (BROWNEFFRATIOEP). When industry fixed effects are not included (column 1) the coefficients of LOGS1TOT and PATSTOCKGREENEP are positive and statistically significant. The coefficient of AGE is negative and statistically significant. Not controlling for industry, however, is misleading because technological differences (and differences in emissions) across industries are huge. The results of the regressions without industry fixed effects are therefore difficult to interpret. For this reason, we consider specifications that absorb the time-varying differences across industries through industry-year fixed effects.

When industry-year fixed effects are included (column 2) the coefficient of LOGS1TOT is highly significant and negative. The other two coefficients retain the same sign and significance as before. When we further include firm-fixed effects, in column 3, the coefficients of LOGS1TOT and PATSTOCKGREENEP become insignificant.¹¹ The results flip when we look at brown innovation activity (BROWNEFFRATIOEP) in columns 4-6. For this type of innovation activity, the association with direct carbon emissions is strongly positive across firms within the same industry (when we include firm fixed effects, in column 6, the association for LOGS1TOT becomes negative, suggesting that when direct emissions increase firms tend to reduce their innovation activity). Overall, the combination of these results has a clear interpretation: green companies do more R&D that is green, and brown companies do less; instead, the latter do more brown R&D. What is more, these are cross-firm rather than withinfirm effects (when we substitute industry*year FE for firm FE neither the coefficients for carbon emissions nor for the stock of patents are significant). These results further confirm the pathdependency hypothesis for R&D. To the extent that brown companies engage in innovation activities, their innovations are less likely to be directed towards green patents (and the opposite is true for green companies). In addition, green innovation is most likely to be undertaken by new entrants. Incumbents, far from embracing renewable energy technological change, respond by seeking to improve the efficiency of fossil fuel-based technology. The auto industry provides a good illustration of these findings. Indeed, the EV revolution has been driven by new entrants (Tesla, BYD) and incumbents have responded by improving the carbon efficiency of their vehicles.

In Table 3, we further explore the link between green innovation and direct carbon emissions on the *intensive margin*. That is, we restrict the sample to the universe of firms that have engaged in innovation (all the firm-year observations with at least one green patent, in columns 1

-

¹¹ In the specification with firm-fixed effects we cannot uniquely identify the coefficient of AGE because its variation is collinear with that of firm and year fixed effects.

to 3, and/or one brown patent, in columns 4 to 6) and explore how the intensity of green (respectively brown) innovative activity is related to the stock of respectively green and brown efficiency patents the firm already owns, firm age, and the firm's direct carbon emissions. The empirical model follows that in Table 2, and it is estimated using OLS with standard errors double clustered at firm and year dimensions. Our findings for the intensive margin are broadly consistent with those for the extensive margin. If anything, they are stronger, except for firm age and scope 1 emissions, which are no longer significant for brown efficiency innovation, suggesting that entry and exit play a more important role in the relationship between the variables in the data.

Patent counts (or patent ratios) are somewhat coarse innovation performance metrics to the extent that many patents have limited applications. Accordingly, we also take patent citations (which reflect the importance of a patent) as an additional measure of innovation activity. In Table 4, Panel A, we associate the citation number of the patent with the maximum citations (respectively our GREENCITMAX and BROWNEFFCITMAX variables) with the same firm characteristics as in our previous regression for the green and brown patent ratios. We find very similar qualitative effects. Companies with higher emissions have lower citations for their green patents but higher citations for their brown patents. Also, companies with a greater stock of green (brown) patents are more likely to receive more citations of their green (brown) patents. Notably, firm age is positively associated with citations of both types of patents. This is to be expected since citations generally take time to accumulate. Similarly, our findings on the path-dependency of green R&D are confirmed when we focus on the most important new patents by citation count, GREENBBCOUNTEP and BROWNEFFBBCOUNTEP, in Panel B. Companies with a higher stock of green patents are more likely to make further important green innovations, and companies with a higher stock of brown patents are more likely to make additional brown efficiency innovations. The results for firm emissions and age are slightly weaker.

We find more direct evidence of Arrow's replacement effect at work in Table 5, where we explore how the firm's market share affects the path-dependence of innovation. If the replacement effect is at work, we would expect to see firms with larger market share do less green innovation other things equal. In Table 5 we explore how a firm's market share based on its sales relative to total public and private firms' sales in the same Trucost sector (MKTSHRSALES TRUIND) affects its green innovation activity. Strikingly, we find that firms with a larger market share do significantly less green innovation, but they do more brown innovation. Note that when we replace industry*year FE with firm FE market share is no longer a significant variable, so that this effect is entirely driven by selection in the industry. An additional prediction of the model is that firms with greater market share should be in a better position to switch their innovation profile because of their stronger competitive position. To test this hypothesis, we interact the firms' market share

with their type (measured by scope 1 emissions, firm age, and the stock of green and brown efficiency patents). In the model in column 2 that accounts for industry-year fixed effects, we find that green innovation is less path dependent when firms have a larger market share. This result holds for all three measures of firm type. The results based on brown innovation are similar for firm type measured by scope 1 emissions but are weaker when we measure firm type with the stock of brown patents, or firm age. Note that the interaction effect is again driven by selection in the industry. Indeed, when we replace industry*year FE with firm FE we find that a higher stock of green patents induces more green innovation (and a higher stock of brown patents induces more brown efficiency innovation). These findings are all consistent with Arrow's replacement effect: more entrenched firms (as measured by their market share) have lower incentives to do R&D and they are also more likely to switch their type because of their greater flexibility to do so.

Our findings so far are that brown companies (with higher direct emissions) do not tend to engage in green R&D. This may be due to replacement and/or learning-by-doing effects. Another possibility is that brown companies may be locked into fossil-fuel dependent technologies through their production networks. If input suppliers or downstream firms/customers also rely on fossil fuel-dependent technologies, then an individual firm in the supply chain may not be able to easily switch to green technologies. We investigate the presence of such technological complementarities across firms by exploring whether indirect (scope 2, upstream and downstream scope 3) emissions are linked to corporate green R&D. We report the findings of this analysis in Table 6. It is indeed the case that the technological ecosystem in which a firm operates affects its incentives to engage in green R&D. As can be seen in columns 1, 2, and 3 of Panel A, the higher are the firms' indirect levels of emissions along the vertical production chain the less likely the firm is to engage in green R&D. Also (as is shown in Panel B), when it comes to brown efficiency innovation, the higher are firms' upstream scope 3 emissions the stronger are their brown innovation activities. Similar, but slightly weaker results hold for scope 2 and downstream scope 3 emissions. All in all, these latter findings reveal the presence of a much broader replacement effect than the firm-specific replacement effect identified by Arrow (1962): Replacing an old technology with a new one is more costly and less profitable if other firms along the supply chain do not follow in making the switch. This key finding suggests that in order to induce firms to transition from brown to green technologies, industrial policy that helps coordinate this transition across all firms linked through the supply chain may be needed.

We also explore the change in path dependency of R&D over time in response to the rise in climate change awareness and tighter mitigation policy responses following the Paris 2015 landmark agreement. We split our sample into two sub-periods, before and after 2015. We report our results in Table 7. The results in Panel A are for the full sample, and those in Panel B are only

for the legacy sample (the firms for which we have carbon emissions data before 2015). The interactions LOGS1TOT*Post2015, AGE*Post2015, and PATSTOCKGREENEP*Post2015 (resp. PATSTOCKBROWNEP*Post2015) capture the change in path-dependency around the Paris agreement (where Post2015 is an indicator variable taking the value 0 for all observations before 2015 and 1 after 2015). Interestingly, there is no significant change in the link between carbon emissions and green (or brown) patent activity. However, the stock of green patents matters more for future green R&D post 2015, suggesting that green R&D has become more valuable post 2015 and is pursued by the (new entrant) green firms.

4.2 Robustness

We perform several robustness tests and report the findings in the Appendix. In Tables IA.VI and IA.VII we report the findings of our main regression analysis industry by industry for each GICS6 industry to better understand in which industries our results are strongest. Overall, path-dependency results are found in most industries, especially for the regressions with green patents as dependent variable.

Second, we explore how sensitive our path-dependency results are to different patent classifications. In Table IA.VIII we replace our green patent classification with the broader OECD classification of green patents, which includes more general technologies related to environmental applications, biodiversity, and wastewater management, as well as a green classification capturing both green and general efficiency patents. We find that the qualitative predictions uncovered for our green patent classification also hold for this broader green classification. Firms with higher emissions, that are older, larger, and have a smaller stock of green patents do less green R&D.

Third, we explore the sensitivity of our results to different patent filings than European patent office filings. In Table IA.IX we count all patent filings anywhere in the world. The dependent variables now are the ratio of green to total worldwide patent filings in year t (GREENRATIOWW in columns 1 to 3) and the ratio of brown to total worldwide patent filings (BROWNEFFRATIOWW in columns 4 to 6). Similarly, the stock of patents (PATSTOCKGREENWW and PATSTOCKBROWNEFFWW) now includes all patents filed anywhere in the world. The results clearly show that the qualitative results on path dependency also obtain when we look at the noisier measure of patent activity based on worldwide filings.

Fourth, we revisit the results of Table 2, using two alternative definitions of industry, based on 6-digit and 8-digit GICS scores. We report the results in Table IA.X. We find that qualitatively changes in industry classification do not affect our results on path dependence. Another robustness test we conduct is to restrict our sample to those firms for which we have carbon emissions data before 2015 (our legacy sample). Again, as reported in Panel A of Table IA.XI (for

the extensive margin) and Panel B of Table IA.XI (for the intensive margin), our qualitative results are unchanged. We also explore how much mergers and acquisitions affect our findings. In Table IA.XII we report the findings of our regressions based on a sample that excludes all companies engaged in mergers and acquisitions (M&A) over our sample period. The results are qualitatively similar to our baseline findings. M&A activity is largely orthogonal to the determinants of corporate innovation activity even if some acquisitions are motivated by access to innovation.

We also explore how green innovation is distributed across firms by the size of their carbon emissions. In Table IA.XIII, we report the findings when we split our sample into terciles based on firms' initial scope 1 emissions (the first year when we observe a firm's scope 1 emissions). In Panel A the dependent variable is the green patent ratio and in Panel B the dependent variable is the brown efficiency ratio. Interestingly, the most significant negative effects of carbon emissions on green innovation are concentrated in the tercile of firms with the lowest emissions. But the stock of green patents has similar predictive effects on green innovation across all three terciles. In contrast, the most significant effects of carbon emissions on brown innovation are concentrated in the tercile of firms with the largest emissions. Again, however, the stock of brown patents has similar predictive effects on brown efficiency innovation across all three terciles.

5. The effects of innovation on future carbon emissions

We have shown that green and brown efficiency innovation is strongly path dependent. Green companies (which tend to be younger) are more likely to produce green patents, while brown companies are more likely to produce brown efficiency patents. That is, brown companies do not redirect their innovation towards green innovations. Rather, they focus on squeezing out efficiency gains in their brown operations. These results suggest that companies are unlikely to decarbonize through the switch of their innovation profiles.

In this section we systematically evaluate the effects of (green and brown) innovation on future carbon emission reductions. Much is predicated on the assumption that technological change is the solution to the climate crisis. But do green and brown efficiency innovation significantly reduce carbon emissions? The archetypal image of a technological change that drastically reduces carbon emissions is the substitution of a coal-fired power plant by a photovoltaic power station, or the substitution of a combustion-engine car by an electric vehicle. Yet even these obvious examples come with questions about the net effects of these technological changes on carbon emissions, since solar panel and electric vehicle production require inputs and use energy that causes upstream and downstream carbon emissions, giving rise to the displacement effects. Similarly, with brown efficiency-improving innovation the effect on carbon emission reductions may be limited because of rebound effects. Fuel economy innovations for combustion

engine cars may be undone by people driving longer distances. Battery life improvements for cell phones may simply result in greater phone usage. It is therefore unclear how much green and brown efficiency innovation has affected direct and indirect carbon emissions. These are the questions we explore in this section by exploring in turn the effects of innovation on: i) the companies' own future direct and indirect emissions; ii) the effects on other companies' direct and indirect emissions in the same industry; iii) the effects on carbon emissions across other, broadly related industries; and iv) the effects on carbon emissions across countries within the same industry.

5.1 Green Innovation and the CO2 Problem

We begin our analysis of the impact of green R&D on carbon emissions by estimating the following regression model linking future firm-level corporate policy outcomes, such as future carbon emissions, to measures of contemporaneous green and brown efficiency patent ratios. Our first model exploits both extensive and intensive margins of patenting. Formally, we estimate the following linear regression model:

Corporate Policy_{i,t+h} =
$$a + b*Patent Ratio_{i,t} + c*Controls_{i,t-1} + FE + \epsilon_{i,t}$$
 (2)

where *Corporate Policy* is a generic response variable that includes: i) the total level of emissions; ii) emission intensity; iii) INVEST/A; iv) LOGCAPEX; and v) LOGSALES, measured *t+h* years ahead. We let *h* take the value of respectively 1, 3, and 5 years to reflect the possibility that there may be a "time to build" lag in corporate adjustments. We also use the average value of patenting activity over the previous 3 years to predict corporate outcomes to take account of the fact that innovation breakthroughs are lumpy. The variable *Patent Ratio* is defined as before, and all regressions include year and firm-fixed effects. We double cluster standard errors at the firm and year dimensions. Our coefficient of primary interest is *b*, which measures the impact of *Patent Ratio* on future corporate policy outcomes.

The results are reported in Table 8. Panel A reports the effects of green innovation (GREENRATIOEP) on corporate policy outcomes one year (L1), three years (L3), and five years (L5) ahead. We also report the effects of green innovation averaged over the previous three years (3YEARAVGGREENRATIOEP) on these corporate policy outcomes. As shown in column 1, green innovation has no significant effects on firms' direct emissions, one, three, or five years later. The same is true for indirect emissions (scope 2 emissions in column 2, upstream scope 3

emissions in column 3, and downstream scope 3 emissions in column 4¹²), although we observe a small reduction in indirect emissions with a 10% statistically significant negative coefficient of -0.042 for scope 2 emissions three years after the green patent filings. Future emissions are also not significantly related to innovation activity averaged over the past three years. We conclude that green innovation has not resulted in significant carbon emission reductions for the innovating firms even after five years since the patent filing. Columns 4 to 8 further report the lack of any significant effects of green innovation on direct or indirect emission intensity, so that the green technical progress does not appear to have materialized in any significant carbon efficiency gains. The only significant effect of green innovation on future corporate policies has been on future investment (with a three-year lag), with a substantial reduction in investment following the green patent filings. This latter finding is somewhat surprising, given that one expects research breakthroughs to be followed by development (i.e., more investment).

Panel B reports the effects of brown efficiency innovation (BROWNEFFRATIOEP) on corporate policy outcomes again respectively one year (L1), three years (L3), and five years (L5) ahead. As before we also report the effects of brown efficiency innovation averaged over the previous three years (3YEARAVGBROWNEFFRATIOEP) on these corporate policy outcomes. We find few significant effects of innovation on future corporate policies, except for a small increase in direct emissions with a 10% statistically significant positive coefficient of 0.065 for scope 1 emissions five years after the brown efficiency patent filings (in column 1), and a stronger, positive effect of average brown innovation on scope 1 emissions. This finding suggests that far from reducing future emissions, brown efficiency innovations result in increased future emissions. However, we also find a small improvement in scope 2 emission intensity, with a 10% statistically significant negative coefficient of -0.019 for scope 2 emission intensity five years after the brown efficiency patent filings (in column 7). Yet, this latter effect must be set against the significant effects on other corporate policies such as an increase in sales (column 12). Overall, what emerges from these findings is a picture that is consistent with the Jevons paradox: although brown efficiency innovation produces carbon intensity efficiency gains (for scope 2 emissions), these gains are offset by operating expansions (sales), which on net result in higher scope 1 emissions.

For robustness, we consider several alternative specifications. First, in Table IA.XIV we confirm the insignificance of firm-level green and brown innovation in affecting future carbon emissions and other corporate outcomes, for the specification where we include only observations of firms that hold at least one green, respectively brown, patent (intensive margin). Second, in Table IA.XV we show the results from the regressions where we take patent counts rather than

-

¹² Note that since downstream scope 3 emissions data has become available only in recent years, we do not have sufficient data to explore the effects on downstream scope 3 emissions over a 5-year horizon.

patent ratios as the main independent variable. The main difference is that the average count of green patents positively predicts future scope 1, scope 2, and upstream scope 3 emissions (in Panel A). Another related effect is that the average count of green patents positively predicts future firm sales. In contrast, we find a strong negative relationship between brown patent counts and scope 2 emissions (in Panel B). We also find a decrease in upstream scope 3 intensities in some specifications. Third, we explore how the importance of the patent matters for future corporate outcomes. In Table IA.XVI we consider the maximum number of cites a firm's patent receives. We find a strong positive effect of green patent cites on future scope 2 emissions, and a slightly weaker effect on upstream scope 3 emissions. In turn, green patent citations negatively predict downstream scope 3 emissions one year and three years into the future. Brown patent citations do not seem to affect future emissions, except for scope 1 emissions which fall in the next 1-3 years for companies with high citations of brown patents. In Table IA.XVII we look at the number of blockbuster patents a firm generates. As before, we find that, if anything, a higher incidence of blockbuster green patents is associated with higher levels of total emissions and particularly upstream scope 3 emissions. All other emissions components are unrelated to this measure. We also find little evidence that blockbuster brown patents lead to any reduction in future emissions. In Table IA.XVIII we restrict our analysis to companies whose cumulative patent ratio falls in the top quintile of the empirical distribution based on the previous 5-year data. Among all these innovation metrics, we find that the only model that predicts a reduction in future emissions is the 3-year moving average measure of green patents, which is negatively associated with scope 2 emissions. For brown patents, we find instead that the moving average of brown innovation strongly predicts a future increase in scope 1 emissions. Finally, in Table IA.XIX we show the results from using alternative, OECD-based, patent classifications. For green patents, we find some evidence of a reduction in future scope 2 emissions based on the ratio of green patents. Still, total future emissions are not negatively associated with this predictor. We also find a reduction in scope 2 emissions for some specifications based on brown patents, but the overall evidence of a link between green innovation and future decarbonization is weak. The conclusion we draw is that companies' green R&D activities are largely divorced from their other operations. Based on this evidence we conclude that the green industrial revolution has not yet materialized and that green innovation per se as the solution to the energy transition and the path to net-zero is still more of a promise than a reality.

If green or brown innovation does not lead to future carbon emission reductions by the innovating firms, could it be that these innovations are adopted by other firms so that green innovation activity *spills over* to the industry as a whole and materializes in industry-wide emission reductions? We explore this question by linking industry-level direct and indirect carbon emissions,

carbon intensity, and investment, to respectively green and brown efficiency innovation activity in the industry. Our baseline specification uses the GICS-6 industries classification. All regressions include the same controls as before, except that they are now measured at the industry level. We also include year and industry fixed effects. We double cluster standard errors at the industry and year levels. We report our findings for the industry-wide effects of green innovation in Table 9, Panel A, and of brown innovation in Table 9, Panel B.

Consider first the effects of green innovation. In Panel A.1 we consider the effects on all firms within the same industry, whether they are innovators themselves or not. We find that green innovation is positively associated with future scope 1 emissions in the same industry, especially in the longer 5-year horizon. This result is largely driven by an increase in industry sales, in line with Jevons' paradox. In fact, we find that scope 1 emission-intensity at the industry level goes down. We further find that a greater rate of green innovation in the industry is associated with higher future scope 2 emissions, consistent with the displacement effect. Finally, we find that more green innovation is associated with significant upstream carbon emission-intensity improvements.¹³ One consistent interpretation of these latter findings could be that reduced upstream scope 3 intensity is achieved by switching energy sources towards electricity, and the increase in electricity usage may have been met by electricity produced by fossil-fuel based power plants, which would increase scope 2 intensity. We note that the above results do not change much if we take as our measure of green innovation the average of green patenting activity over three years (3YEARAVGGREENRATIO) to take account of the fact that innovation is a gradual multiyear process. Finally, we also find a small significant effect on industry-wide investment, with greater green innovation associated with a subsequent slight increase in investment, especially in the longer run.

We also break down within industry spillover effects by looking separately at firms that innovate and those that do not. The reason why we make this distinction is that spillovers among innovating firms could be driven by competition, whereas spillovers from innovating firms to non-innovating firms are driven by adoption of the new green technologies. In Panel A.2 of Table 9 we report the results of the effects of green innovation on corporate policies of all the innovating firms in the industry. Again, we find no effect of green innovation on subsequent carbon emission reductions even though the direction of the effect for scope 1 emissions becomes negative, suggesting a more beneficial effect of green innovation. Still, we find that greater green innovation

¹³ Table IA.XX considers green citations. While the results on absolute scope 1 emissions, intensities, and sales have the same sign, they are statistically weaker. Table IA.XXI looks at OECD green patent ratios. The results reported in this table broadly confirm our findings. Scope 3 upstream intensities again improve with more green innovation. Note that we also find small reductions in scope 1 emissions for a 3-year lag for ever-patenting firms, but this effect disappears for a 5-year lag.

is associated with higher scope 2 emissions, especially over the longer 3-year period. In Panel A.3 we report the results of the effects of green innovation on corporate policies of all the non-innovating firms in the industry. We find no evidence of any within-industry *spillover* between green innovators and non-innovators.¹⁴ There is no significant subsequent carbon emission reduction by the non-innovators in the industry. There is, however, a significant increase in scope 2 carbon emission levels and intensity for the non-innovating firms. We also find a positive effect for scope 1 emissions.

In our tests, we assume a particular granularity in which innovation propagates within industries. The choice of a proper sectoral clustering is ex ante difficult even though GICS-6 is the preferred classification of investors. As a robustness, we therefore repeat the same analysis in Panel A of Table IA.XXII, but with a different industry classification: Instead of the coarser GICS-6 classification we use the slightly finer Trucost industry classification. Most of the qualitative results are similar, with some notable exceptions. We now find that most of the industry-level emission metrics are unrelated to industry-level green ratios. The exceptions are for scope 2 intensity and scope 3 downstream emissions, both being positively related to green innovation. In sum, what emerges from these findings is that there is no evidence of significant industry-wide direct and indirect emission reductions following greater green patenting activity and if anything, some of the emissions, especially scope 2 emissions go up, consistent with the displacement effect.

We consider next the industry-wide effects of brown efficiency innovation. The results are reported in Panel B of Table 9. In Panel B.1 we again look at the effects on all firms in the industry, whether they are innovators themselves or not. Interestingly, we find some reduction in direct or indirect carbon emissions following greater brown patenting activity even though the results are statistically insignificant. We further find that scope 1 and scope 3 upstream carbon emission-intensity goes up. Another remarkable finding is the apparent heterogeneity between innovating and non-innovating firms. While emissions of innovating companies in the same GICS-6 industry increase slightly, carbon emissions of the non-innovating firms in the sector (both direct and indirect) go down. Interestingly, this effect is to a large extent driven by a reduction in sales, and investments, of that group of companies. Hence, the carbon emissions reduction of this subset of companies is largely coming from their loss of market share and not from a greater carbon efficiency of production. We again repeat the same analysis in Panel B of Table IA.XXII with the Trucost industry classification. Most of the qualitative results are similar, even though we find that

14 We confirm these results in Table IA.XX with patent citations as a measure of green innovation. The only notable difference is an increase in scope 3 downstream emissions with a three-year lag.

¹⁵ In Table IA.XX, we explore the robustness of these findings to using patent citations to measure brown innovation. Under this measure, the results are broadly confirmed, although absolute scope 1 emission and intensities increase in the long-run.

scope 2 emissions of innovating companies go down due to increased efficiency of energy production. At the same time, we again find that the market share of non-innovating companies goes down by a significant margin thus explaining some of the reduction in total emissions.

If there are no significant effects of green innovation on industry-wide carbon emissions, could there be cross-industry effects? Could it be that technological improvements in green energy in one industry mainly result in carbon emission reductions in other, closely related industries? We explore this question next (we also look at cross-country spillovers within individual sectors in Tables IA.XXIII-IA.XXVIII of the Appendix). In Table 10 we associate industry-wide direct and indirect carbon emissions, scope 1, 2, and 3 carbon intensity, capital expenditures, and sales in a given industry with green innovation activity by firms outside the narrow sector, but within the broader sector, and ask to what extent green innovation works by reducing emissions across sectors. Specifically, we link innovation activity in a given GICS-8 industry to corporate outcomes in a corresponding GICS-2 industry, excluding the specific GICS-8. In Panel A.1 we include all firms, in Panel A.2 we only look at cross-sector spillovers on innovating firms and in Panel A.3 we only look at cross-sector spillovers on non-innovating firms. Interestingly, we find a significant cross-industry spillover effect on carbon emissions with a 1-year lag for upstream scope 3 emissions, and for downstream scope 3 emissions for green innovation activity averaged over three years (3YEARAVGGREENRATIOEP). This effect works entirely through innovating firms, as is shown in Panels A.2 and A.3.

As for the cross-industry effects of brown efficiency innovation reported in Panel B of Table 10, we find that the only significant cross-industry effect on the level of emissions is an increase in downstream scope 3 emissions. The other cross-industry effect is a significant worsening of scope 1 and scope 2 carbon intensity for patenting firms. These findings point to other channels through which rebound effects can take place. An efficiency gain in brown technology in one sector can result in increased carbon emissions in another sector (through the supply chain) by inducing greater use of a complementary brown technology.

These findings are consistent with the general idea that cross-sector innovation is highly complementary, and that it takes innovation breakthroughs in multiple sectors to be able to implement new technologies that reduce carbon emissions at scale. Moreover, technological innovation in one sector can result in rebound effects in another sector, largely eliminating any reductions in direct emissions from the innovation. This points to the complexity of green innovation as a solution to the CO2 problem. Decentralized, market-based, innovation may not be all that effective in decarbonizing the economy, if adoption and scaling of green technologies is held back by the lack of coordination of innovation across firms and sectors.

5.2 Spillovers from the universe of privately held companies

Our results so far relate firm-level and industry-level emissions to innovation of publicly listed companies. Our focus on publicly listed firms is dictated by the availability of carbon emissions data for these companies. However, one could argue that such firms may benefit from innovation not only of similar publicly listed companies but also from innovation of privately held firms. In this section, we examine this spillover channel by looking at industry-level responses to green and brown innovation by publicly listed and privately held companies, separately.

In Table 11, we report the results from the analysis that considers innovation and output in the same GICS-6 industry, similar to our setting in Table 9. In Panel A, we look at the role of green innovation. We define two new variables: GREENRATIOEP PUBLIC takes innovation activity of all publicly listed companies, GREENRATIOEP PRIVATE uses the innovation of private companies. Both measures incorporate scaling by total innovation activity. In Panel A.1, we focus on all firms with emissions data. We find that neither public nor private innovation is associated with any statistically significant reduction in industry-level emissions. Notably, we find that green innovation in the public sector is more positively correlated with future scope 2 emissions, as well as scope 1 and upstream scope 3 emissions, though the effects for the latter two are statistically insignificant. The stronger positive association of public innovation mostly comes from the subset of innovating companies (as reported in Panel A.2), which are also the ones whose sales go up by more.

In Table 11, Panel B, we repeat the same analysis for brown innovation. The corresponding new variables of interest are BROWNEFFRATIOEP PUBLIC and BROWNEFFRATIOEP PRIVATE. In contrast to the results in Panel A, we find that public and private innovation do not seem to have markedly different impacts on future industry-level emissions. This result is consistent with the common perception that private firms are more involved in green innovation.

In Table 12, we provide additional evidence on the role of public and private innovation through the lens of cross-industry spillovers. Here, our research design follows that in Table 10. In Panel A, we consider green innovation. Several interesting findings emerge. First, in aggregate, private innovation seems to have a large impact on industry-level emission reductions in the public sector. This result largely comes through the reduction of scope 3 emissions, both upstream and downstream. Second, this effect is mostly driven by the fact that an increase in private green innovation predicts a reduction in sales of public firms. It seems that innovating private firms are encroaching on the market position of public firms. Third, the effect on upstream scope 3 emission reductions is mostly due to the impact on innovating firms, while downstream scope 3 emission reductions are more associated with green innovation in public firms. In Panel B, we report corresponding results for brown innovation. We find some evidence that brown innovation, both

in the public and private firms, reduces scope 1 emissions, although the results are generally statistically weak. The only notable exception is the positive effect of innovation of public firms on the reduction in scope 1 emissions of innovating firms. In turn, innovation among public firms positively predicts scope 2 emissions, especially those of innovating firms.

Another channel through which the Jevons paradox can manifest itself is through product market competition. Our measure of competition is the company's market share (in terms of sales) relative to the total sales of both public and private firms within the same GICS-6 industry. As we show in Table 13, green innovation and the adoption of green technologies can be a handicap in product market competition if green firms have higher production costs than brown firms. In Panel A, we estimate a model with industry*year fixed effects and in Panel B a model with firm fixed effects. As is shown in columns 1 to 3, a firm's market share is significantly negatively impacted by past green innovation activity, whether on a 1-year, 3-year, or 5-year lag. This effect is largely due to cross-firm variation, given that the effects become weaker when we account for firm-fixed effects. In contrast, there is no significant effect of brown efficiency innovation activity on firms' market share. If anything, the effect of brown efficiency innovation is to increase market share. Thus, even if green innovation could reduce future carbon emissions of green firms, this positive effect is partially undone by the increased market share of brown firms.

5.3 The relative importance of green innovation for decarbonization

Having highlighted the tenuous association between green (or brown) innovation and future carbon emission reductions, we explore next the extent to which corporate carbon emissions are explained by green innovation. In the first test, reported in Table 14, we conduct a balance test by comparing two samples of firms: those with decreasing emissions and those with increasing emissions. We perform this comparison for scope 1 emissions in Panel A and the total level of direct and indirect emissions in Panel E. In Table IA.XXIX, we also consider scope 2, scope 3 upstream, and scope 3 downstream emissions. In the group of firms that decrease (increase) their emissions over time we further divide firms into the 50% of companies with the largest emission reductions (surges). For each group, we report the means and standard deviations of different characteristics and the test of differences in means between each pair.

In Panel A, we show the results based on scope 1 emissions. We find that companies with extreme increases and decreases in emissions are not very different from each other in terms of their green patent ratios as well as their brown efficiency patent ratios. The two types of companies have also very similar levels of patent citations. On the other hand, firms that decrease their scope 1 emissions are on average larger and older than companies that increase their emissions; they also have lower M/B ratios, and negative sales growth. However, they are not very different in their

ROE or leverage metrics. The similarities in innovation ratios are also observed when we consider the sum of scope 1, scope 2, and scope 3 emissions in Panel B.

In Table IA.XXIX Panel A, we report the results for scope 2 emissions. Results are qualitatively similar to those for scope 1 emissions, except that now emission reducing companies on average have higher brown efficiency patent ratios. They are also less profitable and have lower leverage ratios. In Table IA.XXIX Panel B we look at the differences for upstream scope 3 emissions. For these indirect emissions, we find that emission reducing companies have higher green and brown efficiency patent ratios. These differences, however, disappear when we look at sorts based on downstream scope 3 emissions, as shown in Table IA.XXIX Panel C. Overall, we conclude that companies that reduce their emissions the most are not necessarily more innovative than those that increase their emissions the least. We find that the two sets of companies significantly differ in their sales performance (changes in sales are negative on average for companies reducing emissions and positive for companies increasing emissions across all scopes) pointing again to the limited decoupling of growth and emissions.

In another set of tests, we study the economic significance of green innovation using the two following specifications. First, we look at the relationship between the stock of innovation and subsequent long-term changes in emissions. This test allows us to account for the fact that innovation can be a process with a long gestation period. Specifically, we predict the firm-level absolute change in average emission levels and their intensities between the periods 2005-2014 and 2015-2020 using measures of the stock of innovations (measured either as patent ratios or as patent counts) over two time periods: (i) 1990-2004; and (ii) 1990-2014. We perform the tests separately for green and brown innovation. We show the results of this test in Table 15. Panel A presents the results based on patent ratios. We find that the long-term stock of green or brown innovation measured by patent ratio is not related to long-term changes in emissions. Whether we use the shorter or the longer period to cumulate innovation, the results are not statistically significant. If anything, the correlations between the stock of green innovation and future emission changes is positive, which suggests that companies with greater patenting activity on average increased their emissions. In contrast, we find some albeit weak evidence that over a more prolonged period, companies with higher brown efficiency patents reduced their emissions. The results become slightly stronger when we look at the cumulative number of patents, as presented in Panel B. Now the number of green patents accumulated over a longish period predicts subsequent reductions in future scope 1 and scope 3 upstream emissions. The result is statistically weaker when we look at brown innovation. Overall, even though we find some evidence that over the long-run innovation may lead, in some cases, to reductions in emissions this result may not necessarily offer a silver bullet from the perspective of supporting current innovations, simply because we do not have that much time to wait for the emissions reductions from innovation to materialize.

Another question of interest is whether the effect of green innovation is economically large. This is the question we try to answer in Table 16. Here we evaluate the partial R2 of the regression model that tries to explain future emissions levels using patent ratios. As before, we focus on green and brown efficiency patents, and consider various predictive horizons. The consistent message that emerges from this analysis is that green innovation activity explains a very small fraction of the variation in future emissions levels. The partial R2s typically do not exceed 1% and more frequently are significantly smaller. We conclude that green innovation is not a primary source of firm-level variation in future carbon emissions. Even if some companies do decarbonize their operations, this decarbonization is explained only to a very limited extent by these firms' green patenting activity.

6. Conclusion

What emerges from our analysis of green innovation is that the predicted sustainability revolution has not yet begun. Although there has been a steady increase in green and brown efficiency innovation, these technological advances have not materialized in lower carbon emissions. Most of the green innovation is done by firms that are already green (with low carbon emissions) but brown companies (with high carbon emissions) tend to engage in brown efficiency innovation. Much of the promise of the latter technological advances in terms of lower carbon intensity has been undone by rebound effects. Furthermore, where we see significant decarbonization, it has little to do with green technological advances.

We cannot determine what the counterfactual would be, had there been much less green innovation. It is possible that in the absence of all this innovation activity, carbon emissions might have been much higher. Also, as the IEA (2020) report contends, the path to decarbonization "will require a broad range of different technologies working across all sectors of the economy in various combinations and applications." What we have found, however, is that green innovation has not yet put the economy on a net zero compatible trajectory. Green innovation may be necessary, but it is not sufficient on its own to bring about a renewable energy transition.

A major obstacle to green innovation is Arrow's (1962) replacement effect. Fossil fuel-based profitable businesses have little incentive to engage in green innovation that might undermine their business model. But we have found a much more pervasive replacement effect at work, through companies' supply chains and ecosystems. When upstream suppliers and downstream clients have fossil-fuel based operations it is very difficult and costly for individual companies to switch to a green technology. Hence, their lack of interest in green innovation. Not

a day goes by without some major announcement of a promising technological breakthrough that might solve the CO2 problem, whether it is molten-salt nuclear reactors, power-to-gas (P2G) renewable hydrogen production, nuclear fusion, modular carbon capture systems, or sodium-sulphur batteries, etc. Yet, as promising as these technological breakthroughs sound, what ultimately matters for the transition to net zero is adoption of these green technologies at scale. And for this to happen in an accelerated way to avoid further overheating of the planet, what may be required is public policy intervention to coordinate adoption. This calls for a new form of industrial policy that breaks through the replacement obstacle by coordinating green technology adoption upstream and downstream throughout firms' ecosystems. Moreover, subsidies for green innovation must be more carefully targeted to where they help unlock a general adoption of green technologies throughout the supply chain. Blanket subsidies for innovation without regard to the likely adoption of new technologies may simply be too wasteful and costly.

References

Acemoglu, Daron, 2002. "Directed technical change" Review of Economic Studies 69, 781—810.

Aghion, Philippe, Antoine Dechezlepretre, David Hemous, Ralf Martin, and John Van Reenen, 2016, "Carbon taxes, path dependency, and directed technical change: Evidence from the auto industry" *Journal of Political Economy* 124, 1—51.

Andriosopoulos, Dmitris, Pawel Czarnowski, and Andrew Marshall, 2021, "Do investors care about green innovation?" Working Paper University of Strathclyde.

Bolton, Patrick and Marcin Kacperczyk, 2021, "Do investors care about carbon risk?" *Journal of Financial Economics* 142(2), 517—549.

Bolton, Patrick and Marcin Kacperczyk, 2022a, "Global pricing of carbon-transition risk" *Journal of Finance*, forthcoming.

Bolton, Patrick and Marcin Kacperczyk, 2022b, "Firm commitments" Imperial College Working Paper.

Busch, Timo, Matthew Johnson, and Thomas Pioch, 2018, "Consistency of corporate carbon emission data" University of Hamburg Report WWF Deutschland, Hamburg.

Cohen, Lauren, Umit Gurun, and Quoc Nguyen, 2022, "The ESG-innovation disconnect: Evidence from green patenting" Working Paper Harvard Business School.

Engle, Robert, Stefano Giglio, Heebum Lee, Bryan Kelly, and Johannes Stroebel (2020) "Hedging climate change news" Review of Financial Studies 33, 1184–1216.

Greaker, Mads and David Popp, 2022, "Environmental economics, regulation, and innovation" NBER Working Paper 30415.

Hege, Ulrich, Sebastien Pouget, and Yifei Zhang, 2022, "The impact of corporate climate action on financial markets: Evidence from climate-related patents" Toulouse School of Economics Working Paper.

Ilhan, Emirhan, Zacharias Sautner, and Grigory Vilkov, 2021, "Carbon tail risk" Review of Financial Studies 34(3), 1540–1571.

Jevons, William S., 1865, "The Coal Question; An Inquiry Concerning the Progress of the Nation, and Probable Exhaustion of Our Coal Mines." London: Macmillan and Co.

Kogan, Leonid, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman, 2017, "Technological innovation, resource allocation, and growth" *The Quarterly Journal of Economics* 132(2), 665—712.

Kuang, Huan and Bing Liang, 2022, "Climate-related innovations: Economic value and risk mitigation" University of Massachusetts Working Paper.

Lanzi, Elisa, Elena Verdolini, and Ivan Hascic, 2011, Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends. *Energy Policy*, 39(11), 7000–7014.

Popp, David, 2002, "Induced innovation and energy prices," American Economic Review 92, 160—180.

Redding, Stephen, 2002, "Path dependence, endogenous innovation, and growth" *International Economic Review* 43(4), 1215—1248.

Reza, Syed and Yanhui Wu, 2022, "Green innovation", SUNY Binghamton Working Paper.

Sautner, Zacharias, Laurence Van Lent, Grigory Vilkov, and Ruishen Zhang, 2022, "Firm-level climate change exposure" *Journal of Finance*, forthcoming.

Schipper, Lee and Michael Grubb, 2000, "On the rebound? Feedback between energy intensities and energy uses in IEA countries" *Energy Policy* 28, 367—388.

Sorrell, Steve, John Dimitropoulos, and Matt Sommerville, 2009, "Empirical estimates of the direct rebound effect: A review" *Energy Policy* 37, 1356—1371.

TABLE 1: CAPACITY CONSTRAINTS

The unit of observation is firm-year. The sample period is 2005-2020. In Panel A, the dependent variable is ANYCOUNTEP in columns 1 to 3 and ANYCOUNTEP w/o zeros in columns 4 to 6. ANYCOUNTEP is the number of granted or purchased patents by the European Patent Office (EP) per firm and year. In Panel B the dependent variable is GREENCOUNTEP in columns 1 to 3 and BROWNEFFCOUNTEP in columns 4 to 6. GREENCOUNTEP is the number of granted or purchased "green" patents by the EP per firm and year, while BROWNEFFCOUNTEP covers "brown efficiency" patents. The independent variables are defined as follows: Age is the firm age based on its year of incorporation; PATSTOCKANYEP (PATSTOCKGREENEP and PATSTOCKBROWNEFFEP) is the firm's patent stock of all (green and brown efficiency) granted or purchased patents by the EPO from 1990 up to year t; LOGASSETS is the natural logarithm of total assets (in \$ million); LOGSIZE is the natural logarithm of maket capitalization (in \$ million); LOGNOEMPL is the natural logarithm of the number of employees; LOGPPE is the natural logarithm of plant, property & equipment (in \$ million); LEVERAGE is the book value of leverage defined as the book value of debt divided by the book value of assets; ROE is the return on equity; M/B is the market value of equity divided by the book value of assets; ROE is the firm-level market beta estimated over the one-year period; VOLAT is the monthly stock return volatility calculated over the one year period; MOM is the cumulative stock return over the one-year period; RET is the monthly stock return in December; MSCI is an indicator variable equal to one if a stock is part of the MSCI ACWI in a given year and zero otherwise. All independent variables are lagged by one year. The model is estimated using Poisson pseudo-maximum likelihood. Columns 1 and 4 include year and country fixed effects. Columns 2 and 5 include country and Trucost industry-year fixed effects and columns 3 and 6 year and firm fixed effects. We double cluster standard errors at the firm and

	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: Any innovation	AN	YCOUNTEP w. zero	s	ANY	COUNTEP w/o zero	os
PATSTOCKANYEP (/100)	0.017***	0.012***	-0.002***	0.016***	0.013***	-0.002***
I OCA COPER	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
LOGASSETS	-0.121*** (0.019)	0.465*** (0.054)	0.192*** (0.057)	0.058** (0.023)	(0.411***	0.178*** (0.057)
LOGNOEMPL	0.333***	0.127***	0.049**	0.284***	0.132***	0.050**
	(0.015)	(0.020)	(0.024)	(0.017)	(0.018)	(0.024)
AGE (/100)	0.153***	0.115***		0.073**	0.096***	
. 0.00175	(0.032)	(0.026)	0.000	(0.030)	(0.025)	0.000
LOGSIZE	0.620*** (0.024)	0.266*** (0.029)	0.028 (0.023)	0.408*** (0.024)	0.238*** (0.024)	0.032 (0.023)
LOGPPE	-0.026**	0.004	0.114**	-0.116***	-0.038	0.112**
	(0.013)	(0.035)	(0.045)	(0.019)	(0.037)	(0.045)
LEVERAGE	-0.010***	-0.004***	-0.003***	-0.008***	-0.003***	-0.003**
DOE	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
ROE	-0.210** (0.087)	-0.036 (0.069)	-0.086** (0.041)	-0.123* (0.070)	-0.011 (0.057)	-0.089** (0.041)
M/B	-0.028***	0.007	0.001	-0.015**	-0.001	0.001
, -	(0.008)	(0.006)	(0.005)	(0.007)	(0.006)	(0.005)
INVEST/A	-0.017***	-0.000	-0.001	0.003	0.007	-0.001
	(0.005)	(0.005)	(0.004)	(0.005)	(0.005)	(0.004)
BETA	0.330*** (0.037)	0.122*** (0.034)	0.029 (0.022)	0.262*** (0.035)	0.153*** (0.032)	0.033 (0.022)
VOLAT	2.890***	1.458***	-0.313	2.223***	1.123***	-0.265
	(0.251)	(0.273)	(0.242)	(0.327)	(0.328)	(0.244)
MOM	-2.715***	-0.949*	0.199	-2.334***	-0.988*	0.182
DET	(0.623)	(0.555)	(0.300)	(0.580)	(0.513)	(0.301)
RET	0.000 (0.181)	0.070 (0.138)	-0.009 (0.074)	-0.006 (0.163)	0.035 (0.130)	-0.002 (0.075)
MSCI	0.025	0.028	0.055*	-0.014	0.013	0.044
WISCI	(0.044)	(0.032)	(0.029)	(0.040)	(0.029)	(0.029)
Constant	-4.678***	-4.577 ^{***}	1.497***	-2.763***	-3.365***	1.621***
	(0.137)	(0.143)	(0.318)	(0.136)	(0.142)	(0.321)
Observations	68496	63945	37250	24960	23699	23828
Pseduo R2	0.654	0.835	0.921	0.642	0.809	0.910
Panel B: Green or brown efficiency in		PERMICOLINTER		nn/	OWNEED COUNTER	1
DATETOCVCDEENIED (/100)	0.121***	0.139***	0.013***	-0.175***	OWNEFFCOUNTEF -0.045***	-0.073***
PATSTOCKGREENEP (/100)	(0.007)	(0.009)	(0.004)	(0.018)	(0.011)	(0.011)
PATSTOCKBROWNEFFEP (/100)	-0.037***	-0.086***	-0.022***	0.305***	0.135***	0.060**
I ATSTOCKDROWNETTEL (/ 100)		()	(0.008)	(0.017)	(0.012)	(0.015)
, ,	(0.012)	(0.010)	(0.000)			
, ,	0.238***	0.041	(0.000)	0.636***	0.342***	,
AGE (/100)	0.238*** (0.044)	0.041 (0.039)	, ,	(0.053)	(0.065)	, ,
AGE (/100)	0.238*** (0.044) 0.348***	0.041 (0.039) 0.362***	0.147***	(0.053) 0.321***	(0.065) 0.380***	0.193**
AGE (/100) LOGSIZE	0.238*** (0.044) 0.348*** (0.027)	0.041 (0.039)	, ,	(0.053)	(0.065)	,
AGE (/100) LOGSIZE	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023)	0.041 (0.039) 0.362*** (0.037)	0.147*** (0.029)	(0.053) 0.321*** (0.047)	(0.065) 0.380*** (0.062)	0.193*** (0.049)
AGE (/100) LOGSIZE LOGPPE	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009***	0.041 (0.039) 0.362*** (0.037) 0.332*** (0.040) -0.004***	0.147*** (0.029) 0.093*** (0.035) -0.006***	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004	0.193** (0.049) -0.069 (0.048) 0.016**
AGE (/100) LOGSIZE LOGPPE LEVERAGE	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009*** (0.001)	0.041 (0.039) 0.362*** (0.037) 0.332*** (0.040) -0.004*** (0.001)	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002)	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002)	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003)	0.193*** (0.049) -0.069 (0.048) 0.016*** (0.005)
AGE (/100) LOGSIZE LOGPPE LEVERAGE	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009** (0.001) -0.246**	(0.041) (0.039) 0.362*** (0.037) 0.332*** (0.040) -0.004*** (0.001) -0.179**	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134**	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156	0.193** (0.049) -0.069 (0.048) 0.016** (0.005) -0.232**
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009*** (0.001) -0.246** (0.111)	(0.041' (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.001) (0.001) (0.072)	0.147*** (0.029) 0.093*** (0.035) -0.006** (0.002) -0.134** (0.065)	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307)	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208)	0.193*** (0.049) -0.069 (0.048) 0.016*** (0.005) -0.232** (0.114)
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009** (0.001) -0.246**	(0.041) (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.040) (0.010) (0.072) (0.072) (0.015)	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134**	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156	0.193*** (0.049) -0.069 (0.048) 0.016*** (0.005) -0.232**
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.0023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000	(0.041' (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.001) (0.011) (0.072) (0.072) (0.015) (0.010) (0.020***	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023***	0.193** (0.049) -0.069 (0.048) 0.016** (0.005) -0.232** (0.114) -0.021* (0.012) 0.012
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007)	(0.041) (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.001) (0.072) (0.072) (0.010) (0.010) (0.005)	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005)	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003 (0.009)	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008)	0.193*** (0.049) -0.069 (0.048) 0.016** (0.005) -0.232** (0.114) -0.021* (0.012) (0.012) (0.010)
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007)	(0.041) (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.001) (0.010) (0.072) (0.015) (0.010) (0.005) (0.226***	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005)	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003 (0.009) 0.567***	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185***	0.193*** (0.049) -0.069 (0.048) 0.016** (0.005) -0.232** (0.114) -0.021* (0.012) 0.012 (0.010) -0.051
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B INVEST/A BETA	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007) 0.607*** (0.051)	(0.041' (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.001) (0.011) (0.072) (0.015) (0.010) (0.005) (0.226*** (0.045)	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005) 0.005 (0.0031)	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003 (0.009)	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185*** (0.071)	0.193*** (0.049) -0.069 (0.048) 0.016** (0.005) -0.232** (0.114) -0.021* (0.012) 0.012 (0.010) -0.051 (0.060)
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B INVEST/A BETA	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007)	(0.041) (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.001) (0.010) (0.072) (0.015) (0.010) (0.005) (0.226***	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005)	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003 (0.009) 0.567*** (0.084)	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185***	0.193*** (0.049) -0.069 (0.048) 0.016** (0.005) -0.232** (0.114) -0.021* (0.012) 0.012 (0.010) -0.051
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B INVEST/A BETA	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.0023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007) 0.607*** (0.051) 2.950*** (0.461) -1.522*	(0.041' (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.001) (0.179** (0.072) (0.015) (0.010) (0.005) (0.226*** (0.045) 2.769*** (0.340) (1.751**	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005) 0.005 (0.005) 0.005 (0.347) -0.923**	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003 (0.009) 0.567*** (0.084) 1.624** (0.728) -0.087	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185*** (0.071) 0.732 (0.705) -1.994	0.193*** (0.049) -0.069 (0.048) 0.016** (0.005) -0.232** (0.114) -0.021* (0.010) -0.051 (0.060) -0.572 (0.610) 0.442
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B INVEST/A BETA VOLAT	0.238*** (0.044) 0.348*** (0.027) 0.190** (0.023) -0.009** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007) 0.607** (0.051) 2.950*** (0.461) -1.522* (0.814)	(0.041' (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.001) (0.010) (0.072) (0.015) (0.010) (0.020*** (0.005) (0.226*** (0.045) 2.769*** (0.340) (0.716)	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005) 0.005 (0.031) -0.252 (0.347) -0.923** (0.388)	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003 (0.009) 0.567*** (0.084) 1.624* (0.728) -0.087 (1.357)	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185*** (0.071) 0.732 (0.705) -1.994 (1.244)	0.193*** (0.049) -0.069 (0.048) 0.016** (0.005) -0.232** (0.114) -0.021 (0.012) (0.012) (0.010) -0.051 (0.060) -0.572 (0.610) 0.442 (0.672)
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B INVEST/A BETA VOLAT	0.238*** (0.044) 0.348** (0.027) 0.190*** (0.023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007) 0.607** (0.051) 2.950** (0.461) -1.522* (0.814) 0.201	(0.041) (0.039) 0.362*** (0.037) 0.332*** (0.040) -0.004*** (0.001) -0.179** (0.072) -0.015 (0.010) -0.020*** (0.005) 0.226*** (0.045) 2.769*** (0.340) -1.751** (0.716) 0.207	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005) 0.005 (0.031) -0.252 (0.347) -0.923** (0.388) 0.275**	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003 (0.009) 0.567*** (0.084) 1.624** (0.728) -0.087 (1.357) -0.817**	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185*** (0.071) 0.732 (0.705) -1.994 (1.244) 0.080	0.193*** (0.049) -0.069 (0.048) 0.016** (0.005) -0.232** (0.114) -0.021* (0.012) 0.012 (0.010) -0.051 (0.060) -0.572 (0.610) 0.442 (0.672) -0.306
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B INVEST/A BETA VOLAT MOM RET	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.0023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007) 0.607*** (0.051) 2.950** (0.461) -1.522** (0.814) 0.201 (0.237)	(0.041' (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.001) (0.011) (0.015) (0.010) (0.010) (0.005) (0.226*** (0.340) (0.340) (0.75) (0.340) (0.75) (0.340) (0.75) (0.340) (0.76) (0.207) (0.226)	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005) 0.005 (0.001) -0.252 (0.347) -0.923** (0.388) 0.275** (0.117)	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003 (0.009) 0.567*** (0.084) 1.624** (0.728) -0.087 (1.357) -0.817* (0.379)	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185*** (0.071) 0.732 (0.705) -1.994 (1.244) 0.080 (0.326)	0.193*** (0.049) -0.069 (0.048) 0.016*** (0.005) -0.232** (0.114) -0.021* (0.010) -0.051 (0.060) -0.572 (0.610) 0.442 (0.672) -0.306 (0.234)
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B INVEST/A BETA VOLAT MOM RET	0.238*** (0.044) 0.348** (0.027) 0.190*** (0.023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007) 0.607** (0.051) 2.950** (0.461) -1.522* (0.814) 0.201	(0.041) (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.040) (0.011) (0.072) (0.015) (0.010) (0.020*** (0.005) (0.226*** (0.045) 2.769*** (0.340) (0.716) (0.207	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005) 0.005 (0.031) -0.252 (0.347) -0.923** (0.388) 0.275**	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003 (0.009) 0.567*** (0.084) 1.624** (0.728) -0.087 (1.357) -0.817**	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185*** (0.071) 0.732 (0.705) -1.994 (1.244) 0.080	0.193*** (0.049) -0.069 (0.048) 0.016** (0.005) -0.232** (0.114) -0.021* (0.012) 0.012 (0.010) -0.051 (0.060) -0.572 (0.610) 0.442 (0.672) -0.306
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B INVEST/A BETA VOLAT MOM RET	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007) 0.607** (0.051) 2.950** (0.461) -1.522* (0.814) 0.201 (0.237) 0.234***	(0.041' (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.001) (0.001) (0.072) (0.015) (0.010) (0.020*** (0.045) (0.769*** (0.340) (0.716) (0.207) (0.226) (0.226) (0.226) (0.128***	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005) 0.005 (0.031) -0.252 (0.347) -0.923** (0.388) 0.275** (0.117) 0.005	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003 (0.009) 0.567*** (0.084) 1.624* (0.728) -0.087 (1.357) -0.817** (0.379) 0.044	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185*** (0.071) 0.732 (0.705) -1.994 (1.244) 0.080 (0.326) 0.184**	0.193*** (0.049) -0.069 (0.048) 0.016** (0.005) -0.232** (0.114) -0.021* (0.012) 0.012 (0.010) -0.051 (0.060) -0.572 (0.610) 0.442 (0.672) -0.306 (0.234) 0.094 (0.061)
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B INVEST/A BETA VOLAT MOM RET	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007) 0.607** (0.051) 2.950*** (0.461) -1.522* (0.814) 0.201 (0.237) 0.234*** (0.053)	(0.041) (0.039) 0.362*** (0.037) 0.332*** (0.040) -0.004*** (0.001) -0.179** (0.072) -0.015 (0.010) -0.020*** (0.005) 0.226*** (0.340) -1.751** (0.716) 0.207 (0.226) 0.128*** (0.047)	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005) (0.005) (0.031) -0.252 (0.347) -0.923** (0.388) 0.275** (0.117) 0.005 (0.049)	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003 (0.009) 0.567*** (0.084) 1.624** (0.728) -0.087 (1.357) -0.817** (0.379) 0.044 (0.101)	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185*** (0.071) 0.732 (0.705) -1.994 (1.244) 0.080 (0.326) 0.184** (0.077)	0.193*** (0.049) -0.069 (0.048) 0.016*** (0.005) -0.232** (0.114) -0.021* (0.012) 0.012 (0.010) -0.051 (0.060) -0.572 (0.610) 0.442 (0.672) -0.306 (0.234) 0.094 (0.061)
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B INVEST/A BETA VOLAT MOM RET MSCI Constant Observations	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.0023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007) 0.607*** (0.051) 2.950*** (0.461) -1.522* (0.814) 0.201 (0.237) 0.234*** (0.053) -3.770*** (0.170)	(0.041' (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.001) (0.011) (0.072) (0.015) (0.010) (0.005) (0.226*** (0.045) 2.769*** (0.340) (1.751** (0.716) (0.207) (0.226) (0.128*** (0.047) (0.47) (0.486*** (0.144)	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005) 0.005 (0.031) -0.252 (0.347) -0.923** (0.388) 0.275** (0.117) 0.005 (0.049) 1.389*** (0.371)	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003 (0.009) 0.567** (0.084) 1.624** (0.728) -0.087 (1.357) -0.817** (0.379) 0.044 (0.101) -5.260*** (0.262)	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185*** (0.071) 0.732 (0.705) -1.994 (1.244) 0.080 (0.326) 0.184** (0.077) -5.087*** (0.282)	0.193*** (0.049) -0.069 (0.048) 0.016*** (0.005) -0.232** (0.114) -0.021* (0.012) (0.010) -0.051 (0.060) -0.572 (0.610) 0.442 (0.672) -0.306 (0.234) 0.094 (0.061) 1.552** (0.487)
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B INVEST/A BETA VOLAT MOM RET MSCI Constant Observations	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007) 0.607*** (0.814) -1.522* (0.814) 0.201 (0.237) 0.234*** (0.053) -3.770*** (0.170)	0.041′ (0.039) (0.362*** (0.037) (0.362*** (0.037) (0.362*** (0.040) (0.040) (0.001) (0.015) (0.015) (0.010) (0.015) (0.026** (0.045) (0.26*** (0.045) (0.75) (0.716) (0.016) (0.026) (0.128*** (0.047) (0.144)	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005) 0.005 (0.031) -0.252 (0.347) -0.923** (0.388) 0.275** (0.117) 0.005 (0.049) 1.389*** (0.371)	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058** (0.021) -0.003 (0.009) 0.567*** (0.084) 1.624** (0.728) -0.087 (1.357) -0.817** (0.379) 0.044 (0.101) -5.260*** (0.262)	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185*** (0.071) 0.732 (0.705) -1.994 (1.244) 0.080 (0.326) 0.184** (0.0777) -5.087*** (0.282)	0.193*** (0.049) -0.069 (0.048) 0.016** (0.005) -0.232** (0.114) -0.021* (0.012) 0.012 (0.010) -0.051 (0.060) -0.572 (0.610) 0.442 (0.672) -0.306 (0.234) 0.094 (0.061) 1.552** (0.487)
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B INVEST/A BETA VOLAT MOM RET MSCI Constant Observations Pseudo R2 Country F.E.	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007) 0.607*** (0.051) 2.950** (0.461) -1.522* (0.814) 0.201 (0.237) 0.234*** (0.053) -3.770** (0.170) 27860 0.561	(0.041' (0.039) (0.362*** (0.037) (0.332*** (0.040) (0.001) (0.011) (0.011) (0.015) (0.015) (0.026** (0.045) (0.72) (0.045) (0.76) (0.340) (1.751** (0.716) (0.207) (0.226) (0.128*** (0.047) (0.128*** (0.047) (0.144) (0.144)	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005) 0.005 (0.031) -0.252 (0.347) -0.923** (0.388) 0.275** (0.117) 0.005 (0.049) 1.389*** (0.371) 20173 0.832	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058*** (0.021) -0.003 (0.009) 0.567** (0.084) 1.624** (0.728) -0.087 (1.357) -0.817* (0.379) 0.044 (0.101) -5.260*** (0.262) 27767	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185*** (0.071) 0.732 (0.705) -1.994 (1.244) 0.080 (0.326) 0.184*** (0.077) -5.087*** (0.282) 20143 0.755	0.193*** (0.049) -0.069 (0.048) 0.016*** (0.005) -0.232** (0.114) -0.021* (0.010) -0.051 (0.060) -0.572 (0.610) 0.442 (0.672) -0.306 (0.234) 0.094 (0.061) 1.552** (0.487)
AGE (/100) LOGSIZE LOGPPE LEVERAGE ROE M/B INVEST/A BETA VOLAT MOM RET MSCI Constant	0.238*** (0.044) 0.348*** (0.027) 0.190*** (0.023) -0.009*** (0.001) -0.246** (0.111) -0.017 (0.011) 0.000 (0.007) 0.607*** (0.051) 2.950*** (0.461) -1.522* (0.814) 0.201 (0.237) 0.234*** (0.053) -3.770*** (0.170)	0.041′ (0.039) (0.362*** (0.037) (0.362*** (0.037) (0.362*** (0.040) (0.040) (0.040) (0.011) (0.015) (0.015) (0.015) (0.016) (0.05) (0.226*** (0.045) (0.75) (0.340) (0.75) (0.226) (0.128*** (0.047) (0.144) (0.144) (0.144)	0.147*** (0.029) 0.093*** (0.035) -0.006*** (0.002) -0.134** (0.065) -0.016** (0.007) -0.005 (0.005) 0.005 (0.031) -0.252 (0.347) -0.923** (0.388) 0.275** (0.117) 0.005 (0.049) 1.389*** (0.371)	(0.053) 0.321*** (0.047) 0.272*** (0.039) -0.002 (0.002) 0.091 (0.307) -0.058** (0.021) -0.003 (0.009) 0.567*** (0.084) 1.624** (0.728) -0.087 (1.357) -0.817** (0.379) 0.044 (0.101) -5.260*** (0.262)	(0.065) 0.380*** (0.062) 0.354*** (0.077) 0.004 (0.003) 0.156 (0.208) -0.054*** (0.018) -0.023*** (0.008) 0.185*** (0.071) 0.732 (0.705) -1.994 (1.244) 0.080 (0.326) 0.184** (0.0777) -5.087*** (0.282)	0.193*** (0.049) -0.069 (0.048) 0.016*** (0.005) -0.232** (0.114) -0.021* (0.012) 0.012 (0.010) -0.051 (0.060) -0.572 (0.610) 0.442 (0.672) 0.0442 (0.672) 0.094 (0.061) 1.552*** (0.487)

TABLE 2: PATENT RATIOS AND FIRM TYPE

The unit of observation is firm-year. The sample period is 2005-2020. The dependent variable is *GREENRATIOEP* in columns 1 to 3 and *BROWNEFFRATIOEP* in columns 4 to 6. *GREENRATIOEP* is the number of green patents over the total number of patents granted or purchased at the firm and year level based on European Patent Office patents. *BROWNEFFRATIOEP* similarly is the number of brown efficiency patents over the total number of patents at the European Patent Office. *LOGSITOT* is the natural logarithm of firm-level scope 1 emissions. All other variables are defined in Table 1. All independent variables are lagged by one year. The model is estimated using Poisson pseudo-maximum likelihood. Columns 1 and 4 include year and country fixed effects. Columns 2 and 5 include country and Trucost industry-year fixed effects and columns 3 and 6 year and firm fixed effects. We double cluster standard errors at the firm and year dimension. *** 1% significance, ** 5% significance * 10% significance.

	(1) GF	(2) Reenratioep	(3)	(4) BROV	(5) WNEFFRATIO	(6) EP
LOGS1TOT	0.091***	-0.053***	0.013	0.058***	0.049**	-0.064**
AGE (/100)	(0.008) -0.303*** (0.033)	(0.011) -0.186*** (0.030)	(0.015)	(0.014) 0.235*** (0.045)	(0.020) 0.213*** (0.050)	(0.032)
PATSTOCKGREENEP (/100)	0.052*** (0.004)	0.035***	-0.002 (0.003)	(0.010)	(0.000)	
PATSTOCKBROWNEFFEP (/100)	(0.004)	(0.004)	(0.003)	0.099*** (0.009)	0.047*** (0.008)	-0.001 (0.008)
LOGSIZE	-0.192***	-0.111***	0.048**	-0.303***	-0.083 ^{***}	$-0.071^{'}$
LOGPPE	(0.016) 0.124***	(0.018) 0.137***	(0.022) -0.042*	(0.032) 0.277***	(0.031) 0.039	(0.045) -0.017
LEVERAGE	(0.016) -0.006***	(0.018) $-0.004***$	(0.023) 0.001	(0.033) -0.005***	(0.031) -0.001	(0.052) $-0.005*$
ROE	(0.001) $-0.312***$	(0.001) $-0.123**$	$(0.001) \\ -0.014$	(0.002) 0.406***	(0.002) 0.117	(0.003) -0.048
M/B	(0.054) 0.020***	(0.050) 0.020***	(0.033) -0.004	$(0.090) \\ -0.022**$	(0.087) -0.011	(0.086) 0.004
INVEST/A	(0.006) 0.010***	(0.006) 0.008**	(0.005) 0.005*	(0.011) 0.001	(0.011) 0.004	(0.014) 0.006
ВЕТА	(0.003) 0.210***	(0.003) 0.100***	$(0.003) \\ -0.017$	(0.007) 0.311***	$(0.007) \\ -0.018$	(0.008) 0.034
VOLAT	(0.035) 1.956***	(0.037) 1.333***	(0.027) -0.004	(0.062) 0.210	(0.058) 0.154	(0.047) 0.392
MOM	(0.221) 0.402	(0.232) -0.011	(0.178) 0.049	(0.469) 1.508*	(0.523) 0.786	(0.493) 0.546
RET	(0.456) -0.132	(0.453) -0.249**	(0.289) 0.041	(0.898) -0.357	(0.850) -0.003	(0.657) -0.167
MSCI	(0.121) 0.070**	(0.116) 0.042	(0.073) 0.048	(0.232) 0.028	(0.236) 0.124**	(0.179) -0.080
Constant	(0.032) 2.482***	(0.031) 3.205***	(0.035) 3.081***	(0.057) 1.287***	(0.053) 2.339***	(0.064) 4.217***
Constant	(0.094)	(0.096)	(0.199)	(0.170)	(0.184)	(0.458)
Country F.E.	yes	yes	no	yes	yes	no
Year F.E. Industry X Year F.E. Firm F.E.	yes no no	yes yes no	yes no yes	yes no no	yes yes no	yes no yes
Observations Pseudo R2	27860 0.0775	24818 0.317	20173 0.516	27767 0.0989	20143 0.439	12186 0.527

TABLE 3: PATENT RATIOS AND FIRM TYPE - INTENSIVE MARGIN

The unit of observation is firm-year. The sample period is 2005-2020 and the sample restricts inclusion to firm-years with at least one green patent at the European Patent Office in columns 1 to 3 and one brown efficiency patent at the European Patent Office in columns 4 to 6. The dependent variable is <code>GREENRATIOEP</code> in columns 1 to 3 and <code>BROWNEFFRATIOEP</code> in columns 4 to 6. All variables are defined in Table 1, Table 2 and Table 2. All independent variables are lagged by one year. The model is estimated using a pooled regression model. Columns 1 and 4 include year and country fixed effects. Columns 2 and 5 include country and Trucost industry-year fixed effects and columns 3 and 6 year and firm fixed effects. We double cluster standard errors at the firm and year dimension. *** 1% significance, ** 5% significance * 10% significance.

	(1) GF	(2) Reenratioep	(3)	(4) BRO	(5) Wneffratio	(6) EP
LOGS1TOT	1.571***	-1.587***	-0.291	0.376*	-0.400	-0.253
AGE (/100)	(0.170) -6.809*** (0.601)	(0.252) -3.153*** (0.603)	(0.273)	(0.197) -0.989 (0.649)	(0.340) -0.406 (0.803)	(0.506)
PATSTOCKGREENEP (/100)	0.756***	1.024*** (0.103)	0.477*** (0.072)	(0.049)	(0.803)	
PATSTOCKBROWNEFFEP (/100)	(0.051)	(0.100)	(0.072)	1.360*** (0.140)	1.101*** (0.176)	0.266* (0.140)
LOGSIZE	-6.749*** (0.348)	-5.387*** (0.425)	0.601 (0.399)	-5.912*** (0.415)	-4.414*** (0.574)	-0.884 (0.724)
LOGPPE	0.657* (0.342)	0.178 (0.396)	-1.067** (0.450)	0.011 (0.382)	-2.183*** (0.469)	-0.977 (0.769)
LEVERAGE	-0.071*** (0.020)	-0.117*** (0.021)	0.027 (0.020)	-0.006 (0.027)	-0.124*** (0.033)	-0.016 (0.041)
ROE	-6.178*** (1.269)	-2.141* (1.276)	0.636 (0.736)	0.388 (1.804)	1.427 (2.027)	-0.809 (1.307)
M/B	0.530*** (0.128)	0.517*** (0.131)	-0.017 (0.091)	0.169 (0.186)	0.063 (0.211)	0.127 (0.185)
INVEST/A	0.375*** (0.088)	0.314*** (0.095)	0.088 (0.085)	0.493*** (0.126)	0.250* (0.151)	0.046 (0.123)
BETA	1.175 (0.724)	1.230 (0.827)	-0.667 (0.480)	0.266 (0.898)	0.051 (1.121)	-0.185 (0.681)
VOLAT	37.812*** (7.437)	32.622*** (8.186)	6.636 (4.126)	-3.494 (10.481)	-13.215 (12.975)	-2.030 (6.867)
MOM	15.039 (11.472)	0.793 (12.330)	-5.105 (6.025)	5.322 (15.864)	15.162 (19.737)	16.336* (9.515)
RET	-2.251 (3.029)	-3.345 (3.253)	-0.178 (1.620)	-4.578 (3.993)	1.966 (4.982)	-4.710* (2.474)
MSCI	-0.925 (0.665)	-0.650 (0.693)	-1.292** (0.594)	-0.937 (0.839)	1.520 (0.975)	-1.771* (0.925)
Constant	69.208*** (2.276)	83.076*** (2.655)	30.172*** (3.701)	67.068*** (2.984)	80.924*** (4.158)	37.162*** (6.783)
Country F.E.	yes	yes	no	yes	yes	no
Year F.É.	yes	yes	yes	yes	yes	yes
Industry F.E.	no	yes	no	no	yes	no
Industry X Year F.E. Firm F.E.	no	yes	no	no	yes	no
Observations	no 12187	no 10957	yes 11352	no 5550	no 4550	yes 5114
R2	0.220	0.534	0.815	0.187	0.526	0.762

TABLE 4: PATENT CITATIONS AND FIRM TYPE

The unit of observation is firm-year. The sample period is 2005-2020. The dependent variable is <code>GREENCITMAXEP</code> in columns 1 to 3 and <code>BROWNEFFCITMAXEP</code> in columns 4 to 6 in Panel A. In Panel B the dependent variable is <code>GREENBBCOUNTEP</code> in columns 1 to 3 and <code>BROWNEFFBBCOUNTEP</code> in columns 4 to 6. <code>GREENCITMAXEP</code> (<code>BROWNEFFCITMAXEP</code>) is the maximum number of forward citations any green (brown efficiency) patent of a firm received in a given year. <code>GREENBBCOUNTEP</code> (<code>BROWNEFFBBCOUNTEP</code>) is the number of green (brown efficiency) blockbuster patents patent per firm, where blockbuster patents are defined as patents in the 95th percentile based on the number of forward citations in a given grant year and classification. The regressions also include the following controls: <code>LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI.</code> All independent variables are lagged by one year and are defined in Table 1 and Table 2. The model is estimated using Poisson pseudo-maximum likelihood. Columns 1 and 4 include year and country fixed effects. Columns 2 and 5 include country and Trucost industry-year fixed effects and columns 3 and 6 year and firm fixed effects. We double cluster standard errors at the firm and year dimension. *** 1% significance, ** 5% significance * 10% significance.

Dec 1 A. Mariana and attacking	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: Maximum patent citation	GRE	ENCITMAXEI	· · · · · · · · · · · · · · · · · · ·	BROW.	0.097*** (0.033) 0.086 (0.085) 0.084*** (0.011) 19600 0.649 NEFFBBCOUN 0.096** (0.042) 0.207*** (0.076)	EP
LOGS1TOT	-0.042*	-0.217***	-0.063	0.018	0.097***	0.118
AGE (/100)	(0.022) 0.412**	(0.058) 0.667***	(0.064)	(0.029) 0.372***	0.086	(0.080)
PATSTOCKGREENEP (/100)	(0.167) 0.064*** (0.008)	(0.161) 0.062*** (0.010)	-0.030** (0.015)	(0.113)	(0.085)	
PATSTOCKBROWNEFFEP (/100)	(0.008)	(0.010)	(0.013)	0.110*** (0.010)	0.00-	0.014 (0.015)
Observations Pseudo R2	27852 0.343	24496 0.626	19494 0.707	27767 0.336		11433 0.665
Panel B: Blockbuster counts						
	GREE	ENBBCOUNTE	P	BROWN	NEFFBBCOUN'	ГЕР
LOGS1TOT	-0.034** (0.014)	-0.015 (0.030)	-0.016 (0.033)	0.081*** (0.018)	0.0.0	-0.027 (0.054)
AGE (/100)	0.052 (0.068)	0.044 (0.073)	(0.000)	0.555***	0.207***	(0.001)
PATSTOCKGREENEP (/100)	0.099*** (0.006)	0.076*** (0.006)	-0.010 (0.007)	, ,	, ,	
PATSTOCKBROWNEFFEP (/100)	(0.000)	(0.000)	(0.007)	0.145*** (0.011)	0.119*** (0.012)	0.030 (0.020)
Observations	27707	17910	10607	27178	9943	5439
Pseudo R2	0.314	0.444	0.459	0.348	0.564	0.517
Controls.	yes	yes	yes	yes	yes	yes
Country F.E.	yes	yes	no	yes	yes	no
Year F.É. Industry X Year F.E.	yes no	yes	yes no	yes	yes	yes no
Firm F.E.	no	yes no	yes	no no	yes no	yes

TABLE 5: PATENT RATIOS AND FIRM TYPE: MARKET SHARE INTERACTIONS

The unit of observation is firm-year. The sample period is 2005 to 2020. The dependent variable is GREENRATIOEP in columns 1 to 3 and BROWNEFFRATIOEP in columns 4 to 6. MKTSHR TRUIND is a firm's market share based on its sales relative to total public and private firms' sales in a given Trucost sector. We report the coefficient on MKTSHR TRUIND as well as LOGS1TOT, AGE, PATSTOCKGREENEP (PATSTOCKBROWNEFFEP) and their interactions with MKTSHR TRUIND. The regressions also include the following controls: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI. All independent variables are lagged by one year. The variables are defined in Table 1 and Table 2. The model is estimated using Poisson pseudo-maximum likelihood. Columns 1 and 4 include year and country fixed effects. Columns 2 and 5 include country and Trucost industry-year fixed effects and columns 3 and 6 year and firm fixed effects. We double cluster standard errors at the firm and year dimension. *** 1% significance, ** 5% significance * 10% significance.

	(1)	(2) GREENRATIOEP	(3)	(4) BRO	(5) DWNEFFRATIOEI	(6)
LOGS1TOT	0.090***	-0.058***	0.009	0.085***	0.058***	-0.064*
AGE (/100)	(0.008) -0.363***	(0.012) -0.260***	(0.015)	(0.015) 0.216***	(0.021) 0.192***	(0.034)
PATSTOCKGREENEP (/100)	(0.039) 0.061***	(0.037) 0.059***	-0.006	(0.053)	(0.058)	
PATSTOCKBROWNEFFEP (/100)	(0.008)	(0.006)	(0.004)	0.101*** (0.013)	0.058*** (0.012)	-0.015 (0.009)
MKTSHR TRUIND	-1.372*** (0.344)	-2.142^{***} (0.427)	-0.473 (0.356)	2.325*** (0.415)	0.689	-0.153 (0.423)
LOGS1TOT X MKTSHR TRUIND	0.048 (0.038)	0.155*** (0.044)	0.044 (0.041)	-0.323*** (0.055)	-0.115* (0.064)	0.034 (0.056)
AGE (/100) X MKTSHR TRUIND	0.761*** (0.152)	1.085*** (0.182)	(0.041)	0.184 (0.196)	0.224 (0.284)	(0.030)
PATSTOCKGREENEP (/100) X MKTSHR TRUIND	-0.079** (0.032)	-0.186*** (0.028)	0.037*** (0.014)	(0.150)	(0.201)	
PATSTOCKBROWNEFFEP X MKTSHR TRUIND	(0.032)	(0.028)	(0.014)	$-0.004 \\ (0.042)$	-0.068 (0.069)	0.094*** (0.029)
Controls Country F.E.	yes	yes	yes	yes	yes	yes no
Year F.É.	yes yes	yes yes	no yes	yes yes	yes yes	yes
Industry X Year F.E. Firm F.E.	no no	yes no	no yes	no no	yes no	no yes
Observations Pseudo R2	27856 0.080	24814 0.319	20190 0.516	27763 0.102	20140 0.439	12187 0.525

TABLE 6: PATENT RATIOS AND ALTERNATIVE EMISSIONS

The unit of observation is firm-year. The sample period is 2005-2020. The dependent variable is *GREENRATIOEP* in Panel A and *BROWNEFFRATIOEP* in Panel B. *LOGS2TOT* (*LOGS3UPTOT* and *LOGS3DOWNTOT*) is the natural logarithm of firm-level scope 2 (upstream 3 and downstream 3) emissions; *S1INT* (*S2INT*, *S3UPINT* and *S3DOWNINT*) is the the firm-level scope 1 (2, upstream 3 and downstream 3) emission intensity defined as the level of emission divided by the firm sales. The regressions also include the following controls: LOGSZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI. All independent variables are lagged by one year. The other variables are defined in Table 1 and Table 2. The model is estimated using Poisson pseudo-maximum likelihood. All regression include country and Trucost industry-year fixed effects. We double cluster standard errors at the firm and year dimension. *** 1% significance, ** 5% significance * 10% significance.

Panel A: Green innovation	(1)	(2)	(3)	(4)	(5)	(6)	(7)
ranei A: Green innovation			GF	REENRATIOEP			
LOGS2TOT	-0.056***						
LOGS3UPTOT	(0.012)	-0.128***					
LOGS3DOWNTOT		(0.018)	-0.025**				
S1INT (/100)			(0.010)	0.018			
S2INT				(0.335)	0.021		
S3UPINT					(0.025)	-0.036*	
S3DOWNINT						(0.018)	0.005***
AGE (/100)	-0.189*** (0.031)	-0.176*** (0.031)	-0.186*** (0.059)	-0.195*** (0.031)	-0.194*** (0.031)	-0.194*** (0.021)	(0.002) -0.193***
PATSTOCKGREENEP (/100)	0.036*** (0.004)	0.035*** (0.004)	0.031*** (0.006)	0.035*** (0.004)	0.035*** (0.004)	(0.031) 0.034*** (0.004)	(0.059) 0.031*** (0.006)
Controls Country F.E. Industry-Year F.E. Observations Pseudo R2	yes yes yes 24818 0.317	yes yes yes 24818 0.319	yes yes yes 7681 0.269	yes yes yes 24818 0.316	yes yes yes 24818 0.316	yes yes yes 24818 0.316	yes yes yes 7681 0.270
Panel B: Brown efficiency innovation	1		BRO	WNEFFRATIO	ΞP		
LOGS2TOT	-0.031						
LOGS3UPTOT	(0.023)	0.149***					
LOGS3DOWNTOT		(0.031)	0.005				
S1INT			(0.023)	0.017*** (0.006)			
S2INT				(0.006)	-0.130**		
S3UPINT					(0.053)	0.139*** (0.028)	
S3DOWNINT						(0.028)	0.001 (0.003)
AGE (/100)	0.217*** (0.050)	0.204*** (0.050)	0.301*** (0.098)	0.215*** (0.050)	0.213*** (0.050)	0.215*** (0.050)	0.304*** (0.098)
PATSTOCKBROWNEFFEP (/100)	0.048*** (0.008)	0.047*** (0.008)	0.058*** (0.015)	0.047*** (0.008)	0.047*** (0.008)	0.049*** (0.008)	0.058*** (0.015)
Controls Country F.E.	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes
Industry-Year F.E. Observations	yes 20143	yes 20143	yes 6426	yes 20143	yes 20143	yes 20143	yes 6426
Pseudo R2	0.439	0.440	0.420	0.439	0.439	0.440	0.420

TABLE 7: PATENT RATIOS AND FIRM TYPE POST 2015

The unit of observation is firm-year. The sample period is 2005 to 2020. The dependent variable is GREENRATIOEP in columns 1 to 3 and BROWNEFFRATIOEP in columns 4 to 6. Panel A covers the full sample and Panel B the legacy sample, which restricts inclusion of firms into those that Trucost covers in its database before 2016. POST2015 is a dummy that is equal to 1 for all years after 2015 and zero otherwise. We interact this variable with all control variables. We report the coefficients of the following interactions: LOGSITOT X POST2015, AGE X POST2015, PATSTOCKGREENEP (PATSTOCKBROWNEFFEP) X POST2015 and the triple interaction LOGSITOT X AGE X POST2015. The regressions also include the following controls and their POST2015 interaction: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI. All independent variables other than POST2015 are lagged by one year. The variables are defined in Table 1 and Table 2. The model is estimated using Poisson pseudo-maximum likelihood. Columns 1 and 4 include year and country fixed effects. Columns 2 and 5 include country and Trucost industry-year fixed effects and columns 3 and 6 year and firm fixed effects. We double cluster standard errors at the firm and year dimension. *** 1% significance, ** 5% significance * 10% significance.

D 14 E II 1	(1)	(2)	(3)	(4)	(5)	(6)		
Panel A: Full sample		GREENRATIOEP		BROWNEFFRATIOEP				
LOGS1TOT	0.069***	-0.072***	0.020	0.116***	0.071**	-0.085		
AGE (/100)	(0.015) $-1.036***$	(0.018) $-0.914***$	(0.022)	(0.025) 0.775***	(0.031) 0.478**	(0.053)		
PATSTOCKGREENEP (/100)	(0.146) 0.087***	(0.135) 0.059***	0.008	(0.187)	(0.191)			
PATSTOCKBROWNEFFEP (/100)	(0.009)	(0.009)	(0.007)	0.136***	0.021* (0.012)	0.008		
LOGS1TOT X POST2015	-0.062*** (0.021)	-0.028 (0.025)	-0.013 (0.013)	(0.017) -0.030 (0.036)	-0.036 (0.045)	-0.003 (0.023)		
LOGS1TOT X Age (/100)	0.021) 0.081*** (0.016)	0.082*** (0.014)	-0.005 (0.036)	-0.068*** (0.021)	-0.038* (0.021)	0.033		
AGE (/100) X POST2015	0.012 (0.204)	0.218 (0.189)	(0.030)	0.014 (0.288)	-0.306 (0.297)	(0.007)		
LOGS1TOT X POST2015 X Age	0.023	-0.012	0.007	-0.006	0.053	0.014		
(/100) PATSTOCKGREENEP (/100) X	(0.023) -0.049***	(0.021) -0.037***	(0.005) -0.010**	(0.034)	(0.035)	(0.009)		
POST2015 PATSTOCKBROWNEFFEP X POST2015	(0.009)	(0.010)	(0.005)	-0.046** (0.019)	0.036** (0.015)	-0.004 (0.010)		
Observations Pseudo R2	27860 0.0836	24818 0.321	20072 0.516	27767 0.108	20143 0.443	12147 0.529		
Panel B: Legacy sample								
	(GREENRATIOEP		BRO	BROWNEFFRATIOEP			
LOGS1TOT	0.069*** (0.015)	-0.074*** (0.018)	0.019 (0.024)	0.116*** (0.025)	0.064** (0.031)	-0.078 (0.055)		
AGE (/100)	-1.061***	-0.945***	(0.024)	0.796***	0.508***	(0.033		

Panel B: Legacy sample	C	GREENRATIOEP		BROWNEFFRATIOEP					
LOGS1TOT	0.069*** (0.015)	-0.074*** (0.018)	0.019 (0.024)	0.116*** (0.025)	0.064** (0.031)	-0.078 (0.055)			
AGE (/100)	-1.061*** (0.147)	-0.945*** (0.136)	(0.021)	0.796*** (0.188)	0.508*** (0.194)	(0.000)			
PATSTOCKGREENEP (/100)	0.087*** (0.009)	0.058*** (0.009)	0.008 (0.007)	,	,				
PATSTOCKBROWNEFFEP (/100)				0.136*** (0.017)	0.022* (0.012)	0.009 (0.013)			
LOGS1TOT X POST2015	-0.024 (0.023)	0.001 (0.026)	-0.011 (0.013)	-0.015 (0.039)	0.005 (0.046)	-0.002 (0.023)			
LOGS1TOT X Age (/100)	0.082*** (0.016)	0.084*** (0.014)	-0.002 (0.038)	-0.069*** (0.021)	-0.040^* (0.022)	0.023 (0.069)			
AGE (/100) X POST2015	0.343 (0.227)	0.422** (0.204)		0.098 (0.311)	-0.157 (0.323)				
LOGS1TOT X POST2015 X Age (/100)	-0.019 (0.025)	-0.034 (0.022)	0.007 (0.005)	-0.006 (0.037)	0.048 (0.038)	0.015* (0.009)			
PATSTOCKGREENEP (/100) X POST2015	-0.047^{***} (0.009)	-0.030*** (0.010)	-0.011** (0.005)	0.004	0.005	0.000			
PATSTOCKBROWNEFFEP X POST2015				$-0.034* \ (0.020)$	0.037** (0.015)	-0.003 (0.010)			
Observations Pseudo R2	22990 0.100	20155 0.364	18275 0.509	22922 0.108	16164 0.454	11551 0.524			
Controls Country F.E.	yes	yes	yes no	yes	yes	yes no			
Year F.E.	yes yes	yes yes	yes	yes yes	yes yes	yes			
Industry X Year F.E. Firm F.E.	no no	yes no	no yes	no no	yes no	no yes			

TABLE 8: PATENT RATIOS AND FIRM-LEVEL OUTCOMES

The unit of observation is firm-year. The sample period is 2005 to 2020. The dependent variables are logs of cumulative sums of SITOT, SZITOT, SZIDOT, SZIDOT, SZIDOT, CAPEX, and SALES over 1, 3 or 5 years, respectively long-term averages of SIINT, SZINT, SZIDIT, SZIDIT, SZIDONNINT and INVEST/A for 1, 3 or 5 years. In Panel A, the key independent variable is GREENRATIOEP lagged by 1, 3, or 5 years as well as a 3-year rolling ratio lagged by 1 year. In Panel B, the key independent variable similarly is BROWNEFFRATIOEP. Controls include: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, MSCI. All variables are defined in Table 1 and Table 2 and are similarly lagged by 1, 3, or 5 years. The model is estimated using pooled regression model. All regressions include year and firm fixed effects. We double cluster standard errors at the firm and year dimension. *** 1% significance. **10% significance **10% significance.

Panel A: Green innovation	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT	LOGS3DOWNTOT	LOGS123UPTOT	S1INT	S2INT	S3UPINT	S3DOWNINT	INVEST/A	LOGCAPEX	LOGSALES
L1 GREENRATIOEP	0.021	-0.019	0.007	-0.046	0.004	0.019	-0.006	-0.009	-0.018	-0.048	-0.011	0.003
	(0.026)	(0.025)	(0.015)	(0.077)	(0.015)	(0.070)	(0.010)	(0.018)	(0.389)	(0.100)	(0.014)	(0.012)
Observations	29585	29585	29584	10349	29585	29585	29585	29585	10349	29578	29578	29580
R2	0.953	0.948	0.980	0.931	0.981	0.922	0.843	0.961	0.898	0.720	0.917	0.980
L3 GREENRATIOEP	0.002	-0.042*	0.000	0.032	-0.002	0.048	-0.000	0.002	-0.000	-0.166**	-0.009	-0.004
	(0.026)	(0.025)	(0.014)	(0.118)	(0.014)	(0.070)	(0.010)	(0.016)	(0.396)	(0.078)	(0.013)	(0.011)
Observations	22261	22261	22261	4160	22261	22261	22261	22261	4166	25158	25153	25155
R2	0.967	0.962	0.986	0.982	0.986	0.955	0.902	0.974	0.986	0.827	0.945	0.986
L5 GREENRATIOEP	0.015 (0.028)	-0.036 (0.026)	0.009 (0.017)		0.013 (0.017)	0.125* (0.069)	0.004 (0.010)	0.018 (0.018)		-0.109 (0.079)	-0.015 (0.013)	-0.006 (0.013)
Observations R2	15482 0.973	15482 0.965	15482 0.985		15482 0.986	15482 0.972	15482 0.933	15482 0.981		18347 0.888	18347 0.956	18343 0.989
L1 3YEARAVGGREENRATIOEP	0.007	-0.039	0.005	-0.157	-0.004	0.001	-0.003	0.002	0.079	-0.156	-0.004	-0.014
	(0.029)	(0.031)	(0.016)	(0.127)	(0.017)	(0.092)	(0.014)	(0.021)	(0.607)	(0.116)	(0.016)	(0.013)
Observations	38221	38221	38220	14552	38221	38221	38221	38221	14552	38210	38210	38214
R2	0.958	0.951	0.982	0.935	0.982	0.928	0.847	0.965	0.907	0.718	0.923	0.980
Panel B: Brown efficiency innovation												
L1 BROWNEFFRATIOEP	0.031	-0.045	-0.015	-0.241	-0.012	0.044	0.008	0.017	0.392	-0.072	0.007	-0.012
	(0.043)	(0.041)	(0.020)	(0.167)	(0.022)	(0.144)	(0.015)	(0.025)	(0.968)	(0.147)	(0.021)	(0.018)
Observations	29585	29585	29584	10349	29585	29585	29585	29585	10349	29578	29578	29580
R2	0.953	0.948	0.980	0.931	0.981	0.922	0.843	0.961	0.898	0.720	0.917	0.980
L3 BROWNEFFRATIOEP	0.051	-0.001	0.004	-0.105	0.003	-0.095	0.003	0.011	-0.945	-0.093	-0.004	0.006
	(0.037)	(0.038)	(0.020)	(0.110)	(0.021)	(0.135)	(0.013)	(0.022)	(0.761)	(0.125)	(0.018)	(0.016)
Observations	22261	22261	22261	4160	22261	22261	22261	22261	4166	25158	25153	25155
R2	0.967	0.962	0.986	0.982	0.986	0.955	0.902	0.974	0.986	0.827	0.945	0.986
L5 BROWNEFFRATIOEP	0.065* (0.036)	0.010 (0.034)	0.022 (0.020)		0.020 (0.021)	-0.067 (0.131)	-0.019* (0.011)	0.004 (0.022)		0.170 (0.130)	0.025 (0.017)	0.029* (0.017)
Observations R2	15482 0.973	15482 0.965	15482 0.985		15482 0.986	15482 0.971	15482 0.933	15482 0.981		18347 0.888	18347 0.956	18343 0.989
L1 3YEARAVGBROWNEFFRATIOEP	0.151***	-0.027	0.012	-0.136	0.028	0.095	0.004	0.024	-1.373	-0.014	-0.005	0.025
	(0.049)	(0.049)	(0.024)	(0.223)	(0.027)	(0.190)	(0.018)	(0.031)	(1.354)	(0.224)	(0.024)	(0.023)
Observations	38221	38221	38220	14552	38221	38221	38221	38221	14552	38210	38210	38214
R2	0.958	0.951	0.982	0.935	0.982	0.928	0.847	0.965	0.907	0.718	0.923	0.980
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Firm F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE 9: PATENT RATIOS AND GICS-6 INDUSTRY-LEVEL OUTCOMES

The unit of observation is GICS-6 industry-year and the sample period is 2005 to 2020. The dependent variables are logs of industry level cumulative sums of SITOT, S2IDTOT, S3DOWNTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively cumulative sums over sums for S1INT, S2INT, S3DPINT, S3DOWNINT and INVEST/A for 1, 3 or 5 years for the Trucost sample. In Panel A.1 and B.1, dependent variables are calculated across all firms within the given industry. In Panel A.2 and B.2, dependent variables are calculated across all never patenting firms within the given industry and in Panel A.3 and B.3, dependent variables are calculated across all never patenting firms within the given industry. In Panel A.2 and B.2, dependent variables are calculated across all never patenting firms within the given industry. In Panel A.2 and B.2, dependent variables are calculated across all never patenting firms within the given industry. In Panel A.2 and B.2, dependent variables are calculated across all never patenting firms within the given industry. In Panel A.2 and B.2, dependent variables are calculated across all never patenting firms within the given industry. In Panel A.2 and B.2, dependent variables are calculated across all never patenting firms within the given industry. In Panel A.2 and B.2, dependent variables are calculated across all never patenting firms within the given industry be patenting firms within the given industry and in Panel A.3 and B.2, dependent variables are calculated across all never patenting firms within the given industry and in Panel A.3 and B.2, dependent variables are calculated across all never patenting firms within the given industry and in Panel A.3 and B.2, dependent variables are calculated across all never patenting firms within the given industry and in Panel A.3 and B.2, dependent variables are calculated across all never patenting firms within the given industry and in Panel A.3 and B.2, dependent variables are calculated across all never patenting firms within the given industry firms

Panel A: Green innovation Panel A.1: GREENRATIOEP on all	LOGS1TOT	(2) LOGS2TOT	LOGS3UPTOT	LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 GREENRATIOEP	0.117	0.327*	-0.084	0.073	-0.192	0.195**	-0.289**	1.249	0.001*	0.022	-0.006
	(0.174)	(0.180)	(0.092)	(0.497)	(1.106)	(0.097)	(0.131)	(3.118)	(0.001)	(0.061)	(0.087)
Observations	976	976	976	261	976	976	976	261	976	976	976
R2	0.962	0.932	0.959	0.961	0.988	0.734	0.976	0.842	0.911	0.924	0.936
L3 GREENRATIOEP	0.208	0.321**	-0.003	-1.005	-2.647**	0.264**	-0.339***	-2.551	0.001	0.016	0.085
	(0.156)	(0.129)	(0.081)	(0.915)	(1.207)	(0.111)	(0.114)	(2.939)	(0.001)	(0.057)	(0.080)
Observations	837	837	837	122	837	837	837	122	837	837	837
R2	0.981	0.978	0.990	0.990	0.994	0.784	0.988	0.974	0.957	0.984	0.986
L5 GREENRATIOEP	0.191 (0.139)	0.274*** (0.102)	-0.009 (0.075)		-1.562* (0.796)	0.191* (0.110)	-0.153* (0.089)		0.001 (0.001)	-0.030 (0.047)	0.046 (0.070)
Observations R2	708 0.986	708 0.986	708 0.991		708 0.997	708 0.852	708 0.993		708 0.966	708 0.984	708 0.987
L1 3YEARAVGGREENRATIOEP	0.435*	1.273***	0.138	-1.699	-5.143**	0.660***	-0.679***	-7.100	0.003*	0.336*	0.308*
	(0.241)	(0.326)	(0.169)	(1.398)	(2.285)	(0.211)	(0.209)	(10.840)	(0.002)	(0.186)	(0.158)
Observations	988	988	988	267	988	988	988	267	988	988	988
R2	0.962	0.933	0.960	0.967	0.989	0.735	0.977	0.843	0.904	0.914	0.937
Panel A.2: GREENRATIOEP on eve	r patenting firms										
L1 GREENRATIOEP	-0.257	0.212	-0.146	0.567	-1.984	0.230*	-0.260**	1.521	0.001*	0.045	-0.037
	(0.224)	(0.199)	(0.121)	(0.822)	(1.491)	(0.122)	(0.108)	(3.659)	(0.001)	(0.072)	(0.125)
Observations	974	974	974	261	974	974	974	261	974	974	974
R2	0.962	0.960	0.984	0.954	0.926	0.679	0.973	0.695	0.955	0.979	0.981
L3 GREENRATIOEP	-0.206	0.294	-0.087	-0.388	-4.062**	0.347**	-0.359***	-4.782	0.001**	0.007	0.067
	(0.223)	(0.197)	(0.100)	(0.931)	(1.993)	(0.172)	(0.097)	(7.610)	(0.001)	(0.071)	(0.109)
Observations	834	834	834	122	834	834	834	122	834	834	834
R2	0.976	0.973	0.988	0.986	0.954	0.741	0.984	0.936	0.967	0.982	0.986
L5 GREENRATIOEP	-0.122 (0.243)	0.223 (0.171)	-0.098 (0.100)		-0.574 (1.489)	0.225 (0.152)	-0.193** (0.088)		0.001* (0.000)	-0.032 (0.059)	0.005 (0.108)
Observations R2	705 0.982	705 0.982	705 0.991		705 0.970	705 0.824	705 0.989		705 0.975	705 0.986	705 0.988
L1 3YEARAVGGREENRATIOEP	-0.416	0.938***	-0.076	-0.218	-6.652**	0.697**	-0.657***	-8.575	0.002	0.126	0.181
	(0.310)	(0.352)	(0.174)	(1.847)	(3.294)	(0.293)	(0.196)	(12.070)	(0.001)	(0.124)	(0.191)
Observations	985	985	985	265	985	985	985	265	985	985	985
R2	0.963	0.962	0.984	0.956	0.928	0.683	0.974	0.695	0.950	0.979	0.982
Panel A.3: GREENRATIOEP on new	ver patenting firm	s									
L1 GREENRATIOEP	-0.068	0.384*	-0.144	0.168	1.701	0.229**	-0.403**	2.908	0.001	0.006	-0.048
	(0.171)	(0.200)	(0.105)	(0.451)	(1.419)	(0.106)	(0.192)	(2.700)	(0.002)	(0.068)	(0.096)
Observations	964	964	964	261	964	964	964	261	964	964	964
R2	0.941	0.921	0.940	0.972	0.980	0.735	0.630	0.959	0.794	0.938	0.939
L3 GREENRATIOEP	0.127	0.088	-0.050	0.040	-0.835	0.122*	-0.333**	-1.203	0.002	0.004	0.017
	(0.149)	(0.121)	(0.101)	(0.424)	(1.057)	(0.071)	(0.151)	(3.143)	(0.001)	(0.073)	(0.088)
Observations	819	819	819	122	819	819	819	122	819	819	819
R2	0.960	0.948	0.961	0.998	0.993	0.846	0.860	0.996	0.824	0.958	0.960
L5 GREENRATIOEP	0.100 (0.148)	-0.025 (0.133)	-0.066 (0.103)		-1.051 (0.680)	0.088 (0.080)	-0.139 (0.128)		0.001 (0.001)	-0.096 (0.084)	-0.037 (0.093)
Observations R2	685 0.973	685 0.959	685 0.967		685 0.996	685 0.898	685 0.929		685 0.866	685 0.963	685 0.966
L1 3YEARAVGGREENRATIOEP	0.110	0.977***	-0.033	-0.303	-1.057	0.437***	-0.823**	6.390	0.005*	0.113	0.064
	(0.276)	(0.349)	(0.215)	(1.072)	(1.746)	(0.154)	(0.362)	(5.121)	(0.003)	(0.138)	(0.191)
Observations	976	976	976	267	976	976	976	267	976	976	976
R2	0.941	0.920	0.939	0.974	0.979	0.736	0.631	0.959	0.793	0.932	0.937
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

Panel B: Brown efficiency innovation Panel B.1: BROWNEFFRATIOEP on all		(2) LOGS2TOT	(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 BROWNEFFRATIOEP	-0.082	-0.365	-0.097	1.501	8.373**	-0.184	0.649*	43.304	0.000	-0.134	-0.144
	(0.185)	(0.383)	(0.146)	(2.008)	(3.554)	(0.210)	(0.387)	(41.529)	(0.001)	(0.092)	(0.112)
Observations	976	976	976	261	976	976	976	261	976	976	976
R2	0.962	0.932	0.959	0.961	0.989	0.734	0.976	0.853	0.911	0.924	0.936
L3 BROWNEFFRATIOEP	-0.138	-0.323	-0.228*	2.308	7.251**	* -0.069	0.284	23.340	0.000	-0.155*	-0.167*
	(0.175)	(0.247)	(0.127)	(2.795)	(2.645)	(0.227)	(0.315)	(29.000)	(0.001)	(0.091)	(0.095)
Observations	837	837	837	122	837	837	837	122	837	837	837
R2	0.981	0.978	0.990	0.990	0.995	0.782	0.988	0.974	0.957	0.984	0.986
L5 BROWNEFFRATIOEP	0.146 (0.179)	-0.148 (0.192)	-0.142 (0.126)		1.564 (2.466)	0.015 (0.249)	-0.278 (0.227)		0.000 (0.001)	0.001 (0.114)	0.018 (0.120)
Observations R2	708 0.986	708 0.985	708 0.991		708 0.997	708 0.852	708 0.993		708 0.966	708 0.984	708 0.987
L1 3YEARAVGBROWNEFFRATIOEP	-0.104	-0.540	-0.130	6.213**	13.254**	* -0.183	0.724**	96.369	-0.001	-0.211	-0.166
	(0.245)	(0.380)	(0.171)	(2.568)	(4.362)	(0.191)	(0.359)	(69.150)	(0.001)	(0.139)	(0.159)
Observations	988	988	988	267	988	988	988	267	988	988	988
R2	0.962	0.931	0.960	0.968	0.990	0.733	0.976	0.864	0.903	0.914	0.937
Panel B.2: BROWNEFFRATIOEP on ever	r patenting firm	S									
L1 BROWNEFFRATIOEP	0.288 (0.268)	-0.260 (0.532)	-0.078 (0.187)	0.435 (2.965)	13.008** (6.495)	-0.199 (0.260)	0.573** (0.270)	82.622 (69.540)	0.002* (0.001)	0.075 (0.106)	-0.241 (0.228)
Observations	974	974	974	261	974	974	974	261	974	974	974
R2	0.962	0.960	0.984	0.954	0.932	0.679	0.973	0.727	0.954	0.979	0.981
L3 BROWNEFFRATIOEP	0.094	-0.230	-0.220*	1.391	8.228	-0.182	0.211	24.203	0.001	0.128	-0.235
	(0.251)	(0.397)	(0.115)	(2.703)	(5.915)	(0.301)	(0.200)	(36.508)	(0.001)	(0.097)	(0.149)
Observations	834	834	834	122	834	834	834	122	834	834	834
R2	0.976	0.973	0.988	0.986	0.955	0.740	0.984	0.937	0.967	0.982	0.986
L5 BROWNEFFRATIOEP	0.192 (0.303)	-0.175 (0.303)	-0.151 (0.118)		-4.654 (3.254)	-0.029 (0.269)	-0.308* (0.169)		0.000 (0.001)	0.183** (0.088)	0.018 (0.150)
Observations R2	705 0.982	705 0.982	705 0.991		705 0.970	705 0.824	705 0.989		705 0.975	705 0.986	705 0.988
L1 3YEARAVGBROWNEFFRATIOEP	-0.106	-0.493	-0.199	9.066**	17.600**	-0.227	0.675**	191.709	0.001	0.184	-0.396
	(0.466)	(0.592)	(0.241)	(4.014)	(8.717)	(0.243)	(0.330)	(131.078)	(0.002)	(0.135)	(0.283)
Observations	985	985	985	265	985	985	985	265	985	985	985
R2	0.963	0.961	0.984	0.959	0.934	0.681	0.973	0.754	0.950	0.979	0.982
Panel B.3: BROWNEFFRATIOEP on nev	er patenting firr	ns									
L1 BROWNEFFRATIOEP	-0.295 (0.285)	-0.728* (0.391)	-0.113 (0.234)	-0.495 (1.423)	3.302 (2.278)	-0.383** (0.177)	0.251 (0.583)	-10.842 (8.039)	-0.003 (0.003)	-0.133 (0.140)	-0.087 (0.170)
Observations	964	964	964	261	964	964	964	261	964	964	964
R2	0.941	0.921	0.940	0.972	0.980	0.735	0.629	0.959	0.794	0.938	0.939
L3 BROWNEFFRATIOEP	-0.585**	-0.712***	-0.467**	-0.109	4.589**	-0.030	0.082	3.322	0.000	-0.275*	-0.278
	(0.268)	(0.263)	(0.231)	(0.761)	(2.047)	(0.142)	(0.417)	(5.100)	(0.003)	(0.143)	(0.174)
Observations	819	819	819	122	819	819	819	122	819	819	819
R2	0.960	0.948	0.961	0.998	0.993	0.846	0.860	0.996	0.824	0.958	0.960
L5 BROWNEFFRATIOEP	-0.615** (0.260)	-0.655** (0.275)	-0.675*** (0.210)		2.368 (1.838)	-0.100 (0.148)	-0.404 (0.289)		0.002 (0.003)	-0.319* (0.166)	-0.374* (0.198)
Observations R2	685 0.973	685 0.959	685 0.967		685 0.996	685 0.898	685 0.929		685 0.866	685 0.963	685 0.966
L1 3YEARAVGBROWNEFFRATIOEP	-0.790**	-1.274***	-0.489*	1.409	8.154*	-0.332*	0.006	-2.571	-0.004	-0.321*	-0.247
	(0.402)	(0.405)	(0.276)	(1.611)	(4.320)	(0.170)	(0.616)	(10.075)	(0.004)	(0.193)	(0.204)
Observations	976	976	976	267	976	976	976	267	976	976	976
R2	0.941	0.920	0.940	0.974	0.980	0.735	0.630	0.959	0.793	0.932	0.937
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	ves	yes	yes	yes	yes	yes	yes	yes	yes	ves	yes

TABLE 10: PATENT RATIOS AND CROSS-INDUSTRY OUTCOMES

The unit of observation is GICS-8 industry-year. The sample period is 2005 to 2020. We aggregate the dependent variables at a given GICS-8 industry's higher GICS-2 level including all GICS-8 industries but the given GICS-8 industry used for the independent variables. The dependent variables are thus GICS-2 industry level logs of cumulative sums of S1TOT, S2TOT, S3UPTOT, S3DOWNTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively GICS-2 industry level cumulative sums over sums for S1INT, S2INT, S3DOWNINT and INVEST/A for 1, 3 or 5 years. In Panel A.1 and B1, dependent variables are calculated across all firms in the broader GICS-2 industry except the given GICS-8 industry. In Panel A.2 and B2, dependent variables are similarly calculated only for ever-patenting firms and in Panel A.3 and B3 only for never-patenting firms. In Panel A, the key independent variable of interest is the GICS-8 industry level GREENRATIOEP and in Panel B the GICS-8 industry level BROWNEFFRATIOEP. Controls at the GICS-8 industry level of so from 5 to 5 years. In Panel A, and B3, WISEST/A, BETA, WOLAT, MOM, RET, MSCI. Independent variables are either GICS-8 industry level logs of sums (LOCSIZE and LOGPTE), sum over sums (GREENRATIOEP, BROWNEFFRATIOEP, LEVERAGE, ROE, M/B, INVEST/A) or market capitalization weighted averages (BETA, VOLAT, MOM, RET, MSCI). All Independent variables are lagged by 1, 3 or 5 years respectively. The model is estimated using pooled regression model. All regression include year and industry fixed effects. We double cluster standard errors at the GICS-8 industry and year dimension. *** 1% significance. ** 5% significance ** 10% significance.

Panel A: Green innovation Panel A.1: GREENRATIOEP on all !	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT	LOGS3DOWNTOT	S1INT	S2INT	S3UPINT	S3DOWNINT	INVEST/A	LOGCAPEX	LOGSALES
L1 GREENRATIOEP/100	0.274	1.152	-7.787**	-0.381	18.915	3.968*	-1.746	-24.219	0.005	-2.646	-6.478*
	(4.448)	(4.302)	(3.592)	(13.828)	(20.521)	(2.174)	(3.815)	(87.962)	(0.016)	(1.647)	(3.573)
Observations	1958	1958	1958	561	1958	1958	1958	561	1958	1958	1958
R2	0.986	0.972	0.985	0.982	0.989	0.976	0.983	0.964	0.957	0.982	0.966
L3 GREENRATIOEP/100	6.055*	4.386	-1.757	0.409	4.019	3.694*	0.193	-57.379	-0.007	-1.278	-0.288
	(3.639)	(3.466)	(3.450)	(8.701)	(15.199)	(1.920)	(2.905)	(87.317)	(0.018)	(1.441)	(3.596)
Observations	1649	1649	1649	262	1649	1649	1649	262	1649	1649	1649
R2	0.993	0.984	0.989	0.997	0.993	0.983	0.991	0.995	0.969	0.987	0.974
L5 GREENRATIOEP/100	6.013 (3.874)	7.693** (3.214)	1.466 (3.532)		9.338 (14.879)	3.574* (2.119)	-0.715 (2.763)		-0.009 (0.017)	-1.256 (1.379)	2.251 (3.551)
Observations R2	1363 0.995	1363 0.990	1363 0.992		1363 0.995	1363 0.989	1363 0.995		1363 0.979	1363 0.991	1363 0.981
L1 3YEARAVGGREENRATIOEP	0.049	0.167**	-0.069	-0.474**	-0.237	0.097***	-0.116**	-4.151***	-0.000	-0.028	-0.020
	(0.064)	(0.068)	(0.055)	(0.203)	(0.309)	(0.029)	(0.058)	(1.430)	(0.000)	(0.025)	(0.056)
Observations	2065	2065	2065	589	2065	2065	2065	589	2065	2065	2065
R2	0.986	0.972	0.985	0.982	0.989	0.976	0.983	0.965	0.956	0.982	0.966
Panel A.2: GREENRATIOEP on ever	r-patenting firms										
L1 GREENRATIOEP/100	-3.978	1.691	-8.359***	-7.007	-45.317*	4.770*	-3.065	-148.941	0.007	-3.186	-7.948**
	(6.353)	(4.376)	(3.083)	(18.423)	(27.009)	(2.491)	(4.517)	(139.989)	(0.012)	(2.003)	(3.180)
Observations	1949	1949	1949	558	1949	1949	1949	558	1949	1949	1949
R2	0.979	0.975	0.989	0.972	0.971	0.968	0.980	0.903	0.967	0.982	0.974
L3 GREENRATIOEP/100	5.368	2.574	-5.273**	-6.927	-28.576*	3.857	-2.080	-90.323	-0.001	-4.267**	-3.135
	(5.636)	(3.783)	(2.670)	(12.794)	(15.220)	(2.412)	(3.515)	(117.378)	(0.012)	(2.011)	(2.997)
Observations	1640	1640	1640	262	1640	1640	1640	262	1640	1640	1640
R2	0.988	0.984	0.993	0.993	0.985	0.976	0.989	0.985	0.976	0.986	0.981
L5 GREENRATIOEP/100	1.362 (6.032)	4.321 (3.079)	-4.812* (2.770)		-21.360 (17.893)	3.715 (2.502)	-4.175 (3.455)		-0.006 (0.012)	-4.868** (2.053)	-1.294 (2.948)
Observations R2	1353 0.992	1353 0.991	1353 0.995		1353 0.992	1353 0.984	1353 0.994		1353 0.985	1353 0.990	1353 0.985
L1 3YEARAVGGREENRATIOEP	-0.039	0.088	-0.134***	-0.682**	-1.471***	0.075**	-0.171**	-7.135**	-0.000	-0.094***	-0.065
	(0.095)	(0.064)	(0.048)	(0.337)	(0.390)	(0.032)	(0.071)	(2.909)	(0.000)	(0.030)	(0.048)
Observations	2053	2053	2053	584	2053	2053	2053	584	2053	2053	2053
R2	0.979	0.976	0.990	0.971	0.972	0.968	0.980	0.902	0.967	0.984	0.977
Panel A.3: GREENRATIOEP on nev	er-patenting firm	is									
L1 GREENRATIOEP/100	2.807	-1.513	-4.849	-6.752	48.319	0.381	3.234	15.569	-0.016	-2.543	-6.171
	(6.418)	(6.789)	(4.666)	(8.003)	(38.510)	(4.259)	(4.524)	(71.305)	(0.043)	(2.830)	(3.832)
Observations	1901	1901	1901	561	1901	1901	1901	561	1901	1901	1901
R2	0.971	0.940	0.970	0.993	0.987	0.965	0.978	0.993	0.923	0.964	0.961
L3 GREENRATIOEP/100	9.768*	0.179	2.869	-2.011	22.789	1.462	3.915	-75.320	-0.083**	-1.346	1.827
	(5.355)	(5.988)	(4.508)	(5.221)	(34.406)	(2.154)	(3.990)	(52.497)	(0.041)	(2.461)	(3.795)
Observations	1579	1579	1579	262	1579	1579	1579	262	1579	1579	1579
R2	0.984	0.954	0.977	0.999	0.992	0.988	0.985	0.999	0.953	0.970	0.968
L5 GREENRATIOEP/100	9.663** (4.820)	0.665 (5.306)	3.754 (4.758)		33.909 (34.028)	1.466 (2.037)	-0.088 (4.106)		-0.053 (0.038)	-2.322 (2.586)	3.194 (3.984)
Observations R2	1285 0.992	1285 0.963	1285 0.982		1285 0.994	1285 0.994	1285 0.992		1285 0.973	1285 0.976	1285 0.975
L1 3YEARAVGGREENRATIOEP	0.172	0.159	0.019	-0.557***	0.729	0.100	-0.005	-4.192***	-0.002***	-0.044	0.012
	(0.107)	(0.112)	(0.074)	(0.161)	(0.536)	(0.070)	(0.070)	(1.185)	(0.001)	(0.041)	(0.060)
Observations	2006	2006	2006	589	2006	2006	2006	589	2006	2006	2006
R2	0.971	0.940	0.970	0.993	0.988	0.965	0.977	0.993	0.924	0.963	0.961

Panel B: Brown efficiency innovation Panel B.1: BROWNEFFRATIOEP on all 1		(2) LOGS2TOT	(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 BROWNEFFRATIOEP/100	-2.188	3.363	6.716	-9.622	39.080	2.628	8.503	-219.445	-0.034	-0.060	6.925
	(6.250)	(8.202)	(5.807)	(32.729)	(50.465)	(4.144)	(9.709)	(234.536)	(0.025)	(3.624)	(5.957)
Observations	1958	1958	1958	561	1958	1958	1958	561	1958	1958	1958
R2	0.986	0.972	0.985	0.982	0.989	0.976	0.983	0.964	0.957	0.982	0.966
L3 BROWNEFFRATIOEP/100	-2.626	5.427	1.591	30.222	44.805	4.714	3.224	62.765	-0.013	0.681	2.981
	(5.124)	(5.862)	(5.337)	(20.141)	(37.907)	(3.383)	(7.785)	(248.948)	(0.024)	(3.281)	(5.355)
Observations	1649	1649	1649	262	1649	1649	1649	262	1649	1649	1649
R2	0.993	0.984	0.989	0.997	0.993	0.983	0.991	0.995	0.969	0.987	0.974
L5 BROWNEFFRATIOEP/100	-3.082 (4.496)	3.236 (4.740)	1.976 (5.199)		30.790 (28.161)	-0.465 (2.502)	3.151 (4.550)		-0.043** (0.020)	0.853 (2.327)	3.844 (5.216)
Observations R2	1363 0.995	1363 0.990	1363 0.992		1363 0.995	1363 0.989	1363 0.995		1363 0.979	1363 0.991	1363 0.981
L1 3YEARAVGBROWNEFFRATIOEP	-0.036	-0.015	0.051	0.382**	1.661**	* 0.024	0.077	1.320	-0.000	0.036	0.079
	(0.083)	(0.105)	(0.077)	(0.162)	(0.632)	(0.063)	(0.113)	(2.356)	(0.000)	(0.040)	(0.071)
Observations	2065	2065	2065	589	2065	2065	2065	589	2065	2065	2065
R2	0.986	0.972	0.985	0.981	0.989	0.976	0.983	0.964	0.956	0.982	0.966
Panel B.2: BROWNEFFRATIOEP on ever	r-patenting firm	is									
L1 BROWNEFFRATIOEP/100	-0.658	9.914	9.224*	-7.806	67.476	5.614	9.864	-165.991	-0.006	1.267	9.585*
	(7.179)	(8.810)	(5.575)	(41.345)	(52.164)	(4.597)	(10.708)	(310.706)	(0.018)	(4.037)	(5.638)
Observations	1949	1949	1949	558	1949	1949	1949	558	1949	1949	1949
R2	0.979	0.975	0.989	0.972	0.971	0.968	0.980	0.903	0.967	0.982	0.974
L3 BROWNEFFRATIOEP/100	-4.455	6.194	0.886	25.638	25.937	5.418	4.176	208.613	0.005	1.386	3.324
	(5.905)	(7.620)	(5.421)	(22.319)	(38.253)	(4.025)	(8.566)	(296.275)	(0.015)	(4.182)	(5.227)
Observations	1640	1640	1640	262	1640	1640	1640	262	1640	1640	1640
R2	0.988	0.984	0.993	0.993	0.985	0.976	0.989	0.985	0.976	0.986	0.981
L5 BROWNEFFRATIOEP/100	-5.222 (5.042)	2.829 (5.053)	-0.121 (5.000)		4.514 (29.609)	-0.498 (2.838)	3.030 (5.168)		-0.011 (0.012)	1.877 (3.904)	3.485 (5.005)
Observations R2	1353 0.992	1353 0.991	1353 0.995		1353 0.992	1353 0.984	1353 0.994		1353 0.985	1353 0.990	1353 0.985
L1 3YEARAVGBROWNEFFRATIOEP	-0.015	0.141	0.067	0.260	1.652**	0.134**	* 0.098	2.303	-0.000	0.017	0.109
	(0.111)	(0.101)	(0.081)	(0.248)	(0.690)	(0.050)	(0.127)	(2.823)	(0.000)	(0.050)	(0.070)
Observations	2053	2053	2053	584	2053	2053	2053	584	2053	2053	2053
R2	0.979	0.976	0.990	0.970	0.972	0.968	0.980	0.899	0.967	0.984	0.977
Panel B.3: BROWNEFFRATIOEP on nev	er-patenting fir	ms									
L1 BROWNEFFRATIOEP/100	6.986	-1.889	12.488	-17.850	16.222	-3.298	10.079	-309.372	-0.112	1.836	10.825
	(14.793)	(15.539)	(8.499)	(15.141)	(76.488)	(10.258)	(8.781)	(241.999)	(0.078)	(5.863)	(6.996)
Observations	1901	1901	1901	561	1901	1901	1901	561	1901	1901	1901
R2	0.971	0.940	0.970	0.993	0.987	0.965	0.978	0.993	0.923	0.964	0.961
L3 BROWNEFFRATIOEP/100	0.705	6.288	6.648	-12.721	-27.280	1.284	3.952	-171.316	-0.043	1.270	5.746
	(10.829)	(11.021)	(8.563)	(12.774)	(64.711)	(5.104)	(8.204)	(219.561)	(0.072)	(5.887)	(6.651)
Observations	1579	1579	1579	262	1579	1579	1579	262	1579	1579	1579
R2	0.984	0.954	0.977	0.999	0.992	0.988	0.985	0.999	0.953	0.970	0.968
L5 BROWNEFFRATIOEP/100	-7.126 (8.393)	-2.038 (9.430)	0.479 (9.103)		-2.111 (57.376)	-2.379 (3.130)	4.280 (5.925)		-0.090 (0.057)	-2.578 (4.938)	0.036 (6.932)
Observations R2	1285 0.992	1285 0.963	1285 0.982		1285 0.994	1285 0.994	1285 0.992		1285 0.973	1285 0.976	1285 0.975
L1 3YEARAVGBROWNEFFRATIOEP	0.061	-0.253	0.108	0.150	1.150	-0.226	0.071	1.519	-0.001	0.070	0.107
	(0.164)	(0.205)	(0.109)	(0.117)	(0.958)	(0.153)	(0.106)	(2.395)	(0.001)	(0.065)	(0.085)
Observations	2006	2006	2006	589	2006	2006	2006	589	2006	2006	2006
R2	0.971	0.940	0.970	0.993	0.988	0.965	0.977	0.993	0.924	0.963	0.961
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE 11: PUBLIC AND PRIVATE PATENT RATIOS AND GICS-6 INDUSTRY-LEVEL OUTCOMES

The unit of observation is GICS-6 industry-year and the sample period is 2005 to 2020. The dependent variables are logs of industry level cumulative sums of S1TOT, S2TOT, S3UPTOT, S3DOWNTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively cumulative sums over sums for S1INT, S2INT, S3DOWNINT and INVEST/A for 1, 3 or 5 years for the Trucost sample. In Panel A.1 and B.1, dependent variables are calculated across all firms within the given industry. In Panel A.2 and B.2, dependent variables are calculated across all ever patenting firms within the given industry and in Panel A.3 and B.3, dependent variables are calculated across all ever patenting firms within the given industry and in Panel A.3 and B.3, dependent variables are calculated across all ever patenting firms within the given industry. Departed industry level patent ratios for all public firms respectively all private firms in a given industry. Controls include LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, MSCI. Independent variables are either industry level logs of sums (LOGSIZE and LOGPPE), sum over sums (GREENRATIOEP, LEVERAGE, ROE, M/B, INVEST/A) or market capitalization weighted averages (BETA, VOLAT, MOM, RET, MSCI). All Independent variables are lagged by 1, 3 or 5 years respectively. The model is estimated using pooled regression model. All regression include year and industry fixed effects. We double cluster standard errors at the given industry and year dimension. **1% significance, **5% significance, **1% signi

Panel A: Green innovation Panel A.1: GREENRATIOEP on all firms	LOGS1TOT	(2) LOGS2TOT	(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 GREENRATIOEP PUBLIC	0.132	0.330	-0.118	-0.090	1.524	0.287*	-0.102	1.191	0.002**	0.035	-0.047
L1 GREENRATIOEP PRIVATE	(0.219) -0.083	(0.211) 0.145	(0.130) -0.054	(0.801) 0.310	(2.042) -0.284	(0.157) 0.368*	(0.172) -0.030	(5.795) 8.751	(0.001) 0.001	(0.082) -0.026	(0.112) -0.051
	(0.158)	(0.206)	(0.141)	(0.374)	(0.583)	(0.219)	(0.093)	(8.431)	(0.001)	(0.125)	(0.144)
Observations R2	840 0.963	840 0.929	840 0.960	227 0.962	840 0.989	840 0.739	840 0.981	227 0.843	840 0.908	840 0.926	840 0.936
L3 GREENRATIOEP PUBLIC	0.180	0.428***	-0.089	-3.676	-3.293*	0.483**	-0.407***	-12.702	0.002*	0.026	0.070
L3 GREENRATIOEP PRIVATE	(0.215) 0.011	(0.160) 0.185**	(0.114) -0.021	(2.809) -0.986	(1.726) 0.552	(0.226) 0.321**	(0.149) -0.023	(10.306) -8.185	(0.001) 0.000	(0.072) 0.042	(0.106) -0.004
	(0.082)	(0.088)	(0.040)	(0.747)	(0.513)	(0.154)	(0.071)	(7.646)	(0.000)	(0.039)	(0.045)
Observations R2	720 0.981	720 0.977	720 0.990	106 0.991	720 0.995	720 0.787	720 0.990	106 0.974	720 0.958	720 0.985	720 0.986
L5 GREENRATIOEP PUBLIC	0.217	0.288*	-0.021		-0.985	0.244	-0.155		0.002*	-0.045	0.034
L5 GREENRATIOEP PRIVATE	(0.223) -0.053	(0.156) 0.170**	(0.123) -0.041		(1.157) 0.511	(0.229) 0.332*	(0.130) -0.038		(0.001) 0.000	(0.076) 0.067	(0.119) -0.017
	(0.060)	(0.080)	(0.046)		(0.350)	(0.194)	(0.063)		(0.000)	(0.043)	(0.049)
Observations R2	606 0.985	606 0.984	606 0.992		606 0.997	606 0.855	606 0.994		606 0.967	606 0.986	606 0.987
L1 3YEARAVGGREENRATIOEP PUBLIC	0.516	1.339***	0.139	-2.859	-6.385	0.806**	-0.565**	-21.035	0.002	0.325*	0.376**
L1 3YEARAVGGREENRATIOEP	(0.324) -0.547	(0.334) -0.254	(0.208) -0.378	(2.322) 1.647	(4.415) 0.656	(0.336) 0.510**	(0.282) 0.109	(24.789) 29.347	(0.002) 0.001	(0.181) -0.378	(0.183) -0.394
PRIVATE	(0.442)	(0.550)	(0.435)	(1.157)	(1.165)	(0.242)	(0.150)	(26.466)	(0.001)	(0.419)	(0.451)
Observations R2	874 0.962	874 0.926	874 0.958	239 0.967	874 0.987	874 0.738	874 0.978	239 0.851	874 0.896	874 0.912	874 0.934
Panel A.2: GREENRATIOEP on ever patentin	g firms										
L1 GREENRATIOEP PUBLIC	-0.001	0.440*	-0.084	1.242	-1.304	0.418**	-0.244	3.074	0.001	0.127	0.010
L1 GREENRATIOEP PRIVATE	(0.333) 0.016	(0.264) 0.122	(0.178) -0.010	(1.110) 0.252	(2.743) 0.451	(0.205) 0.348	(0.154) -0.075	(6.872) 15.399	(0.001) 0.001**	(0.087) 0.026	(0.164) -0.001
EI GREENRATIOEI I RIVATE	(0.098)	(0.143)	(0.054)	(0.491)	(0.730)	(0.271)	(0.095)	(13.646)	(0.000)	(0.040)	(0.062)
Observations R2	838 0.962	838 0.960	838 0.985	227 0.958	838 0.926	838 0.686	838 0.977	227 0.700	838 0.948	838 0.981	838 0.982
L3 GREENRATIOEP PUBLIC	0.290	0.641***	0.026	-3.232	-7.870**	0.650**	-0.489***	-22.143	0.002**	0.107	0.224
L3 GREENRATIOEP PRIVATE	(0.361)	(0.240)	(0.156)	(3.137)	(3.778)	(0.298)	(0.136)	(24.102)	(0.001)	(0.100)	(0.137)
L3 GREENKATIOEP PRIVATE	0.018 (0.147)	0.175 (0.138)	-0.075 (0.077)	-0.877 (0.796)	0.986 (0.943)	0.322* (0.188)	-0.102 (0.080)	-9.633 (12.253)	0.000 (0.000)	0.005 (0.044)	-0.055 (0.076)
Observations R2	717 0.974	717 0.972	717 0.989	106 0.989	717 0.956	717 0.744	717 0.988	106 0.937	717 0.965	717 0.984	717 0.986
L5 GREENRATIOEP PUBLIC	0.419	0.346	0.121		-1.931	0.305	-0.103		0.001	0.000	0.134
	(0.325)	(0.224)	(0.118)		(3.779)	(0.288)	(0.127)		(0.001)	(0.091)	(0.129)
L5 GREENRATIOEP PRIVATE	-0.083 (0.096)	0.146 (0.103)	-0.094 (0.058)		0.046 (0.944)	0.384* (0.229)	-0.056 (0.070)		0.000 (0.000)	-0.011 (0.042)	-0.089 (0.066)
Observations R2	605 0.981	605 0.981	605 0.992		605 0.969	605 0.827	605 0.993		605 0.977	605 0.987	605 0.989
L1 3YEARAVGGREENRATIOEP PUBLIC	0.410	1.604***	0.266	-1.455	-19.084**	1.021**	-0.947***	-37.079	0.001	0.378***	0.571**
L1 3YEARAVGGREENRATIOEP	(0.437) -0.140	(0.456) 0.366	(0.272) -0.071	(2.957) 1.895	(7.825) -0.504	(0.451) 0.594**	(0.285) -0.174	(34.085) 60.707	(0.001) 0.001	(0.140) 0.037	(0.289) 0.001
PRIVATE	(0.160)	(0.225)	(0.095)	(1.650)	(2.192)	(0.296)	(0.153)	(46.638)	(0.001)	(0.059)	(0.100)
Observations R2	871 0.961	871 0.959	871 0.985	237 0.955	871 0.902	871 0.687	871 0.977	237 0.730	871 0.947	871 0.981	871 0.982
Panel A.3: GREENRATIOEP on never patenti	no firms										
L1 GREENRATIOEP PUBLIC	-0.036	0.238	-0.074	0.138	2.782	0.239*	-0.100	5.491	0.001	-0.011	0.032
L1 GREENRATIOEP PRIVATE	(0.225) -0.058	(0.219) 0.405*	(0.149) 0.098	(0.602) 0.461	(2.351) -0.075	(0.138) 0.249**	(0.192) 0.134	(3.701) -0.577	(0.002) -0.000	(0.109) -0.052	(0.137) 0.045
ET GALLETAN THE TANK THE	(0.174)	(0.213)	(0.141)	(0.292)	(0.699)	(0.110)	(0.088)	(1.732)	(0.001)	(0.147)	(0.143)
Observations R2	834 0.948	834 0.928	834 0.945	227 0.974	834 0.990	834 0.755	834 0.958	227 0.961	834 0.765	834 0.944	834 0.940
L3 GREENRATIOEP PUBLIC	-0.075	-0.052	-0.167	-0.362	-0.748	0.199	-0.413*	-7.023	0.003	-0.037	-0.044
L3 GREENRATIOEP PRIVATE	(0.241) 0.186	(0.210) 0.182	(0.174) 0.077	(1.001) -0.248	(1.423)	(0.151) 0.230**	(0.221) 0.166	(6.421) _3 903*	(0.002) 0.001	(0.134) 0.069	(0.151) 0.069
ES GREENRATIOEI TRIVATE	(0.178)	(0.132)	(0.098)	(0.272)	(0.622)	(0.116)	(0.360)	(2.069)	(0.002)	(0.080)	(0.080)
Observations R2	710 0.961	710 0.950	710 0.963	106 0.998	710 0.993	710 0.851	710 0.859	106 0.996	710 0.799	710 0.960	710 0.960
L5 GREENRATIOEP PUBLIC	-0.019	-0.225	-0.120		-0.375	0.008	-0.233		0.003	-0.145	-0.042
L5 GREENRATIOEP PRIVATE	(0.277) -0.043	(0.222) 0.040	(0.207) -0.066		(1.051) 0.612	(0.127) 0.183	(0.236) -0.205		(0.002) 0.003*	(0.149) 0.070	(0.178) -0.012
LJ GREENKATIOEF PKIVATE	-0.043 (0.162)	(0.135)	-0.066 (0.107)		(0.429)	(0.111)	-0.205 (0.199)		(0.002)	(0.084)	-0.012 (0.088)
Observations R2	594 0.972	594 0.959	594 0.968		594 0.997	594 0.901	594 0.931		594 0.850	594 0.967	594 0.966
L1 3YEARAVGGREENRATIOEP PUBLIC	0.158	0.826**	0.145	-1.000	-0.312	0.364*	-0.744	11.009*	0.002	0.235	0.353
L1 3YEARAVGGREENRATIOEP	(0.351) -0.174	(0.356) 0.108	(0.251) -0.045	(1.407) 1.008	(2.757) 1.225	(0.200) 0.358**	(0.565) 0.900	(6.337) -6.416	(0.004) 0.003	(0.209) -0.378	(0.233) -0.177
PRIVATE	(0.456)	(0.459)	(0.391)	(0.876)	(1.371)	(0.162)	(0.666)	(4.506)	(0.004)	(0.436)	(0.395)
Observations R2	868 0.944	868 0.924	868 0.942	239 0.974	868 0.981	868 0.740	868 0.622	239 0.961	868 0.768	868 0.936	868 0.939
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E. Industry F.E.	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes
	,	,	,	,	,	,	,	,	,	,	,

Panel B: Brown efficiency innovation Panel B.1: BROWNEFFRATIOEP on all t		(2) LOGS2TOT	(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 BROWNEFFRATIOEP PUBLIC	-0.230	-0.056	-0.064	1.704	5.613	0.033	0.582	59.264	0.000	0.004	-0.122
L1 BROWNEFFRATIOEP PRIVATE	(0.280) -0.117 (0.171)	(0.379) -0.486 (0.403)	(0.214) -0.134 (0.099)	(2.557) -0.039 (0.888)	(4.630) 0.961 (1.402)	(0.242) -0.288 (0.214)	(0.461) -0.164 (0.334)	(53.420) 10.508 (11.422)	(0.001) 0.000 (0.001)	(0.139) 0.025 (0.054)	(0.176) -0.014 (0.076)
Observations R2	840 0.963	840 0.929	840 0.960	227 0.962	840 0.989	840 0.735	840 0.981	227 0.855	840 0.907	840 0.926	840 0.936
L3 BROWNEFFRATIOEP PUBLIC	-0.088	0.047	-0.076	-0.712	8.016**	0.219	0.611*	49.857	0.001	-0.042	-0.156
L3 BROWNEFFRATIOEP PRIVATE	(0.255) -0.047 (0.218)	(0.223) -0.347 (0.264)	(0.158) -0.117 (0.084)	(6.787) -0.496 (1.904)	(3.353) -0.091 (1.323)	(0.299) -0.378* (0.228)	(0.318) -0.114 (0.196)	(58.322) -11.268 (15.570)	(0.001) -0.001* (0.001)	(0.097) -0.039 (0.045)	(0.138) 0.003 (0.073)
Observations R2	720 0.981	720 0.977	720 0.990	106 0.990	720 0.995	720 0.784	720 0.990	106 0.974	720 0.958	720 0.985	720 0.986
L5 BROWNEFFRATIOEP PUBLIC	0.251	0.097	-0.091		3.174	0.105	0.086		0.001	0.048	-0.040
L5 BROWNEFFRATIOEP PRIVATE	(0.228) -0.061 (0.228)	(0.172) -0.250 (0.214)	(0.124) -0.092 (0.060)		(2.923) -1.364 (1.131)	(0.303) -0.256 (0.190)	(0.238) -0.070 (0.100)		(0.001) -0.001 (0.000)	(0.113) -0.049 (0.046)	(0.129) -0.011 (0.063)
Observations R2	606 0.985	606 0.984	606 0.992		606 0.998	606 0.852	606 0.994		606 0.967	606 0.985	606 0.987
L1 3YEARAVGBROWNEFFRATIOEP PUBLIC	0.116 (0.435)	-0.406 (0.601)	-0.011 (0.327)	8.975** (3.932)	21.718** (7.720)	* 0.588* (0.310)	0.429 (0.547)	175.171 (117.147)	0.002 (0.002)	0.215 (0.311)	0.079 (0.318)
L1 3YEARAVGBROWNEFFRATIOEP PRIVATE	0.034 (0.357)	-0.860 (0.739)	-0.217 (0.212)	-0.387 (1.276)	-3.414 (3.509)	-0.959* (0.522)	-0.384 (0.599)	13.308 (19.277)	-0.003* (0.002)	0.036 (0.146)	0.062 (0.197)
Observations R2	874 0.961	874 0.925	874 0.958	239 0.968	874 0.989	874 0.735	874 0.978	239 0.872	874 0.896	874 0.911	874 0.933
Panel B.2: BROWNEFFRATIOEP on ever	r patenting firm	s									
L1 BROWNEFFRATIOEP PUBLIC	-0.042	-0.194	-0.383	0.674	8.296	0.058	0.303	109.525	0.002**	0.052	-0.466*
L1 BROWNEFFRATIOEP PRIVATE	(0.342) -0.175 (0.202)	(0.493) -0.502 (0.482)	(0.240) -0.144 (0.121)	(3.697) 0.511 (0.903)	(5.557) 4.056 (2.992)	(0.290) -0.126 (0.307)	(0.339) -0.018 (0.163)	(88.308) 18.028 (18.012)	(0.001) -0.001 (0.001)	(0.153) 0.069 (0.054)	(0.246) -0.097 (0.103)
Observations	838	838	838	227	838	838	838	227	838	838	838
R2	0.962	0.960	0.985	0.957	0.928	0.682	0.977	0.728	0.948	0.981	0.982
L3 BROWNEFFRATIOEP PUBLIC	0.324 (0.501)	0.200 (0.367)	-0.028 (0.280)	-1.611 (7.674)	9.439* (5.578)	0.107 (0.359)	0.538** (0.239)	60.093 (75.092)	0.001 (0.001)	0.149 (0.148)	-0.309 (0.268)
L3 BROWNEFFRATIOEP PRIVATE	-0.160 (0.233)	-0.419 (0.435)	-0.120 (0.105)	-0.160 (1.695)	3.084 (2.451)	-0.217 (0.299)	-0.083 (0.117)	-9.388 (17.022)	-0.001 (0.001)	0.084 (0.071)	-0.004 (0.101)
Observations R2	717 0.974	717 0.972	717 0.989	106 0.988	717 0.954	717 0.740	717 0.988	106 0.938	717 0.965	717 0.984	717 0.986
L5 BROWNEFFRATIOEP PUBLIC	0.504	0.139	-0.116		-1.333	0.084	0.056		0.001	0.158	-0.168
L5 BROWNEFFRATIOEP PRIVATE	(0.449) 0.298 (0.269)	(0.307) -0.275 (0.334)	(0.196) 0.084 (0.131)		(5.360) 1.538 (1.693)	(0.322) -0.295 (0.223)	(0.199) -0.008 (0.092)		(0.001) -0.001** (0.001)	(0.122) 0.033 (0.079)	(0.219) 0.105 (0.122)
Observations R2	605 0.981	605 0.981	605 0.992		605 0.969	605 0.823	605 0.993		605 0.977	605 0.987	605 0.989
L1 3YEARAVGBROWNEFFRATIOEP	0.219	-1.643	-0.242	11.232*	46.438**	0.618*	1.343**	314.088	0.002	0.275	-0.636
PUBLIC L1 3YEARAVGBROWNEFFRATIOEP	(0.650) -0.249	(1.094) -1.173	(0.382) -0.327	(5.872) 2.156	(18.424) 5.363	(0.341) -0.791	(0.535) -0.180	(200.823) 42.598	(0.002) -0.001	(0.196) 0.270*	(0.398) -0.109
PRIVATE	(0.473)	(0.762)	(0.267)	(1.581)	(5.332)	(0.675)	(0.382)	(35.265)	(0.001)	(0.160)	(0.247)
Observations R2	871 0.961	871 0.958	871 0.985	237 0.957	871 0.915	871 0.681	871 0.976	237 0.769	871 0.947	871 0.980	871 0.982
Panel B.3: BROWNEFFRATIOEP on nev	er patenting fir	ns									
L1 BROWNEFFRATIOEP PUBLIC	-0.102	0.242	0.298	-0.648	1.209	-0.134	0.376	-9.431	-0.006	0.228	0.387*
L1 BROWNEFFRATIOEP PRIVATE	(0.428) -0.280 (0.199)	(0.370) -0.723 (0.553)	(0.286) -0.196 (0.160)	(1.839) -0.119 (0.917)	(3.517) 0.376 (1.061)	(0.214) -0.247 (0.169)	(0.501) -0.368 (0.373)	(9.587) 2.395 (4.799)	(0.004) -0.002 (0.002)	(0.200) -0.131 (0.119)	(0.228) -0.080 (0.141)
Observations R2	834 0.948	834 0.928	834 0.945	227 0.974	834 0.990	834 0.753	834 0.959	227 0.961	834 0.765	834 0.944	834 0.940
L3 BROWNEFFRATIOEP PUBLIC	-0.156	0.063	-0.029	-1.433	3.463	0.125	-0.144	8.824	-0.001	0.214	0.234
L3 BROWNEFFRATIOEP PRIVATE	(0.380) -0.016 (0.190)	(0.283) -0.218 (0.175)	(0.254) -0.036 (0.126)	(1.865) -0.143 (0.893)	(2.437) -1.021 (0.804)	(0.206) -0.336** (0.146)	(0.501) -0.225 (0.192)	(11.134) -10.388 (9.316)	(0.005) -0.001 (0.002)	(0.180) -0.050 (0.118)	(0.199) 0.046 (0.127)
Observations R2	710 0.961	710 0.950	710 0.963	106 0.998	710 0.994	710 0.850	710 0.859	106 0.996	710 0.799	710 0.960	710 0.960
L5 BROWNEFFRATIOEP PUBLIC	0.015	0.130	-0.128		2.888	-0.032	-0.137		0.003	0.179	0.121
L5 BROWNEFFRATIOEP PRIVATE	(0.310) -0.013 (0.198)	(0.280) -0.045 (0.140)	(0.246) -0.074 (0.130)		(1.973) -2.174** (1.018)	(0.178)	(0.382) -0.150 (0.121)		(0.004) 0.000 (0.002)	(0.182) -0.014 (0.135)	(0.227) 0.018 (0.131)
Observations R2	594 0.972	594 0.959	594 0.968		594 0.997	594 0.900	594 0.931		594 0.849	594 0.967	594 0.966
L1 3YEARAVGBROWNEFFRATIOEP	0.183	-0.007	0.210	2.360	11.620**		-1.169	-3.051	-0.003	0.440	0.628*
PUBLIC L1 3YEARAVGBROWNEFFRATIOEP PRIVATE	(0.556) -0.374 (0.401)	(0.570) -1.190 (0.948)	(0.379) -0.114 (0.265)	(2.706) -0.951 (1.399)	(5.737) -3.922 (2.494)	(0.297) -0.811** (0.376)	(1.213) -0.988 (0.773)	(14.858) -6.532 (8.570)	(0.006) -0.002 (0.004)	(0.346) -0.172 (0.194)	(0.342) 0.071 (0.219)
Observations R2	868 0.944	868 0.924	868 0.942	239 0.974	868 0.981	868 0.740	868 0.621	239	868 0.768	868 0.936	868 0.939
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E. Industry F.E.	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes

TABLE 12: PUBLIC AND PRIVATE PATENT RATIOS AND CROSS-INDUSTRY OUTCOMES

The unit of observation is GICS-8 industry-year. The sample period is 2005 to 2020. We aggregate the dependent variables at a given GICS-8 industry's higher GICS-2 level including all GICS-8 industries but the given GICS-8 industry used for the independent variables. The dependent variables are thus GICS-2 industry level logs of cumulative sums of SITOT, S2TOT, S3DOWNTOT, CAPEX, and SALES over 1,3 or 5 years, respectively GICS-2 industry level cumulative sums over sums for S1INT, S2INT, S3DOWNINT and INVEST/A for 1,3 or 5 years for the Trucost sample. In Panel A.1 and B1, dependent variables are calculated across all firms in the broader GICS-2 industry severe the given GIS-8 industry. In Panel A.2 and B2, dependent variables are realized only for ever-patenting firms and in Panel A.3 and B3 only for never-patenting firms. In Panel A, the key independent variables of interest are the GICS-8 industry level GREENRATIOEP PUBLIC and GREENRATIOEP PRIVATE and in Panel B the GICS-8 industry level GREENRATIOEP PRIVATE. And In Panel A.2 and SALES of the GICS-8 industry level GREENRATIOEP PRIVATE and in Panel B the GICS-8 industry level GREENRATIOEP PRIVATE. And In Panel A.2 and SALES of the GICS-8 industry level GREENRATIOEP PRIVATE. And In Panel A.2 and SALES of the GICS-8 industry level GREENRATIOEP PRIVATE. On the SALES of the GICS-8 industry level GREENRATIOEP, SALES of the GICS-8 industry devel GREENRATIOEP, SALES of the GICS-8 industry a

Panel A: Green innovation	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT	LOGS3DOWNTOT	S1INT	S2INT	S3UPINT	S3DOWNINT	INVEST/A	LOGCAPEX	LOGSALES
Panel A.1: GREENRATIOEP on all firm		E 22E	2.349	22.422	16.000	F 00F	-6.320	222 105	0.000	0.047	1.980
L1 GREENRATIOEP PUBLIC/100 L1 GREENRATIOEP PRIVATE/100	8.280* (4.460) -1.516 (2.665)	7.327 (6.824) 4.846 (5.238)	2.349 (5.165) -6.096** (2.989)	23.432 (21.464) -14.892 (9.937)	-16.982 (26.596) -5.725 (21.433)	5.085 (3.194) 2.567 (2.173)	-6.320 (5.842) -5.545 (3.578)	233.107 (173.471) -8.574 (147.237)	-0.008 (0.025) -0.027** (0.013)	0.047 (2.782) -3.423** (1.735)	(5.575) -4.393 (3.157)
Observations	1314	1314	1314	371	1314	1314	1314	371	1314	1314	1314
R2	0.991	0.975	0.983	0.986	0.989	0.977	0.982	0.957	0.944	0.985	0.964
L3 GREENRATIOEP PUBLIC/100	5.226	-2.191	-1.337	-9.591	-10.427	1.825	-5.960	-304.854*	-0.006	-2.184	-1.071
L3 GREENRATIOEP PRIVATE/100	(3.366)	(5.038)	(5.440)	(19.128)	(21.717)	(2.685)	(4.491)	(154.208)	(0.028)	(2.536)	(5.731)
	-1.683	-0.219	-7.841***	5.560	31.812*	2.215	-1.423	85.377	-0.018	-3.927***	-7.262**
	(1.782)	(3.731)	(2.536)	(12.359)	(18.104)	(1.696)	(3.120)	(126.479)	(0.013)	(1.390)	(2.820)
Observations	1115	1115	1115	172	1115	1115	1115	172	1115	1115	1115
R2	0.996	0.986	0.988	0.998	0.993	0.985	0.990	0.995	0.957	0.989	0.972
L5 GREENRATIOEP PUBLIC/100	3.499	-0.204	1.210	9.621	-3.798	-2.394	-0.442	9.621	-0.039	-2.856	0.999
L5 GREENRATIOEP PRIVATE/100	(3.835)	(5.103)	(5.461)	(12.575)	(18.064)	(2.454)	(3.431)	(12.575)	(0.027)	(2.335)	(5.707)
	-3.581**	-1.040	-9.376***	-14.044*	50.118***	2.427	0.602	-14.044*	-0.010	-4.152***	-9.745***
	(1.388)	(3.139)	(2.255)	(7.314)	(16.161)	(1.616)	(2.447)	(7.314)	(0.011)	(1.407)	(2.551)
Observations	926	926	926	933	926	926	926	933	926	926	926
R2	0.998	0.991	0.991	0.114	0.995	0.990	0.995	0.114	0.970	0.992	0.979
3YEARAVGGREENRATIOEP	0.064	0.097	-0.066	-0.699**	-0.665*	0.075	-0.145	-1.497	0.000	-0.037	-0.081
PUBLIC/100	(0.062)	(0.115)	(0.069)	(0.333)	(0.382)	(0.046)	(0.098)	(2.713)	(0.000)	(0.040)	(0.072)
3YEARAVGGREENRATIOEP	-0.029	-0.042	-0.156***	-0.221**	0.654**	0.020	-0.050	-4.111***	-0.000***	-0.079***	-0.134***
PRIVATE/100	(0.030)	(0.073)	(0.038)	(0.108)	(0.277)	(0.029)	(0.060)	(1.567)	(0.000)	(0.023)	(0.038)
Observations	1460	1460	1460	411	1460	1460	1460	411	1460	1460	1460
R2	0.991	0.970	0.984	0.985	0.990	0.976	0.982	0.957	0.946	0.985	0.967
Panel A.2: GREENRATIOEP on ever p	atenting firms										
L1 GREENRATIOEP PUBLIC/100	-6.270	3.558	-3.944	39.689	-87.309**	2.512	-13.575*	391.410	-0.004	-3.432	0.086
L1 GREENRATIOEP PRIVATE/100	(6.171)	(5.953)	(4.779)	(30.401)	(41.507)	(3.209)	(7.329)	(293.564)	(0.017)	(3.240)	(4.970)
	-2.901	5.102	-6.466**	-12.979	-36.250	1.550	-7.257*	-24.937	-0.013	-5.737***	-4.190
	(3.659)	(5.134)	(2.931)	(10.961)	(32.315)	(2.103)	(3.829)	(169.707)	(0.009)	(2.129)	(3.018)
Observations	1305	1305	1305	368	1305	1305	1305	368	1305	1305	1305
R2	0.987	0.978	0.988	0.978	0.974	0.969	0.978	0.899	0.959	0.983	0.971
L3 GREENRATIOEP PUBLIC/100	-1.652	-4.825	-5.100	-26.067	-16.046	1.513	-8.714	-485.493**	0.005	-4.854	-4.081
L3 GREENRATIOEP PRIVATE/100	(4.404)	(4.717)	(3.701)	(32.307)	(18.186)	(3.455)	(5.607)	(226.235)	(0.018)	(2.991)	(4.871)
	-0.161	2.635	-7.357***	-48.029	12.540	3.017	-1.887	-240.666	-0.009	-7.142***	-7.149**
	(2.714)	(4.787)	(2.385)	(30.278)	(21.187)	(2.008)	(3.309)	(166.204)	(0.009)	(2.084)	(2.799)
Observations	1109	1109	1109	172	1109	1109	1109	172	1109	1109	1109
R2	0.994	0.987	0.993	0.995	0.988	0.979	0.988	0.984	0.969	0.987	0.979
L5 GREENRATIOEP PUBLIC/100	-6.441	-3.603	-6.005*	31.310***	-7.484	-2.868	-3.682	31.310***	-0.016	-8.008***	-3.650
L5 GREENRATIOEP PRIVATE/100	(4.595)	(4.004)	(3.403)	(10.169)	(14.257)	(3.132)	(4.699)	(10.169)	(0.017)	(2.768)	(4.901)
	-2.107	2.707	-7.677***	4.740	11.067	3.591**	0.496	4.740	-0.008	-6.327***	-8.646***
	(2.185)	(3.659)	(2.206)	(6.465)	(16.615)	(1.800)	(2.594)	(6.465)	(0.007)	(2.005)	(2.660)
Observations	921	921	921	933	921	921	921	933	921	921	921
R2	0.997	0.993	0.995	0.127	0.994	0.985	0.993	0.127	0.980	0.991	0.985
3YEARAVGGREENRATIOEP	-0.107	0.032	-0.131*	-0.654	-1.619**	0.018	-0.227*	-3.801	0.000	-0.150***	-0.122*
PUBLIC/100	(0.089)	(0.107)	(0.074)	(0.437)	(0.663)	(0.041)	(0.117)	(3.433)	(0.000)	(0.047)	(0.066)
3YEARAVGGREENRATIOEP	-0.035	0.011	-0.158***	-0.167	0.276	0.034	-0.042	-3.756**	-0.000**	-0.127***	-0.149***
PRIVATE/100	(0.043)	(0.080)	(0.037)	(0.139)	(0.443)	(0.030)	(0.064)	(1.793)	(0.000)	(0.028)	(0.037)
Observations	1444	1444	1444	404	1444	1444	1444	404	1444	1444	1444
R2	0.987	0.972	0.989	0.977	0.971	0.968	0.977	0.898	0.961	0.984	0.973
Panel A.3: GREENRATIOEP on never	patenting firms										
L1 GREENRATIOEP PUBLIC/100	35.560***	1.319	2.843	9.163	16.470	5.087	2.023	155.658	-0.055	-1.432	-1.909
	(10.555)	(10.289)	(7.291)	(18.541)	(51.179)	(5.689)	(7.630)	(148.198)	(0.085)	(5.221)	(6.417)
L1 GREENRATIOEP PRIVATE/100	-4.616 (5.444)	2.819 (8.032)	-3.943 (4.695)	(18.541) -11.639 (9.544)	77.020* (46.782)	(3.936) (3.936)	-4.752 (4.902)	32.147 (170.872)	-0.036 (0.046)	(5.221) -4.019 (3.431)	-1.405 (4.561)
Observations	1273	1273	1273	371	1273	1273	1273	371	1273	1273	1273
R2	0.974	0.941	0.969	0.994	0.987	0.969	0.977	0.993	0.903	0.967	0.958
L3 GREENRATIOEP PUBLIC/100	15.651*	-5.757	0.249	6.655	-15.246	-0.301	-2.337	-85.067	-0.075	-4.572	-0.477
L3 GREENRATIOEP PRIVATE/100	(8.437)	(7.522)	(7.205)	(12.709)	(38.046)	(2.232)	(6.431)	(108.943)	(0.072)	(3.962)	(6.129)
	-2.655	-4.759	-5.924	5.620	86.288**	-0.826	-5.778	50.901	-0.072*	-4.635	-1.276
	(4.746)	(6.039)	(4.104)	(7.333)	(42.279)	(1.578)	(4.411)	(75.653)	(0.041)	(3.133)	(4.037)
Observations	1065	1065	1065	172	1065	1065	1065	172	1065	1065	1065
R2	0.985	0.957	0.977	0.999	0.992	0.990	0.985	1.000	0.939	0.974	0.966
L5 GREENRATIOEP PUBLIC/100	6.583	-9.614	0.169	12.343	20.095	-3.244*	1.678	12.343	-0.082	-7.951**	0.767
L5 GREENRATIOEP PRIVATE/100	(9.025)	(6.782)	(7.130)	(10.399)	(31.180)	(1.771)	(5.305)	(10.399)	(0.077)	(3.796)	(6.012)
	-5.349*	-5.410	-9.010**	-10.096	97.418***	-0.113	-6.898**	-10.096	-0.063*	-6.108**	-4.223
	(2.995)	(5.061)	(3.767)	(7.374)	(36.378)	(1.179)	(3.216)	(7.374)	(0.037)	(2.955)	(3.647)
Observations	872	872	872	899	872	872	872	899	872	872	872
R2	0.993	0.967	0.984	0.103	0.995	0.995	0.992	0.103	0.961	0.980	0.974
3YEARAVGGREENRATIOEP	0.342**	-0.038	-0.125	-0.790***	-0.030	0.137*	-0.043	1.059	-0.001	-0.145**	-0.144*
PUBLIC/100	(0.163)	(0.149)	(0.099)	(0.204)	(0.698)	(0.078)	(0.112) -0.099 (0.074)	(2.742)	(0.001)	(0.068)	(0.085)
3YEARAVGGREENRATIOEP	0.068	0.016	-0.013	-0.002	1.575**	-0.010		-2.750	-0.001**	-0.013	0.056
PRIVATE/100	(0.082)	(0.124)	(0.065)	(0.100)	(0.616)	(0.047)		(1.705)	(0.001)	(0.057)	(0.068)
Observations	1416	1416	1416	411	1416	1416	1416	411	1416	1416	1416
R2	0.974	0.938	0.969	0.994	0.988	0.968	0.976	0.993	0.906	0.967	0.959
Controls Year F.E. Industry F.E.	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

Panel B: Brown efficiency innovation		(2) LOGS2TOT	(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
Panel B.1: BROWNEFFRATIOEP on all firm L1 BROWNEFFRATIOEP PUBLIC/100	3.143	-5.589	4.690	7.505	-38.934	-7.519**	20.039	-40.740	-0.059	-2.297	1.827
L1 BROWNEFFRATIOEP PRIVATE/100	(7.946)	(8.013)	(6.451)	(15.392)	(38.663)	(3.423)	(12.226)	(160.160)	(0.038)	(2.940)	(6.992)
	2.876	-5.520	0.794	-26.340	-9.274	-3.897	-3.538	-35.380	-0.091***	-4.719	1.670
	(4.632)	(10.948)	(5.912)	(32.509)	(42.967)	(5.642)	(6.045)	(233.242)	(0.032)	(3.187)	(6.181)
Observations	1314	1314	1314	371	1314	1314	1314	371	1314	1314	1314
R2	0.991	0.975	0.983	0.986	0.989	0.977	0.983	0.956	0.945	0.984	0.964
L3 BROWNEFFRATIOEP PUBLIC/100	-5.693	7.075	0.776	44.946	-31.761	1.157	11.968	191.834	-0.044	-2.740	1.114
L3 BROWNEFFRATIOEP PRIVATE/100	(4.708)	(6.223)	(8.270)	(38.554)	(47.187)	(3.357)	(7.458)	(438.834)	(0.036)	(3.981)	(7.631)
	-1.945	-6.020	2.541	19.015	-67.035	-3.875	-5.271	263.626	-0.076***	-2.106	4.450
	(3.838)	(7.418)	(5.625)	(21.300)	(43.016)	(3.887)	(5.272)	(248.375)	(0.029)	(2.564)	(5.699)
Observations	1115	1115	1115	172	1115	1115	1115	172	1115	1115	1115
R2	0.996	0.986	0.988	0.998	0.993	0.985	0.990	0.994	0.958	0.989	0.972
L5 BROWNEFFRATIOEP PUBLIC/100	-1.139	8.005*	5.655	-20.372	-16.961	0.919	13.238*	-20.372	-0.011	1.879	3.785
L5 BROWNEFFRATIOEP PRIVATE/100	(3.595)	(4.650)	(5.310)	(16.097)	(35.689)	(4.274)	(7.262)	(16.097)	(0.031)	(2.748)	(5.023)
	-5.409	-3.890	-1.033	-4.332	-76.614*	-2.780	-1.532	-4.332	-0.032*	-0.011	-0.075
	(3.724)	(5.267)	(5.155)	(13.816)	(39.504)	(2.841)	(4.727)	(13.816)	(0.018)	(2.234)	(4.681)
Observations	926	926	926	933	926	926	926	933	926	926	926
R2	0.998	0.991	0.991	0.110	0.995	0.990	0.995	0.110	0.970	0.992	0.979
3YEARAVGBROWNEFFRATIOEP	-0.087	0.392***	0.084	-0.092	-0.715	0.028	-0.117	-5.446	-0.001*	0.073	0.173
PUBLIC/100 3YEARAVGBROWNEFFRATIOEP	(0.110) -0.109	(0.151) 0.188	(0.122) -0.006	(0.650) -0.927**	(0.691) -1.670**	(0.083) -0.004	(0.197) -0.150	(9.787) -11.113**	(0.001) $-0.001***$	(0.090) -0.064	(0.133) 0.024
PRIVATE/100 Observations	(0.090)	(0.191)	(0.073)	(0.423)	(0.672)	(0.101)	(0.113)	(4.908) 411	(0.000)	(0.039)	(0.072) 1460
R2	0.991	0.970	0.984	0.985	0.990	0.976	0.982	0.957	0.946	0.985	0.967
Panel B.2: BROWNEFFRATIOEP on ever pe											
L1 BROWNEFFRATIOEP PUBLIC/100 L1 BROWNEFFRATIOEP PRIVATE/100	-5.973	-4.313	0.376	16.137	23.796	-6.508	15.818	105.936	-0.042**	-4.507	0.065
	(5.953)	(8.817)	(6.187)	(19.963)	(38.027)	(4.281)	(10.843)	(241.195)	(0.016)	(4.997)	(6.097)
	6.599	-9.218	-1.627	-27.443	5.726	-5.214	-5.865	-44.855	-0.037*	-4.767	-0.542
Observations	(6.259) 1305	(10.445) 1305	(5.907) 1305	(38.540)	(57.902) 1305	(5.261) 1305	(6.617) 1305	(351.823)	(0.022)	(4.954) 1305	(6.371) 1305
Observations R2	0.987	0.978	0.988	368 0.978	0.973	0.969	0.978	0.898	0.959	0.983	0.971
L3 BROWNEFFRATIOEP PUBLIC/100	-12.441** (5.717)	4.769	-2.352 (8.423)	78.701	-28.108 (31.632)	-1.031 (3.866)	10.614 (8.531)	377.226 (583.709)	-0.000 (0.017)	-1.423 (6.999)	-0.639 (7.650)
L3 BROWNEFFRATIOEP PRIVATE/100	4.150 (5.283)	(7.114) -6.583 (9.304)	(8.423) 0.624 (4.872)	(61.368) 60.649 (65.568)	28.185 (38.182)	(3.666) -2.953 (4.657)	-4.866 (4.949)	644.377** (306.466)	-0.030 (0.020)	-2.244 (4.221)	1.665 (5.625)
Observations	1109	1109	1109	172	1109	1109	1109	172	1109	1109	1109
R2	0.994	0.987	0.992	0.995	0.988	0.978	0.988	0.985	0.970	0.987	0.979
L5 BROWNEFFRATIOEP PUBLIC/100	-5.808	6.139	1.654	-1.869	-20.527	0.707	9.848	-1.869	0.010	4.010	2.459
	(4.242)	(4.924)	(5.964)	(16.689)	(25.111)	(5.014)	(8.304)	(16.689)	(0.018)	(4.617)	(5.616)
L5 BROWNEFFRATIOEP PRIVATE/100	-1.059	-5.127	0.047	-0.171	15.585	-3.237	-0.711	-0.171	-0.014	2.361	0.481
	(4.991)	(6.570)	(5.065)	(13.806)	(36.925)	(3.723)	(4.499)	(13.806)	(0.013)	(3.698)	(4.816)
Observations	921	921	921	933	921	921	921	933	921	921	921
R2	0.997	0.993	0.995	0.118	0.994	0.985	0.993	0.118	0.980	0.991	0.984
3YEARAVGBROWNEFFRATIOEP	-0.358**	0.346**	-0.065	-0.318	-1.208	0.050	-0.239	-7.885	-0.000	-0.071	0.097
PUBLIC/100	(0.143)	(0.173)	(0.130)	(0.775)	(0.919)	(0.083)	(0.202)	(11.797)	(0.000)	(0.107)	(0.140)
3YEARAVGBROWNEFFRATIOEP	-0.085	0.129	-0.051	-0.926*	-1.398	-0.031	-0.242**	-10.925*	-0.001**	-0.116**	-0.003
PRIVATE/100	(0.115)	(0.196)	(0.077)	(0.525)	(0.939)	(0.101)	(0.116)	(5.680)	(0.000)	(0.054)	(0.073)
Observations	1444	1444	1444	404	1444	1444	1444	404	1444	1444	1444
R2	0.987	0.972	0.988	0.977	0.971	0.968	0.977	0.898	0.961	0.983	0.972
Panel B.3: BROWNEFFRATIOEP on never	patenting firms										
L1 BROWNEFFRATIOEP PUBLIC/100	12.652 (20.442)	-2.111 (14.917)	20.617** (9.201)	-19.545 (12.455)	-118.973 (91.657)	-10.287^* (5.527)	39.007** (18.152)	-139.761 (128.509)	-0.104 (0.110)	5.824 (5.926)	9.584 (10.238)
L1 BROWNEFFRATIOEP PRIVATE/100	-8.080	-3.510	-1.246	-5.726	-26.377	3.235	-3.479	-30.901	-0.237***	-8.896	-0.085
	(11.207)	(13.500)	(8.809)	(18.924)	(120.042)	(8.217)	(7.992)	(158.910)	(0.080)	(6.496)	(7.969)
Observations	1273	1273	1273	371	1273	1273	1273	371	1273	1273	1273
R2	0.973	0.941	0.969	0.994	0.987	0.969	0.977	0.993	0.903	0.967	0.958
L3 BROWNEFFRATIOEP PUBLIC/100	2.472	18.274	11.709	-3.784	-122.015	5.115	19.047*	30.574	-0.160	0.330	7.489
L3 BROWNEFFRATIOEP PRIVATE/100	(16.331)	(14.505)	(11.715)	(17.275)	(88.459)	(4.268)	(11.300)	(234.285)	(0.099)	(7.050)	(10.180)
	-12.779	-0.858	5.306	14.336	-219.660*	-3.741	-7.411	9.582	-0.170**	-0.163	8.324
	(9.820)	(9.069)	(7.818)	(9.087)	(112.214)	(3.786)	(10.121)	(66.457)	(0.067)	(5.520)	(6.713)
Observations	1065	1065	1065	172	1065	1065	1065	172	1065	1065	1065
R2	0.985	0.957	0.977	0.999	0.992	0.990	0.985	1.000	0.939	0.974	0.966
L5 BROWNEFFRATIOEP PUBLIC/100	-8.601	8.703	10.664	-2.721	-87.553	0.533	15.106*	-2.721	-0.118	-0.677	5.337
L5 BROWNEFFRATIOEP PRIVATE/100	(13.621)	(10.220)	(8.099)	(17.038)	(68.480)	(3.521)	(8.936)	(17.038)	(0.086)	(5.297)	(7.212)
	-9.812	15.756**	5.592	18.900	-222.718**	2.056	-2.440	18.900	-0.059	5.602	5.809
	(7.374)	(7.931)	(7.105)	(12.819)	(107.149)	(2.508)	(8.593)	(12.819)	(0.071)	(4.624)	(5.972)
Observations	872	872	872	899	872	872	872	899	872	872	872
R2	0.993	0.967	0.984	0.102	0.995	0.995	0.992	0.102	0.961	0.980	0.974
3YEARAVGBROWNEFFRATIOEP	0.201	0.277	0.273	-0.466	-0.869	-0.019	0.193	-4.757	-0.003	0.189	0.218
PUBLIC/100	(0.273)	(0.252)	(0.184)	(0.443)	(1.379)	(0.130)	(0.216)	(8.060)	(0.002)	(0.133)	(0.172)
3YEARAVGBROWNEFFRATIOEP	-0.204	0.078	-0.102	-0.443	-2.001	0.090	-0.158	-11.054**	-0.002	-0.095	-0.069
PRIVATE/100	(0.185)	(0.237)	(0.122)	(0.276)	(1.752)	(0.139)	(0.152)	(4.943)	(0.001)	(0.094)	(0.116)
Observations	1416	1416	1416	411	1416	1416	1416	411	1416	1416	1416
R2	0.974	0.938	0.969	0.994	0.988	0.968	0.976	0.993	0.906	0.967	0.959
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE 13: PATENT RATIOS AND FIRM-LEVEL MARKET SHARE

The unit of observation is firm-year and covers both public and private firms, as we do not rely on public firms' emission data. The sample period is 2005 to 2020. The dependent variable is MKTSHR GICS6, which is a firm's market share based on its sales relative to total public and private firms' sales in a given GICS6 industry. The key dependent variable is *GREENRATIOEP* lagged by 1, 3, or 5 years in column 4 to 6. Controls include: *LOGASSETS*, *LOGPPE*, *LEVERAGE*, *ROE*, *INVEST/A*, and, *PUBLIC*. *LOGASSETS* is the log of total assets in million USD and *PUBLIC* is an indicator equal to 1 for public firms. All other variables are defined in Table 1 and Table 2. All independent variables are lagged by 1, 3, or 5 years. The model is estimated using pooled regression model. In Panel A we include country and GICS6 industry-year fixed effects and in Panel B firm and year fixed effects. We double cluster standard errors at the firm and year dimension. *** 1% significance, ** 5% significance * 10% significance.

	(1)	(2)	(3) MKTSHR	(4) GICS6	(5)	(6)
Panel A: Country and Indus	try-Year Fixed	Effects				
L1 GREENRATIOEP	-0.076***					
L3 GREENRATIOEP	(0.028)	-0.070** (0.032)				
L5 GREENRATIOEP		(0.032)	-0.122*** (0.043)			
L1 BROWNEFFRATIOEP			(0.043)	0.034 (0.049)		
L3 BROWNEFFRATIOEP				(0.04)	0.028 (0.053)	
L5 BROWNEFFRATIOEP					(0.033)	-0.010 (0.067)
Observations R2	44202 0.462	34043 0.469	25036 0.477	44202 0.461	34043 0.469	25036 0.477
Controls Country F.E.	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes
GICS6-Year F.E.	yes	yes	yes	yes	yes	yes
Panel B: Firm and Year Fixed	d Effects					
L1 GREENRATIOEP	-0.025 (0.021)					
L3 GREENRATIOEP	(0.021)	-0.046^* (0.025)				
L5 GREENRATIOEP		(0.023)	-0.042 (0.029)			
L1 BROWNEFFRATIOEP			(0.02)	0.017 (0.042)		
L3 BROWNEFFRATIOEP				(0.042)	0.040 (0.037)	
L5 BROWNEFFRATIOEP					(0.037)	-0.012 (0.046)
Observations	43346	33147	24189	43346	33147	24189
R2 Controls	0.869 yes	0.887 yes	0.903 yes	0.869 yes	0.887 yes	0.903 yes
Year F.E.	yes	yes	yes	yes	yes	yes
Firm F.E.	yes	yes	yes	yes	yes	yes

TABLE 14: EX-POST CHARACTERISTICS OF EMISSION DECREASING VS INCREASING FIRMS

The unit of observation is firm-year and the sample period is 2005 to 2020. Panel A covers total scope 1 emissions. To split firms in emission reduction samples (column 1 to 4) and emission increase samples (column 5 to 8) we calculate changes in emissions over three years. Panel B defines emission reduction firms as those that decreased emissions across scope 1, 2 and upstream 3 and emission increase firms as all others. We calculate mean, standard deviation, median and the count for each sample as well as the difference and p-value between the two samples for a variety of variables at the three year lag. Panel A.1 and B.1 cover the full Trucost sample. Panel A.2 and B.2 zoom in on the Trucost sample with at least one patent at the European Patent Office and the greatest emission change. Within the emission decrease sample, we focus on the 50% with the greatest emission increase. Similarly within the emission increase sample, we focus on the 50% with the greatest emission increase. DUMMYANYEP (DUMMYGREENEP, DUMMYBROWNEFFEP, and DUMMYOECDEP) are dummies equal to one if a firm has at least one (one green, one brown efficiency and one OECD env-tech) patent and zero otherwise. SALES3YRCHG is the change in sales across the three year period in decimals. All other variables are defined in Table 1, Table 2 and Table 4.

Mean Std. Dev. Median Count Mean Std. Dev. Median Count Difference Panel A.1: Patenting and non-patenting firms DUMMYANYEP 0.310 0.463 0 32068 0.280 0.449 0 39100 0.030 DUMMYGREENEP 0.149 0.356 0 32068 0.116 0.321 0 39100 0.032 DUMMYBROWNEFFEP 0.069 0.253 0 32068 0.054 0.226 0 39100 0.015 DUMMYOECDEP 0.154 0.361 0 32068 0.120 0.324 0 39100 0.035 AGE 47.252 38.678 34.000 29809 41.075 35.860 28.000 36468 6.177 LOGSIZE 7.752 1.667 7.782 32068 7.665 1.565 7.722 39100 0.086	p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Panel A.1: Patenting and non-patenting firms DUMMYANYEP 0.310 0.463 0 32068 0.280 0.449 0 39100 0.030 DUMMYGREENEP 0.149 0.356 0 32068 0.116 0.321 0 39100 0.032 DUMMYBROWNEFFEP 0.069 0.253 0 32068 0.054 0.226 0 39100 0.015 DUMMYOECDEP 0.154 0.361 0 32068 0.120 0.324 0 39100 0.035 AGE 47.252 38.678 34.000 29809 41.075 35.860 28.000 36468 6.177	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DUMMYGREENEP 0.149 0.356 0 32068 0.116 0.321 0 39100 0.032 DUMMYBROWNEFFEP 0.069 0.253 0 32068 0.054 0.226 0 39100 0.015 DUMMYOECDEP 0.154 0.361 0 32068 0.120 0.324 0 39100 0.035 AGE 47.252 38.678 34.000 29809 41.075 35.860 28.000 36468 6.177	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DUMMYBROWNEFFEP 0.069 0.253 0 32068 0.054 0.226 0 39100 0.015 DUMMYOECDEP 0.154 0.361 0 32068 0.120 0.324 0 39100 0.035 AGE 47.252 38.678 34.000 29809 41.075 35.860 28.000 36468 6.177	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DUMMYOECDEP 0.154 0.361 0 32068 0.120 0.324 0 39100 0.035 AGE 47.252 38.678 34.000 29809 41.075 35.860 28.000 36468 6.177	0.000 0.000 0.000 0.000 0.000 0.000 0.000
AGE 47.252 38.678 34.000 29809 41.075 35.860 28.000 36468 6.177	0.000 0.000 0.000 0.000 0.000 0.000
	0.000 0.000 0.000 0.000 0.000
LOGSIZE 7.752 1.007 7.762 32006 7.003 1.303 7.722 39100 0.000	0.000 0.000 0.000 0.000
LOGPPE 6.055 2.336 6.237 32068 5.794 2.298 5.980 39100 0.261	0.000 0.000 0.000
MB 2.373 2.676 1.588 32068 2.826 2.962 1.903 39100 -0.453	0.000
LEVERAGE 23.937 17.967 22.294 32068 23.249 18.279 21.290 39100 0.688	0.000
ROE 10.749 26.144 10.388 32068 11.872 23.995 11.544 39100 -1.123	
SALES3YRCHG -0.094 0.524 -0.024 32004 0.327 0.512 0.249 39034 -0.421	0.000
Panel A.2: Firm-years with at least one EP patent & greatest emission decreases, resp. increases	
GREENRATIOEP 11.944 23.526 0 4973 11.589 24.309 0 5478 0.355	0.449
BROWNEFFRATIOEP 3.776 13.151 0 4973 3.542 13.569 0 5478 0.234	0.371
OECDRATIOEP 13.354 24.952 0 4973 11.530 23.606 0 5478 1.823	0.000
GREENCITMAXEP 65.316 561.564 0 4973 56.955 532.163 0 5478 8.361	0.436
BROWNEFFCITMAXEP 14.912 210.829 0 4973 8.502 51.493 0 5478 6.410	0.037
GREENCOUNTBBEP 0.260 1.128 0 4973 0.195 1.007 0 5478 0.066 BROWNEFFCOUNTBBEP 0.107 0.834 0 4973 0.057 0.472 0 5478 0.049	0.002 0.000
AGE 55.569 41.713 44.000 4929 46.442 39.625 32.000 5443 9.127	0.000
AGE 55.565 41.715 44.000 4727 40.442 57.025 52.000 5445 7.127 LOGSIZE 8.365 1.589 8.363 4973 8.134 1.593 8.133 5478 0.231	0.000
LOGPPE 6.719 2.017 6.813 4973 6.169 2.151 6.312 5478 0.550	0.000
MB 2.609 2.714 1.837 4973 3.312 3.291 2.285 5478 -0.703	0.000
LEVERAGE 22.636 15.588 21.787 4973 22.143 16.984 21.209 5478 0.493	0.122
ROE 9.536 27.992 10.644 4973 9.088 28.816 11.344 5478 0.447	0.421
SALES3YRCHG -0.110 0.553 -0.020 4968 0.429 0.599 0.350 5474 -0.539	0.000
Panel B: Ex-post characteristics of firms decreasing absolute emissions across scope 1, 2, and upstream 3 Panel B:: Patenting and non-patenting firms DUMMYANYEP 0.260 0.439 0 16298 0.304 0.460 0 54950 -0.044	0.000
DUMMYGREENEP 0.115 0.319 0 16298 0.136 0.342 0 54950 -0.021	0.000
DUMMYBROWNEFFEP 0.054 0.225 0 16298 0.063 0.242 0 54950 -0.021	0.000
DUMMYOECDEP 0.119 0.324 0 16298 0.140 0.347 0 54950 -0.020	0.000
AGE 44.742 37.286 32.000 15124 43.565 37.259 30 51227 1.177	0.001
LOGSIZE 7.411 1.690 7.461 16298 7.792 1.578 7.826 54950 -0.381	0.000
LOGPPE 5.697 2.406 5.863 16298 5.973 2.289 6.160 54950 -0.276	0.000
MB 2.244 2.588 1.509 16298 2.734 2.907 1.829 54950 -0.490	0.000
LEVERAGE 24.227 18.693 22.417 16298 23.357 17.968 21.546 54950 0.870	0.000
ROE 8.589 28.284 9.361 16298 12.192 23.852 11.467 54950 -3.603	0.000
SALES3YRCHG -0.299 0.592 -0.168 16254 0.267 0.477 0.204 54864 -0.566	0.000
Panel B.2: Firm-years with at least one EP patent & greatest emission decreases, resp. increases GREENRATIOEP 12.232 24.679 0 2256 11.822 23.423 0 8469 0.410	0.478
BROWNEFFRATIOEP 4.187 14.338 0 2256 3.830 13.524 0 8469 0.357	0.478
OECDRATIOEP 13.448 25.767 0 2256 12.285 23.507 0 8469 0.337	0.266
GREENCITMAXEP 58.520 554.662 0 2256 69.971 789.631 0 8469 -11.451	0.032
BROWNEFFCITMAXEP 17.191 306.872 0 2256 10.717 52.799 0 8469 6.474	0.318
GREENCOUNTBBEP 0.236 1.090 0 2256 0.249 1.201 0 8469 -0.013	0.614
BROWNEFFCOUNTBBEP 0.116 0.996 0 2256 0.084 0.637 0 8469 0.032	0.147
AGE 54.519 42.417 43.000 2240 52.884 42.120 39.000 8406 1.634	0.105
LOGSIZE 8.096 1.722 8.086 2256 8.366 1.642 8.333 8469 -0.270	0.000
LOGPPE 6.470 2.300 6.690 2256 6.622 2.158 6.704 8469 -0.152	0.005
MB 2.402 2.613 1.711 2256 3.028 3.113 2.065 8469 -0.625	0.000
LEVERAGE 23.427 16.196 22.574 2256 22.937 16.493 22.141 8469 0.490	0.203
ROE 5.718 32.059 9.094 2256 10.529 27.509 11.311 8469 -4.810	0.000
SALES3YRCHG -0.402 0.640 -0.258 2252 0.310 0.530 0.225 8465 -0.713	0.000

TABLE 15: LONG PATENT RATIOS AND FIRM LEVEL OUTCOMES

The unit of observation is firm-year. The dependent variables are DIFS1TOT, DIFS2TOT, DIFS3UPTOT, DIFS1INT, DIFS2INT, DIFS3UPINT, DIFS2NT, DIFS3UPINT, DIFS3UPINT, DIFS2NT, DIFS2NT,

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	DIFS1TOT	DIFS2TOT	DIFS3UPTOT	DIFS1INT	DIFS2INT	DIFS3UPINT	DIFCAPEX	DIFINVEST/A	DIFSALES
Panel A: Long patent ratios Panel A.1: Green innovation Panel A.1.: GREENSTOCKRATIOEP be	etween 1990 ar	d 2004							
GREENSTOCKRATIOEP04	75.203	24.542	102.814	-0.013	-0.003	0.004	0.726	-0.039	55.272*
	(73.411)	(18.622)	(65.778)	(0.009)	(0.004)	(0.007)	(2.814)	(0.024)	(32.521)
Observations	1863	1863	1863	1863	1863	1863	1863	1863	1863
R2	0.157	0.227	0.215	0.179	0.197	0.0987	0.290	0.257	0.322
Panel A.1.2: GREENSTOCKRATIOEP be	etween 1990 ar	d 2014							
GREENSTOCKRATIOEP14	22.870	15.093	46.439	0.009	0.000	-0.001	-1.051	-0.057*	18.040
	(61.876)	(16.411)	(37.061)	(0.011)	(0.003)	(0.004)	(3.432)	(0.029)	(23.007)
Observations	2714	2714	2714	2714	2714	2714	2714	2714	2714
R2	0.158	0.202	0.197	0.157	0.178	0.0824	0.255	0.248	0.291
Panel A.2: Brown efficiency innovation Panel A.2.1: BROWNEFFSTOCKRATIO	EP between 19	90 and 2004							
BROWNEFFSTOCKRATIOEP04	128.610	0.391	-142.637	0.023	-0.002	-0.016*	1.110	0.071*	-13.470
	(169.306)	(33.097)	(136.552)	(0.014)	(0.005)	(0.008)	(4.697)	(0.039)	(45.198)
Observations	1863	1863	1863	1863	1863	1863	1863	1863	1863
R2	0.157	0.226	0.215	0.179	0.197	0.101	0.290	0.257	0.321
Panel A.2.2: BROWNEFFSTOCKRATIO	EP between 19	90 and 2014							
BROWNEFFSTOCKRATIOEP14	-91.677 (160.687)	-14.699 (28.900)	-104.420 (86.969)	0.011 (0.032)	$-0.001 \\ (0.004)$	-0.022*** (0.007)	2.663 (3.749)	-0.019 (0.027)	73.016* (43.684)
Observations	2714	2714	2714	2714	2714	2714	2714	2714	2714
R2	0.159	0.202	0.197	0.157	0.178	0.0873	0.255	0.246	0.292
Panel B: Long patent counts Panel A.1: Green innovation Panel B.1.1: GREENSTOCKCOUNTEP b			-917.436***	0.014	0.000	0.015	-42.715*	-0.027	-454.207***
GREENSTOCKCOUNTEP04/100	-857.522** (394.550)	-143.944 (98.038)	(314.020)	-0.014 (0.014)	-0.006 (0.007)	-0.015 (0.009)	(21.467)	(0.044)	(165.993)
Observations	1863	1863	1863	1863	1863	1863	1863	1863	1863
R2	0.166	0.229	0.227	0.179	0.197	0.0995	0.302	0.256	0.333
Panel B.1.2: GREENSTOCKCOUNTEP E	etween 1990 a	nd 2014							
GREENSTOCKCOUNTEP14/100	-189.156** (74.718)	18.559 (22.162)	-79.415 (63.528)	$-0.008* \ (0.004)$	0.001 (0.001)	-0.001 (0.002)	-3.661 (3.434)	-0.002 (0.013)	-40.203 (31.730)
Observations	2714	2714	2714	2714	2714	2714	2714	2714	2714
R2	0.166	0.203	0.199	0.158	0.178	0.0825	0.257	0.246	0.293
Panel B.2: Brown efficiency innovation Panel B.2.1: BROWNEFFSTOCKCOUNT	ΓEP between 1	990 and 2004							
BROWNEFFSTOCKCOUNTEP04/100	-702.922	-22.974	-1189.932*	0.038	-0.001	-0.062***	-55.714	-0.020	-344.058
	(867.095)	(183.041)	(601.951)	(0.064)	(0.014)	(0.017)	(34.163)	(0.087)	(255.757)
Observations	1863	1863	1863	1863	1863	1863	1863	1863	1863
R2	0.159	0.226	0.220	0.179	0.197	0.104	0.295	0.256	0.323
Panel B.2.2: BROWNEFFSTOCKCOUNT	ΓEP between 1	990 and 2014							
BROWNEFFSTOCKCOUNTEP14/100	-291.154	3.107	-220.098	0.002	-0.001	-0.008*	-9.221	0.015	-73.058
	(251.204)	(53.174)	(178.476)	(0.016)	(0.003)	(0.004)	(9.044)	(0.023)	(79.393)
Observations	2714	2714	2714	2714	2714	2714	2714	2714	2714
R2	0.161	0.202	0.199	0.157	0.178	0.0833	0.257	0.246	0.292
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes
Country F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE 16: PATENT RATIOS EXPLANATORY POWER

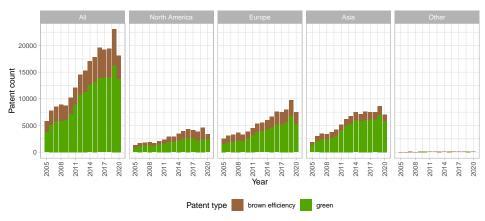
The unit of observation is firm-year. The sample period is 2005 to 2020. The dependent variables are logs of cumulative sums of SITOT, SZIDT, SZIDTOT, SZDOWNITOT and SI23UPTOT over 1, 3 or 5 years, respectively long-term averages of SINT, SZIRTN S

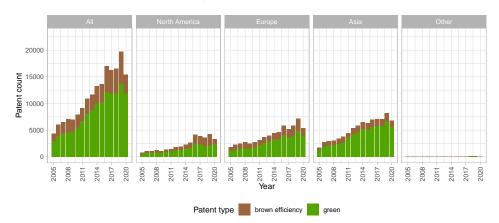
Panel A: Green innovation		
Partial R2 0.00596 0.00167 0.000172 0.000219 0.000628 0.00760 0.000378 R2 Full Model 0.668 0.742 0.785 0.459 0.810 0.149 0.171 C8 Reduced Model 0.666 0.742 0.785 0.459 0.809 0.143 0.171 Observations 31049 31049 31048 11600 31049 31049 31049 L3 GREENRATIOEP 0.592*** −0.199*** −0.022 0.172 0.172*** 1.553*** 0.040* Partial R2 0.00748 0.00163 0.000243 0.00293 0.00151 0.0868 0.000320 R2 Full Model 0.659 0.731 0.765 0.493 0.795 0.159 0.187 R2 Reduced Model 0.656 0.730 0.765 0.493 0.795 0.152 0.186 Deservations 2.3485 2.3485 2.3485 5419 2.3485 2.3485 2.3485 L5 GREENRATIOEP 0.695**** -0.253****) (0.036)	4.168***
R2 Full Model 0.668 0.742 0.785 0.459 0.810 0.149 0.171 R2 Reduced Model 0.666 0.742 0.785 0.459 0.809 0.143 0.171 Observations 31049 31049 31048 11600 31049 31049 31049 L3 GREENRATIOEP 0.592*** -0.199*** -0.022 0.172 0.172*** 1.53*** 0.040* Partial R2 0.00748 0.00163 0.0000243 0.000293 0.00151 0.00868 0.00032 R2 Full Model 0.659 0.731 0.765 0.493 0.795 0.159 0.187 R2 Reduced Model 0.656 0.730 0.765 0.493 0.795 0.152 0.186 Descriptions 2.2485 2.3485 2.3485 5419 2.2485 2.3485 L5 GREENRATIOEP 0.695*** -0.253**** 0.017 0.234*** 1.789*** 0.009 Partial R2 0.00954 0.00251 0.0000144 0.00270 <td></td> <td>(0.610)</td>		(0.610)
R2 Reduced Model Observations 0.666 0.742 0.785 0.459 0.809 0.143 0.171 0.0000000000000000000000000000000	0.000552 0.226	0.00579 0.106
Deservations 31049 31049 31048 11600 31049	0.225	0.106
Partial R2	31049	11600
R2 Full Model 0.659 0.731 0.765 0.493 0.795 0.159 0.187 R2 Reduced Model 0.656 0.700 0.765 0.493 0.795 0.152 0.182 Observations 23485 23485 23485 5419 23485 23485 23485 L5 GREENRATIOEP 0.695*** -0.23**** 0.017 0.234*** 1.789*** 0.009 Partial R2 0.00954 0.00251 0.0000144 0.00270 0.0100 0.000017 R2 Full Model 0.635 0.701 0.730 0.768 0.168 0.196 C8 Reduced Model 0.631 0.700 0.076 0.159** 0.196 Observations 16892 16892 16892 16892 16892 L1 3YEARAVGGREENRATIOEP 0.552*** -0.226*** -0.069** 0.239*** 0.129*** 1.561*** 0.057* L1 3YEARAVGGREENRATIOEP 0.552*** -0.026** 0.0025** 0.0027* 0.029** 0.129*** 1.561*** 0.0		4.720*** (0.956)
R2 Reduced Model Observations 0.656 0.730 0.765 0.493 0.795 0.152 0.186 0.0984 0.182 0.186 0.2485 0.2485 0.2485 0.2485 0.2485 0.2485 0.2485 0.2485 L5 GREENRATIOEP 0.695*** 0.0690 (0.048) 0.0017 (0.048) 0.0017 (0.048) 0.0021 (0.0039) 0.0200 (0.009) 0.00019 1.789*** 0.009 (0.000) 0.00016 Partial R2 0.00954 0.00251 0.000144 0.00270 0.0100 0.0000167 0.788 0.168 0.196 0.00270 0.788 0.168 0.196 0.00016 0.019 0.700 0.700 0.700 0.700 0.700 0.700 0.00016 R2 Full Model 0.635 0.701 0.730 0.767 0.159 0.196 0.00016 0.00016 0.00018 0	0.000518	0.00712
Observations 23485 23485 23485 5419 23485 23485 23485 L5 GREENRATIOEP 0.695*** -0.253*** 0.017 0.024*** 1.789*** 0.009 Partial R2 0.00954 0.00251 0.0000144 0.00270 0.0100 0.000016 R2 Full Model 0.635 0.701 0.730 0.768 0.168 0.196 R2 Reduced Model 0.631 0.700 0.030 0.767 0.159 0.196 Observations 16892 16892 16892 16892 16892 16892 L1 3YEARAVGGREENRATIOEP 0.552*** -0.226*** -0.069** 0.239*** 0.129*** 1.561*** 0.057* Partial R2 0.00620 0.00192 0.00205 0.00480 0.00748 0.00836 0.00636 0.00626	0.218 0.217	0.113 0.106
Company Comp	23485	5428
Partial R2	0.146*** (0.054)	
R2 Full Model 0.635 0.701 0.730 0.768 0.168 0.196 R2 Reduced Model 0.631 0.700 0.730 0.767 0.159 0.196 Observations 16892 16892 16892 16892 16892 16892 16892 16892 16892 10.29*** 1.6892 16892 16892 16892 16892 10.057*** 0.057*** 0.039**** 0.029**** 0.129**** 0.129**** 0.1561**** 0.057** 0.039*** 0.0027 0.021*** 0.027** 0.027** 0.0126 0.0131 0.027**** 0.0028*** 0.00028*** 0.00028*** 0.00028*** 0.00028*** 0.00028*** 0.00028*** 0.00028*** 0.00028*** 0.00028*** 0.00028*** 0.00028**** 0.00028**** 0.00028**** 0.00028**** 0.00028**** 0.00028**** 0.00028***** 0.00028***** 0.00028*********************************		
Observations 16892	0.209	
(0.038) (0.032) (0.027) (0.091) (0.027) (0.126) (0.013) Partial R2 0.00620 0.00192 0.000205 0.00480 0.000748 0.00836 0.000626	0.209 16892	
(0.038) (0.032) (0.027) (0.091) (0.027) (0.126) (0.013) Partial R2 0.00620 0.00192 0.000205 0.00480 0.000748 0.00836 0.000626		5.000888
		5.290*** (0.603)
	0.000793	0.00808
R2 Full Model 0.670 0.740 0.782 0.460 0.807 0.150 0.168 R2 Reduced Model 0.668 0.739 0.782 0.460 0.807 0.143 0.167	0.214 0.213	0.111 0.104
No Reduced World 10,000 07,57 07,72 07,70	38934	15245
Panel B: Brown efficiency innovation L1 BROWNEFFRATIOEP 0.511*** -0.374*** 0.578*** 1.656*** 0.584*** 1.604*** -0.210*		9.014***
(0.071) (0.062) (0.047) (0.193) (0.043) (0.287) (0.021)		(1.383)
Partial R2 0.00185 0.00185 0.00519 0.00709 0.00548 0.00320 0.00294 R2 Faill Model 0.667 0.742 0.786 0.463 0.811 0.146 0.135	0.00331 0.228	0.00744 0.108
R2 Full Model 0.666 0.742 0.785 0.459 0.809 0.143 0.173	0.225	0.108
Observations 31049 31049 31048 11600 31049 31049 31049	31049	11600
L3 BROWNEFFRATIOEP 0.531*** -0.474*** 0.571*** 1.613*** 0.597*** 2.030*** -0.229* (0.085) (0.072) (0.056) (0.259) (0.052) (0.052) (0.052)		8.168*** (1.969)
Partial R2 0.00201 0.00309 0.00534 0.00714 0.00606 0.00494 0.00354	0.00322	0.00588
R2 Full Model 0.657 0.731 0.766 0.497 0.796 0.156 0.189 R2 Reduced 0.656 0.730 0.765 0.493 0.795 0.156 0.189	0.220 0.217	0.111 0.106
R2 Rettieted Model 0.650 0.750 0.765 0.795 0.795 0.152 0.168 Observations 23485 23485 23485 5419 23485 23485 23485 23485	23485	5428
L5 BROWNEFFRATIOEP 0.584***		
Partial R2 0.00245 0.00474 0.00599 0.00705 0.00620 0.00504	0.00359	
R2 Full Model 0.632 0.701 0.732 0.769 0.165 0.200 0.782 R2 Reduced Model 0.631 0.700 0.730 0.767 0.159 0.196	0.211 0.209	
Restricted Model 0.551 0.760 0.750 0.760 0.159 0.170 0.150 0.16892 16892 16892 16892 16892 16892 16892	16892	
L1 3YEARAVGBROWNEFFRATIOEP 0.587*** -0.488*** 0.599*** 1.528*** 0.622*** 2.065*** -0.215* (0.068) (0.060) (0.045) (0.176) (0.042) (0.283) (0.021)		8.439*** (1.279)
Partial R2 0.00212 0.00270 0.00469 0.00575 0.00521 0.00442 0.00274	0.00362	0.00603
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.216 0.213	0.109 0.104
R2 Reduced Model U.868 U.739 U.82 U.460 U.807 U.814 U.167 Observations 38934 38934 38933 15245 38934 38934 38934 38934	38934	15245
Controls yes yes yes yes yes yes yes yes yes	30934	
Country F.E. yes yes yes yes yes yes yes	yes	yes
Year F.É. yes yes yes yes yes yes yes yes		yes yes yes

FIGURE 1: COMPARING GREEN AND OECD TITLES

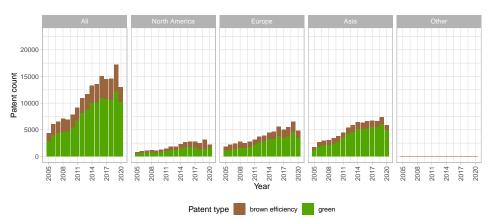
The sample is all patents granted by the European Patent Office from 2005 to 2020 that belong to the Trucost sample. Wordclouds display the top 100 words (unigrams) based on the TF-IDF comparing patent titles of GREEN patents to OECD env-tech patents, respectively OECD env-tech to GREEN patents.

(A) "GREEN" AGAINST "OECD"


(B) "OECD" AGAINST "GREEN"


FIGURE 2: GREEN AND BROWN EFFICIENCY EPO PATENT COUNTS ACROSS REGIONS

The sample period is 2005 to 2020. We report the total number of granted or purchased green and brown efficiency EPO patents across all regions and by region, namely North America, Europe, Asia, and other (rest of the world), per year. In Panel A the sample covers the full sample, i.e all public and private firms. In Panel B the sample covers only public firms with emission data from Trucost and in Panel C we restrict the sample inclusion further to those firms that Trucost covers in its database before 2016.


(A) FULL (PUBLIC/PRIVATE) SAMPLE

(B) TRUCOST SAMPLE

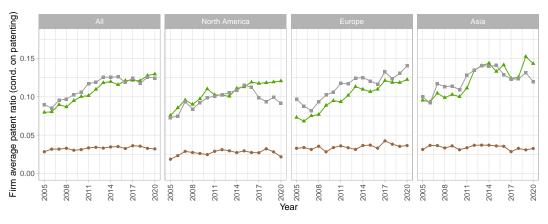
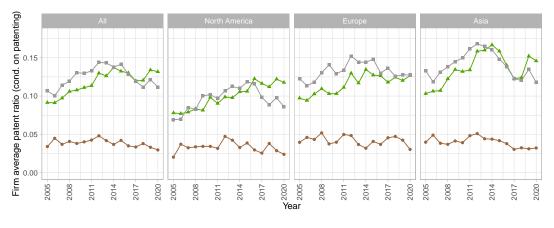
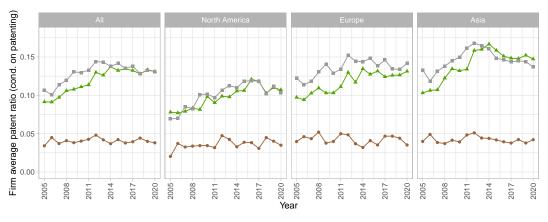

(C) TRUCOST (PRE 2016) LEGACY SAMPLE

FIGURE 3: GREEN AND BROWN EFFICIENCY EPO PATENT RATIOS ACROSS REGIONS


The sample period is 2005 to 2020. We report the average GREENRATIOEP, BROWNEFFRATIOEP and OECDRATIOEP across all regions and for the regions North America, Europe and Asia per year. Patent ratios are defined in Table 2. In Panel A the sample covers the full sample, i.e all public and private firms. In Panel B the sample covers only public firms with emission data from Trucost and in Panel C we restrict the sample inclusion further to those firms that Trucost covers in its database before 2016.

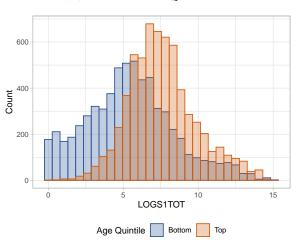
(A) FULL (PUBLIC/PRIVATE) SAMPLE


Patent type - brown efficiency - green - OECD env-tech

(B) TRUCOST SAMPLE

Patent type → brown efficiency → green → OECD env-tech

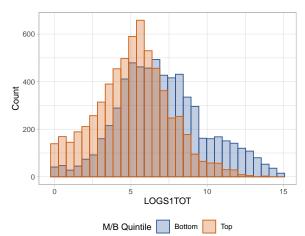
(C) TRUCOST (PRE 2016) LEGACY SAMPLE



Patent type - brown efficiency - green - OECD env-tech

FIGURE 4: EMISSION DISTRIBUTION FOR DIFFERENT QUINTILES

The sample period is 2005 to 2020. We report histograms for LOGS1TOT for unconditional top and bottom quintiles based on "AGE" in Panel A, "ASSETS" in Panel B, and "M/B" in Panel C. All variables are defined in Table 1 and 2.


(A) PANEL A: AGE QUINTILES

Assets Quintile Bottom Top

(C) PANEL C: M/B QUINTILES

IA Internet Appendix

TABLE IA.I: PATENT DATA BY COUNTRY

The sample period is 2005-2020. In Panel A, we report the number of firm observations by country for the full (public and private), public, private and Trucost sample. Columns 1 to 4 report unconditional numbers and columns 5 to 8 condition on having at least one granted or purchased patent at the European Patent Office. In Panel B, we report patent counts and average patent counts by firm conditional on patenting. We report the total number of granted or purchased patents at the European Patent Office in a given country in columns 1 to 4 and through the patent at the European Patent Office per firm conditional on patenting. We report the total number of granted or purchased patents at the European Patent Office per firm conditional on having at least one patent by country in columns 5 to 8. The full sample is based on firms from Orbis/ Orbis IP, FactSet, Worldscope and Trucost. We report countries with less than 300 firm-year observations in the full sample aggregated by region under "Others". "Others North America" include ANGUILLA, ANTIGUA & BARBUDA, BAHAMAS, BARBADO, COMININCA, DOMININCA, SARPUBLIC, E. SALPA (LAVADOR, GREENA), GREENA, AND GUATEMALA, HONDURAS, MARSHALL ISLANDS, NICARAGUA, SAINT BARTHELEMY, SAINT KITTS & NEVIS, SAINT BUCIA, SAINT MARTIN, SAINT PIERRE & MIQUELON, TRINIDAD & TOBAGO, "OTHER ASSA" include ARMENIA, AZERBAJJAN, BAHARIN, BHATAN, CAMBODIA, KYRGYZSTAN, DEPOPLE'S DEMOCRATIC REPUBLIC, CEISANDN, MACAO SAR, MYANMARIA, BEALAND, ALBERTINIAN TERRITORIES, SYRIAN ARAB REPUBLIC, "Others Adries" include ALBERTIA, BALAWIY MALI, MAYOTTE, MOZAMBIQUE, NAMBIQU, SAINGHAI, SEYCHELLE, SUDDAN, TOGO, TUSIA, UGANDA, OUNTED REPUBLIC OF TANZANIA, ZAMBIA, "Others Europe' include ALBERTIA, BELARUS, FAROE ISLANDS, GEORGIA, GIBRALTAR, ISLE OF MAN, LEICHTENSTEIN, MONACO, SAN MARINO, SVALBARD and "Others South America" include PRENICH GUIANA, CUNANA, VENEZUELA.

Panel A: Firm count	(1)	(2)	(3)	(4)	(5) (6) (7)				
-	F11		ample	Toward	P. II		ig sample	T	
ARGENTINA	Full 179	Public 87	Private 92	Trucost 18	Full 9	Public 8	Private 1	Trucost	
AUSTRALIA	5579	1929	3650	628	520	388	132	155	
AUSTRIA BANGLADESH	1659 184	117 134	1542 50	49 7	241 0	69 0	172 0	33 0	
BELGIUM	26834	202	26632	80	635	97	538	52	
BERMUDA BOLIVIA	805 33	710 0	95 33	67 0	62 0	53 0	9	7	
OSNIA & HERZEGOVINA	1734	39	1695	1	1	0	1	0	
BRAZIL	1340	467	873	209	100	66	34	39	
BULGARIA Canada	15623 5976	224 5250	15399 726	5 560	31 554	8 504	23 50	2 143	
CANARY ISLANDS	1441	1	1440	0	1	0	1	0	
CAYMAN ISLANDS CHILE	1412 349	723 213	689 136	44 49	55 24	34 19	21 5	6	
HINA	86430	5116	81314	2751	1402	845	557	546	
COLOMBIA	210	53	157	18	4	3	1	3	
COTE D'IVOIRE CROATIA	15 2452	12 144	3 2308	3	0 7	0 4	0	0	
CYPRUS	1290	128	1162	10	19	3	16	1	
ZECH REP DENMARK	14076 69409	24 218	14052 69191	8 66	75 952	5 78	70 874	3 38	
CUADOR	62	1	61	0	0	0	0	0	
GYPT STONIA	710 7286	210 19	500 7267	41 3	7 25	5	2 25	2	
INLAND	11009	185	10824	74	379	97	282	49	
RANCE	52481	861	51620	342	1714	401	1313	218	
GERMANY GREECE	15731 1595	1012 278	14719 1317	315 49	1706 36	442 27	1264 9	199 7	
GUADELOUPE	109	1	108	0	0	0	0	0	
GUERNSEY HONG KONG	103 1360	79 1242	24 118	14 734	9 130	7 122	2 8	2 83	
HUNGARY	4728	44	4684	6	28	6	22	2	
CELAND	2744	28	2716	6	20	4	16	1	
NDIA NDONESIA	13529 801	4148 610	9381 191	721 191	394 3	286 3	108	148 2	
RAQ	72	0	72	0	0	0	0	0	
RELAND	2160	126 0	2034	69	110	52	58	36	
SLAMIC REPUBLIC OF IRAN SLE OF MAN	470 51	36	470 15	0 5	0 4	0 2	0 2	0 1	
SRAEL	826	704	122	173	259	217	42	76	
TALY AMAICA	68990 71	458 27	68532 44	181 2	1758 0	197 0	1561 0	99 0	
APAN	9292	5964	3328	2535	2507	2168	339	1077	
ERSEY	124	87	37	17	17	12	5	6	
ORDAN AZAKHSTAN	214 191	174 9	40 182	6 5	3 2	3	0 2	1	
ENYA	32	26	6	11	0	0	0	ő	
UWAIT	218	200	18	36	4	3	1	1	
ATVIA IECHTENSTEIN	2550 8	26 3	2524 5	0 2	6 3	3	3	0	
ITHUANIA	1246	41	1205	2	12	2	10	0	
UXEMBOURG IALAYSIA	5397 10471	97 1209	5300 9262	48 255	274 76	26 55	248 21	21 26	
IALTA	3719	26	3693	7	18	2	16	1	
MARTINIQUE	110	1	109	0	0	0	0	0	
AAURITIUS MEXICO	421 257	86 168	335 89	5 89	3 31	2 23	1 8	0 15	
IONGOLIA	259	47	212	2	0	0	0	0	
MONTENEGRO MOROCCO	501 143	23 42	478 101	0 18	0 5	0	0	0	
IETHERLANDS	9800	224	9576	122	506	98	408	69	
IEW ZEALAND	344	161	183	72	44	31	13	12	
JIGERIA JORTH MACEDONIA	150 1148	109 27	41 1121	23	0	0	0	0	
JORWAY	43073	358	42715	123	617	108	509	51	
MAN	129	70	59	10	1	0	1	0	
AKISTAN ALESTINIAN TERRITORIES	596 36	372 24	224 12	64 0	1 0	0	1 0	0	
ANAMA	48	3	45	1	1	1	0	0	
ARAGUAY ERU	67 264	0 96	67 168	0 21	2 4	0	2 3	0	
HILIPPINES	502	296	206	83	13	1 6	7	1 6	
OLAND	12888	887	12001	79	144	83	61	16	
ORTUGAL DATAR	14538 57	65 49	14473 8	23 34	87 4	12 2	75 2	6	
EPUBLIC OF MOLDOVA	953	0	953	0	1	0	1	0	
EUNION OMANIA	210 8326	1 105	209 8221	0 8	2 12	0 2	2 10	0	
USSIA	44172	455	43717	85	119	40	79	19	
AUDI ARABIA	302	265	37	155	11	10	1	7	
ERBIA INGAPORE	5521 4156	29 845	5492 3311	3 192	3 139	1 88	2 51	0 35	
LOVAKIA	5685	24	5661	0	23	3	20	0	
LOVENIA	3099	44	3055 70	4	43	7 55	36 4	1	
OUTH AFRICA OUTH KOREA	404 6097	334 2996	70 3101	185 1240	59 1222	55 884	338	41 507	
PAIN	44586	275	44311	115	605	85	520	54	
RI LANKA WEDEN	268 47755	249 911	19 46844	5 284	1 1253	1 378	0 875	1 159	
WITZERLAND	606	348	258	243	253	176	77	145	
AIWAN	3330	2508	822	904	684	616	68	288	
HAILAND UNISIA	2867 41	797 34	2070 7	233 2	33 1	26 1	7 0	14 0	
URKEY	2202	480	1722	120	65	45	20	25	
KRAINE NITED ARAB EMIRATES	27602	33 97	27569 19	6 49	2 5	0 5	2	0	
NITED AKAB EMIKATES NITED KINGDOM	116 33578	1939	31639	770	1490	571	919	308	
NITED STATES	15620	12610	3010	3863	4189	3670	519	1774	
RUGUAY IZBEKISTAN	120 271	0	120 271	0	0	0	0	0	
TETNAM	2880	758	2122	24	2	2	0	0	
TRIGIN ISL	194	140	54	2	9	8	1	0	
IMBABWE Others Africa	66 139	10 62	56 77	4 12	1	0	1	0	
Others Asia	126	30	96	13	0	0	0	0	
Others Australia	39	7	32	3	0	0	0	0	
Others Europe Others North America	136 235	17 55	119 180	11 8	1 5	0 5	1 0	0 1	
Others South America	79	3	76	ő	1	0	1	0	
	801569	62372	739197	18820	25735	13213	12522	6497	

Panel B: Patent count and firm ave	(1) rage patent count	(2)	(3)	(4)	(5)	(6)	(7)	(8)
_	8- k		nt count		A	verage no. of patents	s cond. on patenting	
nom mark	Full	Public	Private	Trucost	Full	Public	Private	Trucost
ARGENTINA AUSTRALIA	76 3325	75 2585	1 740	21 1957	4.5 2.9	4.7 3.0	1.0 2.7	2.6 4.1
AUSTRIA BANGLADESH	12601 0	7464 0	5137 0	5441 0	13.2	20.0	8.8	24.6
BELGIUM	14726	8352	6374	5961	7.5	18.8	4.2	22.4
BERMUDA BOLIVIA	792 0	777	15 0	117	4.4	4.6	1.4	10.6
BOSNIA & HERZEGOVINA	3	0	3	0	1.5		1.5	
BRAZIL BULGARIA	1285 49	1102 8	183 41	694	4.3 1.1	5.0 1.1	2.3 1.1	4.4 1.0
CANADA	21968	20795	1173	12958	12.8	13.5	6.9	23.4
CANARY ISLANDS CAYMAN ISLANDS	1 804	0 599	1 205	33	1.0 7.2	7.9	1.0 5.7	5.5
CHILE	1375	1364	11	768	14.6	15.9	1.4	14.8
CHINA COLOMBIA	37617 8	28891 8	8726 0	25049 8	10.6 1.1	11.6 1.1	8.2	17.6 1.1
COTE D'IVOIRE	0	0	0	0				
CROATIA CYPRUS	13 45	7 7	6 38	0 5	1.4 1.7	1.2 1.8	2.0 1.7	2.5
CZECH REP	271	11	260	10	1.8	1.4	1.9	1.4
DENMARK ECUADOR	12411 0	5816	6595 0	5489	7.0	13.8	4.9	18.5
EGYPT	446	436	10	2	21.2	29.1	1.7	2.0
ESTONIA FINLAND	41 26134	0 23547	41 2587	0 22769	1.2 19.0	40.0	1.2 3.3	62.4
RANCE	122478	90499	31979	86106	20.5	45.0	8.1	64.0
GERMANY GREECE	157802 115	120251 95	37551 20	109786 35	22.9 1.5	50.7 1.6	8.3 1.1	83.6 1.6
GUADELOUPE	0		0					
GUERNSEY HONG KONG	44 6044	38 5972	6 72	9 5390	2.9 14.9	3.2 15.4	2.0 4.2	2.3 21.6
HUNGARY	314	199	115	134	4.6	6.0	3.3	7.4
CELAND NDIA	776 7222	449 6142	327 1080	31 5113	9.7 6.0	15.0 6.6	6.5 4.0	15.5 8.7
INDONESIA	4	4	0	3	1.0	1.0		1.0
RAQ RELAND	0 5213	4249	0 964	3826	19.0	24.4	9.5	25.2
SLAMIC REPUBLIC OF IRAN	0		0					
SLE OF MAN SRAEL	3 3388	1 3095	2 293	1 2003	1.0 4.6	1.0 4.9	1.0 2.5	1.0 8.1
TALY	24565	12241	12324	10033	4.6	13.9	2.7	21.5
AMAICA APAN	0 335534	0 324725	0 10809	0 300059	27.3	29.2	9.1	48.0
ERSEY	68	59	9	44	2.6	3.1	1.3	3.1
ORDAN KAZAKHSTAN	11 4	11 0	0	0	1.2 1.0	1.2	1.0	
ENYA	0	0	0	0		i.		
CUWAIT LATVIA	5 35	4 29	1	1	1.0 1.9	1.0 2.2	1.0 1.2	1.0
LIECHTENSTEIN	1114	0	1114	0	65.5		65.5	
LITHUANIA LUXEMBOURG	12 5418	3 944	9 4474	0 879	1.1 6.7	1.0 8.6	1.1 6.4	10.0
MALAYSIA	461	359	102	259	2.3	2.3	2.2	2.8
MALTA MARTINIQUE	65 0	1	64 0	1	1.9	1.0	1.9	1.0
MAURITIUS	3	1	2	0	1.0	1.0	1.0	2.
MEXICO MONGOLIA	905 0	876 0	29 0	816 0	6.9	7.7	1.6	8.8
MONTENEGRO	0	0	0		<u>.</u> .		_:_	
MOROCCO NETHERLANDS	24 45008	2 36806	22 8202	0 34510	2.4 31.6	1.0 67.8	2.8 9.3	79.9
NEW ZEALAND	364	264	100	177	3.2	3.3	3.0	6.1
NIGERIA NORTH MACEDONIA	0 3	0	0	0	1.0		1.0	
NORWAY	3658	2029	1629	1669	2.7	4.8	1.7	6.6
OMAN PAKISTAN	1 2	0	1 2	0	1.0 1.0		1.0 1.0	
PALESTINIAN TERRITORIES	0	0	0					
PANAMA PARAGUAY	0 2	0	0 2	0	1.0		1.0	
PERU	5	1	4	1	1.3	1.0	1.3	1.0
PHILIPPINES POLAND	136 933	77 748	59 185	53 207	2.2 3.1	2.0 3.8	2.6 1.7	2.0 4.9
PORTUGAL	362	39	323	22	1.8	1.5	1.8	1.4
QATAR REPUBLIC OF MOLDOVA	5 1	1	4 1	0	1.0 1.0	1.0	1.0 1.0	
REUNION	3	0	3		1.0		1.0	
ROMANIA RUSSIA	11 602	2 216	9 386	0 181	1.1 2.7	2.0 3.2	1.0 2.5	3.8
AUDI ARABIA	4815	3226	1589	2488	145.9	119.5	264.8	191.4
SERBIA SINGAPORE	4 1316	2 924	2 392	0 545	1.3 3.4	2.0 3.6	1.0 3.2	3.7
SLOVAKIA	52	12	40		1.3	1.7	1.2	
SLOVENIA SOUTH AFRICA	246 1376	153 1354	93 22	62 1322	2.6 8.0	5.7 8.4	1.4 2.2	6.9 9.1
SOUTH KOREA	111012	108110	2902	105775	30.4	38.0	3.6	55.0
SPAIN SRI LANKA	6425 1	3573 1	2852 0	3118 1	4.0 1.0	9.0 1.0	2.4	11.5 1.0
WEDEN	65379	54698	10681	51619	17.6	37.8	4.7	70.0
WITZERLAND AIWAN	44713 13945	41808 13670	2905 275	40503 12050	33.0 7.1	39.3 7.5	10.0 1.8	46.8 11.4
HAILAND	721	705	16	633	6.4	7.0	1.3	7.9
TUNISIA TURKEY	1 3354	0 3084	1 270	0 2868	1.0 15.7	18.0	1.0 6.3	23.3
JKRAINE	1	0	1	0	1.0	•	1.0	
JNITED ARAB EMIRATES JNITED KINGDOM	26 42199	25 29024	1 13175	25 27599	2.4 9.0	2.5 12.2	1.0 5.8	2.5 15.1
JNITED STATES	361345	353299	8046	301587	19.3	20.5	5.4	33.2
JRUGUAY JZBEKISTAN	0	•	0	·	:		•	
/IETNAM	1	1	0	0	1.0	1.0		
/IRIGIN ISL /IMBABWE	32 7	31 0	1 7	0	1.6 7.0	1.6	1.0 7.0	
Others Africa	229	ő	229	0	28.6		28.6	
Others Asia Others Australia	0	0	0	0	:			
Others Europe	1	0	1	0	1.0	•	1.0	
Others North America Others South America	139 13	139 0	0 13	7	6.9 1.4	6.9	1.4	2.3
			187952	1192835	*.*	•	***	37.3

TABLE IA.II: PATENT FIRM-YEAR DATA BY COUNTRY

The sample period is 2005-2020. We report the number of firm-year observations by country for the full (public and private), public, private and Trucost sample. The full sample is based on firms from Orbis/ Orbis IP, FactSet, Worldscope and Trucost. Countries with less than 300 firm-year observations in the full sample are aggregated by region under "Others" as in Table IA.I. We report firm-year observations for the entire sample covering patenting and non-patenting firm-year observations in columns 1 to 4 as well as firm-year observations with at least one granted or purchased patent at the European Patent Office in columns 5 to 8.

	(1)	(2) Full s	(3) sample	(4)	(5)	(6) Patentin	(7) z sample	(8)
	Full	Public	Private	Trucost	Full	Public	Private	Trucost
ARGENTINA	1261	541	720	130	17	16	1	8
AUSTRALIA AUSTRIA	28788 10544	8605 865	20183 9679	4418 421	1144 958	865 373	279 585	472 221
BANGLADESH	909	415	494	40	956	0	0	0
BELGIUM BERMUDA	235974	1102	234872	595 193	1968	444	1524	266
BOLIVIA	6339 356	5566 0	773 356	0	180 0	169 0	11 0	11 0
BOSNIA & HERZEGOVINA	13979 8103	64 3051	13915 5052	1	2 297	0	2 78	0
BRAZIL BULGARIA	112034	829	111205	1628 31	45	219 7	38	156 2
CANADA	38973	33348	5625	3712	1717 1	1546	171	554
CANARY ISLANDS CAYMAN ISLANDS	11750 7456	6 3836	11744 3620	0 88	112	0 76	1 36	0 6
CHILE CHINA	2493 339786	1383 38313	1110 301473	509 12744	94 3547	86 2481	8 1066	52 1426
COLOMBIA	1559	369	1190	160	3347 7	7	0	7
COTE D'IVOIRE	70	36	34	17	0	0	0	0
CROATIA CYPRUS	20425 4250	424 285	20001 3965	22 27	9 26	6 4	3 22	0 2
CZECH REP	87217	117	87100	69	148	8	140	7
DENMARK ECUADOR	296922 626	1429 0	295493 626	541 0	1771 0	422 0	1349 0	297 0
EGYPT	2475	995	1480	379	21	15	6	1
ESTONIA FINLAND	57668 85592	116 1660	57552 83932	21 606	33 1374	0 588	33 786	0 365
FRANCE	396609	5270	391339	2628	5978	2013	3965	1346
GERMANY GREECE	99925 12962	6314 1071	93611 11891	2248 356	6899 78	2373 60	4526 18	1313 22
GUADELOUPE	628	0	628	0	0	0	0	0
GUERNSEY HONG KONG	337 10248	160 9272	177 976	35 3500	15 406	12 389	3 17	4 249
HUNGARY	40948	249	40699	3500 69	68	33	35	249 18
CELAND	22383	149	22234	13	80	30	50	2
INDIA INDONESIA	76694 4111	15831 3109	60863 1002	4317 1135	1210 4	937 4	273 0	590 3
IRAQ	588	0	588	0	0	0	0	0
IRELAND ISLAMIC REPUBLIC OF IRAN	10561 3822	571 0	9990 3822	429 0	275 0	174 0	101 0	152 0
ISLE OF MAN	186	72	114	15	3	1	2	1
SRAEL TALY	5260 575420	4293 3026	967 572394	921 1307	744 5363	629 880	115 4483	248 467
[AMAICA	554	161	393	9	0	0	0	0
APAN ERSEY	76771	48139	28632	16199	12311	11128	1183	6247
ORDAN	406 1051	179 630	227 421	45 41	26 9	19 9	7 0	14 0
KAZAKHSTAN	1557	59	1498	33	4	0	4	0
CENYA CUWAIT	208 1103	141 877	67 226	88 129	0 5	0 4	0 1	0
ATVIA	19794	167	19627	0	18	13	5	0
JECHTENSTEIN JITHUANIA	50 6460	20 202	30 6258	14 15	17 11	0	17 8	0
LUXEMBOURG	21286	418	20868	245	809	110	699	88
MALAYSIA MALTA	80209 19845	6320 73	73889 19772	1654 15	200 35	153 1	47 34	93 1
MARTINIQUE	610	0	610	0	0	0	0	0
MAURITIUS	1235	341	894 432	20	3	1	2	0
MEXICO MONGOLIA	1690 1278	1258 4	1274	738 4	132 0	114 0	18 0	93 0
MONTENEGRO	3229	38	3191	0	0	0	0	0
MOROCCO NETHERLANDS	911 45112	282 1392	629 43720	174 884	10 1425	2 543	8 882	0 432
NEW ZEALAND	2033	807	1226	425	113	80	33	29
NIGERIA NORTH MACEDONIA	759 8772	461 73	298 8699	176 0	0	0	0	0
NORWAY	348158	2077	346081	746	1379	423	956	252
OMAN PAKISTAN	813 3074	321 1533	492 1541	79 417	1 2	0	1 2	0
PALESTINIAN TERRITORIES	170	57	113	0	0	0	0	0
PANAMA	331	15	316	9	0	0	0	0
PARAGUAY PERU	518 1835	0 653	518 1182	0 204	2 4	0 1	2 3	0 1
PHILIPPINES	4211	2731	1480	649	62	39	23	27
POLAND PORTUGAL	70959 116018	4116 381	66843 115637	643 196	305 203	195 26	110 177	42 16
QATAR	390	340	50	205	5	1	4	0
REPUBLIC OF MOLDOVA REUNION	5211 1298	0	5211 1295	0	1 3	0	1 3	0
ROMANIA	69425	455	68970	53	10	1	9	0
RUSSIA BAUDI ARABIA	297311 1430	1845 1213	295466 217	644 390	224 33	68 27	156 6	48 13
SERBIA	41567	68	41499	16	3	1	2	0
SINGAPORE SLOVAKIA	17527 45549	4834 82	12693 45467	1160 0	382 41	259 7	123 34	149 0
SLOVENIA	24892	158	24734	31	95	27	68	9
SOUTH AFRICA	2820 48207	2396 19499	424 28708	1828 7492	172 3651	162 2848	10 803	146 1924
OUTH KOREA PAIN	48207 360397	19499 1615	28708 358782	7492 972	3651 1608	2848 398	803 1210	1924 270
RI LANKA	1315	1101	214	52	1	1	0	1
WEDEN WITZERLAND	337849 4762	5748 2576	332101 2186	1741 1899	3716 1354	1447 1064	2269 290	737 866
AIWAN	24896	18442	6454	5551	1975	1820	155	1061
THAILAND TUNISIA	21114 163	4541 81	16573 82	1409 16	113 1	101 0	12 1	80 0
URKEY	11677	2495	9182	827	214	171	43	123
JKRAINE JNITED ARAB EMIRATES	200831 681	93 532	200738 149	35 260	1 11	0 10	1 1	0 10
JNITED KINGDOM	197087	10586	186501	7175	4673	2384	2289	1826
JNITED STATES	98517	81296	17221	24913	18697	17218	1479	9072
JRUGUAY JZBEKISTAN	497 1498	0	497 1498	0	0	0	0	0
/IETNAM	18615	2778	15837	143	1	1	0	0
/IRIGIN ISL ZIMBABWE	1153 494	839 31	314 463	6 21	20 1	19 0	1	0
Others Africa	671	137	534	72	8	0	8	0
Others Asia	815 290	160	655 270	73 9	0	0	0	0
Others Australia Others Europe	610	20 53	557	32	0 1	0	1	0
Others North America	1506	295	1211	21	20	20	0	3
Others South America	512	5	507	0	9	0	9	0
lotal [5318818	390985	4927833	124222	88727	55786	32941	31942

TABLE IA.III: GREEN/BROWN EFFICIENCY INNOVATION BY COUNTRY

The sample period is 2005-2020. In Panel A, we report the number of firm observations with at least one green, resepctively brown efficiency, European Patent Office patent by country for the full (public and private), public, private and Trucost sample. In Panel B, we report green European Patent Office patent counts and average green European Patent Office patent counts by firm conditional on green patenting. In Panel C, we report brown efficiency European Patent Office patent counts and average brown efficiency European Patent Office patent counts by firm conditional on brown efficiency patenting. The full sample is based on firms from Orbis/ Orbis IP, FactSet, Worldscope and Trucost. Countries with less than 300 firm-year observations in the full sample are aggregated by region under "Others" as in Table IA.I.

Table IA.I. Panel A: Firm count	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
-			ne green patent				wn efficiency patent	
ARGENTINA	Full 4	Public 4	Private 0	Trucost 1	Full 6	Public 6	Private 0	Trucost 3
AUSTRALIA AUSTRIA	134 81	106 36	28 45	44 23	51 55	41 24	10 31	20
BANGLADESH	0	0	0	0	0	0 20	0	16 0
BELGIUM BERMUDA	151 16	43 15	108 1	26 3	59 10	10	39 0	12 4
BOLIVIA BOSNIA & HERZEGOVINA	0	0 0	0	0	0	0	0	0
BRAZIL BULGARIA	35 8	21 3	14 5	16 1	11 3	9 1	2 2	6
CANADA CANARY ISLANDS	164 0	153 0	11 0	53 0	49 0	47 0	2 0	27 0
CAYMAN ISLANDS CHILE	10 4	8	2	2 3	3	2 4	1 0	0
CHINA COLOMBIA	438 1	294 1	144 0	228	135	99 1	36 0	80 1
COTE D'IVOIRE	0	0	0	0	0	0	0	0
CROATIA CYPRUS	0 4	0 1	0 3	0 1	1 2	0	1 2	0
CZECH REP DENMARK	11 227	0 32	11 195	0 23	4 68	0 12	4 56	0 11
ECUADOR EGYPT	0 3	0	0	0 1	0	0	0	0
ESTONIA FINLAND	5 124	0 44	5 80	0 32	1 58	0 24	1 34	0 21
FRANCE	427 575	174 219	253 356	120 132	172 293	81 115	91 178	66
GERMANY GREECE	5	5	0	1	4	3	1	80 2
GUADELOUPE GUERNSEY	0 2	0 2	0	0 1	0	0 1	0	0 1
HONG KONG HUNGARY	50 6	47 2	3 4	36 1	13 4	13 2	0 2	11 0
ICELAND INDIA	3 119	1 94	2 25	0 63	0 49	0 37	0 12	0 28
INDONESIA IRAO	0	0 0	0 0	0	0	0	0 0	0
IRELAND ISLAMIC REPUBLIC OF IRAN	32	25	7	18	16	12	4	7
ISLE OF MAN	0	0	0	0	0	0	0	0
ISRAEL ITALY	61 363	48 79	13 284	23 40	19 177	17 54	2 123	11 35
JAMAICA JAPAN	0 1046	0 936	0 110	0 565	0 510	0 468	0 42	0 329
JERSEY JORDAN	5 1	3 1	2 0	2 0	0	0	0	0
KAZAKHSTAN KENYA	2	0	2 0	0	0	0	0	0
KUWAIT	0	0	0	0	0	0	0	0
LATVIA LIECHTENSTEIN	2	0	1	0	0	0	0	0
LITHUANIA LUXEMBOURG	1 78	0 6	1 72	0 5	1 52	0 8	1 44	0 6
MALAYSIA MALTA	18 3	15 0	3 3	9	14 0	8	6 0	8
MARTINIQUE MAURITIUS	0	0	0	0	0	0	0	0
MEXICO MONGOLIA	11 0	9	2 0	9	8	7	1 0	6
MONTENEGRO MOROCCO	0	0	0 2	0	0	0	0	0
NETHERLANDS	161	56	105	45	87	41	46	33
NEW ZEALAND NIGERIA	11 0	6	5 0	3	0	0	2	0
NORTH MACEDONIA NORWAY	0 168	0 45	0 123	0 28	0 67	0 23	0 44	0 15
OMAN PAKISTAN	0	0 0	0	0	0	0	0	0
PALESTINIAN TERRITORIES PANAMA	0	0	0	0	0	0	0	0
PARAGUAY PERU	0	0	0	0	0	0	0	0
PHILIPPINES POLAND	3 33	2 20	1 13	2 5	1 13	0	1 4	0
PORTUGAL	21	2	19	2	8	2	6	2
QATAR REPUBLIC OF MOLDOVA	0	0	0	0	1 0	0	1 0	0
REUNION ROMANIA	0	0	0	0	0 2	0	0 2	0
RUSSIA SAUDI ARABIA	23 6	10 5	13 1	5 3	10 4	4 3	6 1	3
SERBIA SINGAPORE	1 41	0 27	1 14	0 15	0 16	0 12	0 4	0
SLOVAKIA SLOVENIA	3 11	0 4	3 7	0	1 3	0	1 2	0
SOUTH AFRICA	14	13	1	12	6	6	0	4
SOUTH KOREA SPAIN	415 146	327 33	88 113	232 26	115 34	91 14	24 20	65 12
SRI LANKA SWEDEN	1 306	1 125	0 181	1 67	0 124	0 61	0 63	0 39
SWITZERLAND TAIWAN	121 199	98 186	23 13	84 110	46 29	37 29	9	34 19
THAILAND TUNISIA	9	9	0	8	3	3 0	0	3 0
TURKEY UKRAINE	18 0	14 0	4 0	11 0	11 0	9	2	7 0
UNITED ARAB EMIRATES UNITED KINGDOM	3 406	3 220	0 186	3 148	1 197	1 107	0 90	1 77
UNITED STATES	1559	1414	145	863	539	511	28	366
URUGUAY UZBEKISTAN	0	0	0	0	0	0	0	0
VIETNAM VIRIGIN ISL	0 3	0	0	0 0	0	0	0	0
ZIMBABWE Others Africa	1	0	1	0	0	0	0	0
Others Asia Others Australia	0	0	0	0	0	0	0	0
Others Europe	0 1	0	0	0	1 1	0 1	1 0	0
Others North America Others South America	1	0	1	0	1	0	1	0
Total	7854	4994	2860	3091	3145	2057	1088	1450

Panel B: Patent count and firm ave	(1) rage patent coun	(2) t for green patents	(3)	(4)	(5)	(6)	(8)	
_	-8-1	Patent	count		A	werage no. of patent		
A D.C. P. P. P. P. A.	Full	Public	Private	Trucost	Full	Public	Private	Trucost
ARGENTINA AUSTRALIA	11 308	11 240	0 68	1 162	3.7 1.4	3.7 1.5	1.2	1.0 1.6
AUSTRIA BANGLADESH	1070 0	773 0	297 0	519 0	4.3	5.7	2.7	5.4
BELGIUM	1991	1232	759	885	4.1	6.4	2.6	6.3
BERMUDA BOLIVIA	68 0	67	1 0	29	2.4	2.5	1.0	9.7
BOSNIA & HERZEGOVINA	0	0	0	0				
BRAZIL BULGARIA	163 14	117 4	46 10	107 1	2.0 1.0	2.1 1.0	2.0 1.0	2.2 1.0
CANADA	2071	1998	73	1418	4.7	5.0	2.0	7.0
CANARY ISLANDS CAYMAN ISLANDS	0 119	0 115	0 4	1	3.1	3.2	1.3	1.0
CHILE	186	186	0	104	6.0	6.0		5.5
CHINA COLOMBIA	3260 4	2660 4	600 0	2347 4	3.9 1.3	4.3 1.3	2.7	5.2 1.3
COTE D'IVOIRE	0	0	0	0				
CROATIA CYPRUS	0 4	0 1	0	0 1	1.0	1.0	1.0	1.0
CZECH REP	16	0	16	0	1.1		1.1	
DENMARK CCUADOR	3051 0	1689	1362 0	1663	6.7	11.3	4.5	12.8
EGYPT	10	8	2	0	1.7	1.6	2.0	
STONIA INLAND	12 1267	0 1021	12 246	0 968	1.5 3.3	4.3	1.5 1.7	4.7
RANCE	12412	10239	2173	9892	8.1	12.1	3.2	13.8
GERMANY GREECE	19691 6	15808 6	3883 0	14728 1	10.7 2.0	16.6 2.0	4.4	20.0 1.0
GUADELOUPE	0		0				•	
GUERNSEY HONG KONG	8 891	8 880	0 11	2 827	2.7 8.0	2.7 8.3	2.2	2.0 10.3
HUNGARY	6	3	3 2	2	1.2	1.5	1.0	2.0
CELAND NDIA	3 799	1 711	88	0 655	1.0 3.1	1.0 3.4	1.0 1.7	3.9
NDONESIA RAQ	0	0	0	0		•		
RELAND	348	311	37	271	5.2	6.0	2.5	5.9
SLAMIC REPUBLIC OF IRAN	0		0		•	•		
SLE OF MAN SRAEL	0 247	0 226	0 21	0 133	1.8	1.9	1.2	2.0
TALY	2116	1254	862	1092	2.4	4.3	1.5	5.4
AMAICA APAN	0 43713	0 41881	0 1832	0 39531	9.2	9.4	5.4	11.9
ERSEY	12	9	3	9	2.0	2.3	1.5	2.3
ORDAN (AZAKHSTAN	2 2	0	0 2	0	1.0 1.0	1.0	1.0	
ENYA	0	0	0	0	•	•	•	
CUWAIT .ATVIA	0 4	0	0 1	0	1.0	1.0	1.0	
JECHTENSTEIN	37	0	37	0	2.6	•	2.6	
LITHUANIA LUXEMBOURG	0 311	0 100	0 211	0 81	1.8	3.2	1.5	3.4
MALAYSIA	35	30	5	23	1.1	1.1	1.0	1.1
MALTA MARTINIQUE	3 0	0	3 0	0	1.0		1.0	
MAURITIUS	0	0	0	0				
MEXICO MONGOLIA	76 0	74 0	2 0	71 0	2.1	2.1	1.0	2.2
MONTENEGRO	0	0	0					
MOROCCO NETHERLANDS	10 3916	1 3331	9 585	0 3198	1.4 8.3	1.0 13.1	1.5 2.7	14.8
NEW ZEALAND	27	6	21	3	2.1	1.2	2.6	1.0
NIGERIA NORTH MACEDONIA	0	0	0	0				
NORWAY	539	278	261	231	1.6	2.0	1.3	2.2
OMAN PAKISTAN	0	0	0	0				
PALESTINIAN TERRITORIES	0	0	0		•	•	•	
PANAMA PARAGUAY	0	0	0	0				
PERU	0	0	0	0				
PHILIPPINES POLAND	10 70	6 59	4 11	6 18	1.7 1.6	1.5 1.7	2.0 1.1	1.5 1.6
PORTUGAL	33	4	29	4	1.2	1.0	1.2	1.0
QATAR REPUBLIC OF MOLDOVA	0	0	0	0				
REUNION	0	0	0	. 0		-	•	
ROMANIA RUSSIA	166	57	109	50	3.5	4.8	3.0	5.0
AUDI ARABIA	671 1	561 0	110 1	474 0	33.5 1.0	40.1	18.3 1.0	52.7
ERBIA INGAPORE	219	153	66	109	1.0	2.0	1.0	2.0
ILOVAKIA ILOVENIA	3	0	3		1.0		1.0	
OUTH AFRICA	14 149	5 148	9 1	1 144	1.1 3.1	1.3 3.1	1.0 1.0	1.0 3.3
OUTH KOREA	20357	20067	290	19757	17.9	20.6	1.8	24.7
PAIN RI LANKA	1967 1	1685 1	282 0	1624 1	6.3 1.0	16.0 1.0	1.4	17. 1.
WEDEN	2720	1860 3535	860	1680	3.4	4.6 9.1	2.2	5.0
WITZERLAND AIWAN	3826 1303	3535 1276	291 27	3443 1124	8.2 2.9	9.1 3.0	3.6 1.2	10.0 3.6
HAILAND	99	98	1	97	2.4	2.5	1.0	2.5
'UNISIA 'URKEY	0 87	0 70	0 17	0 66	1.9	1.9	1.9	2.0
JKRAINE	0	0	0	0			-	
JNITED ARAB EMIRATES JNITED KINGDOM	4 4311	4 3174	0 1137	4 3005	1.0 3.8	1.0 4.4	2.8	1.0 4.9
JNITED STATES	27548	26791	757	21063	5.0	5.2	2.5	5.9
JRUGUAY JZBEKISTAN	0		0					
TETNAM	0	0	0	0			•	
TRIGIN ISL TIMBABWE	5 1	5 0	0 1	0	1.3 1.0	1.3	1.0	
Others Africa	4	0	4	0	1.3		1.3	
Others Asia Others Australia	0	0	0	0				
Others Europe	0	0	0	0				
Others North America Others South America	1 11	1 0	0 11	0	1.0 1.4	1.0	1.4	
	162420	144848	17572	131630	6.7	8.0	2.9	9.8

anel C: Patent count and firm ave	rage patent count	for brown efficiency	y patents				(8)	
_		Pateni	count	T		verage no. of patents	Trucost	
RGENTINA	Full 8	Public 8	Private 0	Trucost 3	Full 1.3	Public 1.3	Private	Trucost
USTRALIA	159	138	21	88	1.6	1.6	1.5	1.7
USTRIA ANGLADESH	507 0	121 0	386 0	104 0	3.8	1.6	6.3	1.5
ELGIUM	870	676	194	533	4.8	7.0	2.3	7.4
ERMUDA OLIVIA	28 0	28	0	5	1.4	1.4		1.3
OSNIA & HERZEGOVINA	0	0	0	0				
RAZIL JLGARIA	30 2	28 1	2 1	25 0	1.4 1.0	1.4 1.0	1.0 1.0	1.
ANADA	407	403	4	264	2.9	2.9	1.0	3.
ANARY ISLANDS AYMAN ISLANDS	0 54	0 53	0 1	0	4.5	4.8	1.0	
HILE	8	8	0	3	1.0	1.0	25	1.0
HINA OLOMBIA	563 1	330 1	233 0	247 1	2.4 1.0	1.9 1.0	3.8	1. 1.
OTE D'IVOIRE	0	0	0	0				
ROATIA (PRUS	1 2	0	1 2	0	1.0 1.0		1.0 1.0	
ZECH REP	4	0	4	0	1.0		1.0	
ENMARK CUADOR	331 0	43	288 0	40	2.8	1.4	3.3	1.
GYPT	0	0	0	0				
TONIA NLAND	1 726	0 632	1 94	0 613	1.0 4.0	6.0	1.0 1.3	6.
ANCE	5121	4672	449	4575	8.1	11.5	2.0	12.
ERMANY	10572	9206	1366	8331	11.7	18.0	3.5	19.
REECE UADELOUPE	5 0	4	1 0	3	1.0	1.0	1.0	1.
JERNSEY	5	5	0	5	2.5	2.5		2.
DNG KONG JNGARY	115 11	115 1	0 10	113 0	3.8 2.8	3.8 1.0	3.3	4.
ELAND	0	0	0	0				
IDIA IDONESIA	302 0	261 0	41 0	219 0	2.2	2.5	1.2	2.
AQ	0		0					
ELAND LAMIC REPUBLIC OF IRAN	133 0	128	5 0	122	5.1	5.8	1.3	6.
LE OF MAN	0	0	0	0				
RAEL ALY	84 1383	82 914	2 469	19 682	2.4 2.8	2.5 4.2	1.0 1.7	1. 4.
MAICA	0	0	0	0	2.0			
PAN RSEY	15564 0	15066 0	498 0	14258 0	7.3	7.5	4.2	8.
RDAN	0	0	0	0				
AZAKHSTAN ENYA	0	0	0	0				
JWAIT	0	0	0	0				
TVIA	0	0	0					
ECHTENSTEIN THUANIA	4 0	0	4 0	0	1.0		1.0	
JXEMBOURG	179	26	153	25	1.9	1.4	2.0	1.
ALAYSIA ALTA	29 0	22 0	7 0	20 0	1.1	1.2	1.0	1.
ARTINIQUE	0		0					
AURITIUS EXICO	0 23	0 22	0 1	0 20	1.3	1.3	1.0	1.
ONGOLIA	0	0	0	0				
ONTENEGRO OROCCO	0	0	0	. 0		-		
ETHERLANDS	572	450	122	442	2.9	3.8	1.6	3.
EW ZEALAND	2	0	2	0	1.0		1.0	
GERIA ORTH MACEDONIA	0	0	0	0				
ORWAY	204	133	71	115	1.5	1.9	1.1	1.
MAN KISTAN	0	0	0	0 0				
LESTINIAN TERRITORIES	0	0	0					
NAMA RAGUAY	0	0	0	0				
RU	0	0	0	0				
HLIPPINES DLAND	2 82	0 78	2 4	0 22	2.0 3.4	3.9	2.0 1.0	3.
DRTUGAL	7	2	5	2	1.0	1.0	1.0	1.
ATAR EPUBLIC OF MOLDOVA	1 0	0	1 0	0	1.0		1.0	
EUNION	0	0	0					
OMANIA JSSIA	2 14	1 8	1 6	0 7	1.0 1.3	1.0 1.6	1.0 1.0	1.
UDI ARABIA	290	255	35	213	16.1	21.3	5.8	26
RBIA NGAPORE	0 70	0 50	0 20	0 46	1.6	1.7	1.5	1
OVAKIA	70 1	0	20 1	46	1.6	1.7	1.5	1.
OVENIA UTH AFRICA	3	0	3	0	1.0		1.0	1
OUTH AFRICA OUTH KOREA	18 2041	18 1942	0 99	15 1873	1.2 5.3	1.2 5.7	2.3	1.
AIN	80	39	41	38	1.4	1.7	1.2	1.
I LANKA /EDEN	0 1927	0 1537	0 390	0 1465	5.2	6.7	2.7	7
/ITZERLAND	541	485	56	467	3.3	3.6	2.1	3.
IWAN IAILAND	82 29	81 29	1 0	74 29	1.5 1.8	1.6 1.8	1.0	1.
NISIA	0	0	0	0				
RKEY RAINE	58 0	54 0	4 0	50 0	1.6	1.6	1.0	1.
NITED ARAB EMIRATES	0	0	0	0				
NITED KINGDOM	4619 15966	2773 15659	1846 307	2739	8.7 8.4	8.5 8.5	9.0	9.
NITED STATES RUGUAY	15966 0	13039	307 0	12878	8.4	8.5	4.3	9.
ZBEKISTAN	0		0					
ETNAM RIGIN ISL	0	0	0	0		•		
MBABWE	0	0	0	0			•	
hers Africa hers Asia	15 0	0	15 0	0	3.0	:	3.0	
hers Australia	0	0	0	0				
thers Europe	1	0	1	0	1.0		1.0	
hers North America hers South America	1	1 0	0 1	0	1.0 1.0	1.0	1.0	
	63861	56589	7272	50793	6.6	7.6	3.2	8.

TABLE IA.IV: DISTRIBUTIONS OF PATENT RATIOS

The sample period is 2005-2020. We report average patent ratios for the full (public and private), public, private and Trucost sample by country in Panel A, by GICS 6-Industry in Panel B, and by year in Panel C. Countries with less than 300 firm-year observations in the full sample are aggregated by region under "Others" as in Table 1A.1. We report the average GREENRATIOEP in columns 1 to 4 and the average BROWNEFFRATIOEP in columns 5 to 8. GREENRATIOEP is the number of green patents over the total number of patents granted or purchased at the firm and year level based on European Patent Office patents. BROWNEFFRATIOEP similarly is the number of brown efficiency patents over the total number of patents at the European Patent Office.

anel A: Patent ratio by country	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
_		GREENRAT	IOEP (in %)			BROWNEFFRA	ATIOEP (in %)	
	Full	Public	Private	Trucost	Full	Public	Private	Trucost
RGENTINA	3.431	3.646	0	2.083	17.157	18.229	0	21.8
USTRALIA	11.820	11.106	14.033	9.587	5.536	6.303	3.159	6.3
USTRIA ELGIUM	10.090 10.016	11.574 12.547	9.143 9.278	9.645 14.196	4.036 2.777	3.823 5.042	4.172 2.117	4.0 5.4
ERMUDA	7.001	6.865	9.091	16.651	7.527	8.017	0	13.9
OSNIA & HERZEGOVINA	0	0.000	0	10.001	0	0.017	0	10.7
RAZIL	14.423	11.860	21.616	15.956	1.982	2.156	1.496	2.2
ULGARIA	27.778	50.000	23.684	50.000	3.333	7.143	2.632	0
ANADA	14.952	14.943	15.027	16.274	3.370	3.601	1.288	3.4
ANARY ISLANDS	0		0		0		0	
AYMAN ISLANDS	17.005	24.333	1.535	2.381	2.279	2.042	2.778	0
HILE	8.534	9.328	0	11.928	2.777	3.035	0	0.1
HINA	12.895	12.712	13.320	13.883	2.630	2.742	2.368	2.6
OLOMBIA ROATIA	42.857 0	42.857 0	0	42.857	14.286 2.778	14.286 0	8.333	14.2
YPRUS	6.090	6.250	6.061	12.500	7.692	0	9.091	0
ZECH REP	9.009	0.230	9.524	0	2.365	ő	2.500	0
ENMARK	14.661	13.861	14.911	15.292	3.351	1.971	3.782	2.2
SYPT	11.003	8.737	16.667	0	0	0	0	0
TONIA	24.242		24.242		3.030		3.030	
NLAND	11.156	12.131	10.426	14.699	5.174	4.937	5.352	6.4
ANCE	9.410	11.005	8.600	11.561	2.399	2.887	2.151	2.9
RMANY	9.829	12.580	8.387	14.677	3.670	4.130	3.428	5.1
REECE	3.846	5.000	0	4.545	5.449	5.417	5.556	10.2
JERNSEY	6.222	7.778	0	8.333	11.111	13.889	0	41.6
ONG KONG	11.811	11.607	16.492	12.372	0.895	0.934	0	1.
INGARY	4.070	3.788	4.337	5.556	5.719	3.030	8.254	0
ELAND	1.750	0.667	2.400	0	0 5.432	0	0 8 715	0
DIA	9.668 0	9.765 0	9.337	11.933 0	5.432 0	4.475 0	8.715	5.0 0
DONESIA ELAND	7.409	8.122	6.182	7.572	2.190	1.507	3.366	1.0
E OF MAN	0	0	0.102	0	0	0	0	0
AEL	8.493	7.964	11.390	7.689	1.806	1.818	1.739	1.5
ALY	8.405	11.101	7.876	11.569	4.470	7.808	3.815	7.
PAN	11.974	11.933	12.363	13.117	4.009	4.190	2.311	4.
SEY	14.853	12.431	21.429	16.871	0	0	0	0
RDAN	22.222	22.222			0	0		
ZAKHSTAN	50.000		50.000		0		0	
WAIT	0	0	0	0	0	0	0	0
TVIA	10.648	7.051	20.000		0	0	0	
ECHTENSTEIN	2.941	_	2.941		0.307	_	0.307	
THUANIA	0	0	0	.==0	0	0	0	
XEMBOURG	8.876	7.933	9.024	4.758	5.086	3.172	5.387	2.8
ALAYSIA	10.953	11.377	9.574	12.131	7.248	7.060	7.859	9.4
ALTA AURITIUS	8.571 0	0	8.824 0	0	0	0	0	0
EXICO	11.866	11.986	11.111	14.065	4.499	4.333	5.556	3.9
DROCCO	44.833	50.000	43.542	14.005	0	0	0	J.
THERLANDS	12.803	12.364	13.073	12.195	3.662	3.030	4.050	3.
W ZEALAND	6.245	3.369	13.215	5.271	0.983	0	3.367	0
ORTH MACEDONIA	0		0		0		0	
DRWAY	16.378	13.005	17.870	12.324	5.511	5.150	5.671	5.
IAN	0		0		0		0	
KISTAN	0		0		0		0	
RAGUAY	0		0		0		0	
RU	0	0	0	0	0	0	0	0
ILIPPINES	9.677	10.256	8.696	14.815	0.645	0	1.739	0
LAND	8.738	9.714	7.009	8.097	3.534	4.075	2.576	2.
RTUGAL	10.755	13.462	10.358	21.875	3.448	7.692	2.825	12.
TAR PUBLIC OF MOLDOVA	0	0	0		20.000	0	25.000 0	
PUBLIC OF MOLDOVA UNION	0		0		0		0	
MANIA	0	0	0		15.000	50.000	11.111	
SSIA	18.115	15.124	19.419	17.780	1.629	1.779	1,563	1.4
UDI ARABIA	14.928	16.602	7.391	19.058	4.057	4.475	2.178	4.:
RBIA	33.333	0	50.000		0	0	0	
IGAPORE	16.440	17.319	14.588	19.931	5.226	5.325	5.018	7.
OVAKIA	7.317	0	8.824		2.439	0	2.941	
OVENIA	8.574	2.596	10.948	1.852	1.729	0	2.416	0
UTH AFRICA	13.326	13.531	10.000	12.959	4.299	4.564	0	3.
UTH KOREA	15.313	16.177	12.250	17.506	2.753	2.880	2.304	3.
AIN	13.898	18.612	12.347	23.800	1.844	1.841	1.845	2.
LANKA	100.000	100.000	40 ===	100.000	0	0	2 4 0 0	0
EDEN ITZERI AND	10.044	8.926	10.757	7.739	3.387	3.696	3.189	5.
ITZERLAND	10.205	9.203	13.881	9.153	1.721	1.844	1.269	1.
IWAN AILAND	11.846 11.684	11.718 12.577	13.346 4.167	11.997 15.567	0.913 1.710	0.936 1.913	0.645 0	1. 2.
NISIA	0	14.377	4.167 0	13.367	0	1.713	0	۷.
RKEY	4.534	4.443	4.895	3.690	2.461	2.493	2.333	3.0
RAINE	0	1.110	0	3.070	0	2.370	0	5.
IITED ARAB EMIRATES	23.485	25.833	0	25.833	0	0	0	0
ITED KINGDOM	10.455	11.534	9.330	10.907	4.215	3.933	4.508	4.
IITED STATES	10.084	9.975	11.351	10.046	2.594	2.705	1.301	3.
ETNAM	0	0			0	0		
RIGIN ISL	18.333	19.298	0		0	0	0	
MBABWE	14.286		14.286		0		0	
ners Africa	1.030		1.030		6.425		6.425	
ners Europe	0		0		100.000		100.000	
ners North America	0.333	0.333	00.5	0	0.556	0.556		0
ners South America	83.333		83.333		11.111		11.111	
tal	11.025	11.420	10.356	12.108	3.313	3.357	3.238	3.7

Paral P. Patast artis has CICC Circlaster	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel B: Patent ratio by GICS-6 industry		GREENRAT	TOEP (in %)		В	ROWNEFFR	ATIOEP (in '	%)
	Full	Public	Private	Trucost	Full	Public	Private	Trucost
Aerospace & Defense	9.492	9.719	8.443	9.142	5.539	5.787	4.394	6.052
Air Freight & Logistics	8.466	7.540	14.286	6.616	0.140	0.162	0	0.176
Airlines Auto Components	3.856 9.436	4.351 9.159	0 10.920	3.520 10.058	1.318 8.571	1.487 8.897	0 6.821	1.705 7.116
Automobiles	26.585	25.135	50.806	24.230	14.375	14.882	5.914	15.878
Banks	8.923	7.953	8.963	7.554	3.198	3.142	3.200	2.862
Beverages	11.315	11.483	10.590	12.240	0.445	0.548	0	0.642
Biotechnology	16.187	15.842 12.982	17.120	17.474 12.635	0.527	0.066	1.770 6.299	0.028
Building Products Capital Markets	11.655 9.757	9.184	8.336 10.002	8.949	6.164 3.576	6.110 3.096	3.782	4.587 2.446
Chemicals	14.032	14.708	11.415	14.545	3.386	3.427	3.227	3.631
Commercial Services & Supplies	9.342	9.728	9.122	9.935	4.887	4.927	4.864	4.980
Communications Equipment	5.010	5.061	4.735	4.859	0.473	0.515	0.245	0.238
Construction Materials	23.040 20.136	21.477 22.291	29.663 17.918	23.978 25.216	9.282 9.106	9.857 10.894	6.845 7.266	8.658 11.395
Construction & Engineering Consumer Finance	9.115	6.233	9.909	7.222	6.164	8.333	5.566	9.722
Containers & Packaging	3.985	3.590	5.014	3.757	0.509	0.528	0.459	0.471
Distributors	4.788	3.876	6.127	4.832	3.454	1.314	6.596	1.479
Diversified Consumer Services	6.048	0.111	7.571	0.390	2.204	0.297	2.693	1.039
Diversified Financial Services Diversified Telecommunication Services	8.471 3.296	8.471 3.354	3.118	8.671 2.053	5.316 0.200	5.316 0.240	0.079	4.935 0.099
Electric Utilities	51.136	47.124	63.475	44.165	11.261	12.972	6.000	14.053
Electrical Equipment	28.966	31.305	21.217	32.485	3.620	3.546	3.868	3.780
Electronic Equipment, Instruments & Components	11.617	11.447	13.201	11.268	1.586	1.519	2.212	1.362
Energy Equipment & Services	14.896	13.723	40.333	13.969	19.947	20.498	8.000	20.610
Entertainment Equity Real Estate Investment Trusts (REITs)	6.579 9.201	4.961 10.112	22.222 9.065	1.755 25.532	0 2.644	0 0.727	0 2.932	0
Food Products	12.321	11.457	15.193	11.788	0.580	0.682	0.240	0.959
Food & Staples Retailing	8.831	7.140	10.408	7.078	1.946	0.806	3.008	0
Gas Utilities	36.688	37.006	33.333	40.735	7.004	6.615	11.111	7.446
Health Care Equipment & Supplies	4.054	3.687	5.569	3.969	0.408	0.420	0.362	0.349
Health Care Providers & Services Health Care Technology	7.601 8.689	8.711 8.689	6.123	7.269 8.253	0.227 0.040	0.398 0.040	0	0.108 0.048
Hotels, Restaurants & Leisure	2.809	1.641	5.286	2.506	2.481	0.794	6.061	0.010
Household Durables	5.729	5.613	6.643	7.087	2.405	2.512	1.565	3.161
Household Products	5.400	5.400		5.114	1.253	1.253		0.649
IT Services	7.414 53.779	4.591 48.510	18.511 65.170	4.550 49.417	2.093 12.500	1.558 14.531	4.198 8.108	1.450 21.250
Independent Power and Renewable Electricity Producers Industrial Conglomerates	12.975	12.975	05.170	13.045	5.100	5.100	0.100	5.065
Insurance	8.517	8.334	8.681	7.572	1.775	3.399	0.318	2.989
Interactive Media & Services	3.000	3.000		3.111	0.143	0.143		0.148
Internet Software & Services (discont. 2018)	2.430	0.544	55.556	0.681	0.007	0.007	0	0.009
Internet & Direct Marketing Retail Leisure Products	4.197 8.814	2.861 9.868	7.345 1.762	3.692 12.864	1.183 1.277	0.966 1.468	1.695 0	0.327 1.909
Life Sciences Tools & Services	11.390	11.390	1.702	11.224	0.431	0.431	O	0.530
Machinery	8.267	8.156	8.569	8.839	6.890	7.532	5.147	8.299
Marine	15.618	11.964	20.204	12.761	7.920	6.185	10.098	6.597
Media Media (discont. 2018)	5.163 5.066	4.091 5.249	8.333 3.906	4.039 5.908	0.819 1.126	1.096 1.304	0	0.031 0.566
Metals & Mining	12.383	12.883	10.869	12.266	6.881	6.713	7.390	6.877
Multi-Utilities	36.686	36.686		37.253	11.821	11.821		12.005
Multiline Retail	8.252	9.407	0	10.225	0	0	0	0
Oil, Gas & Consumable Fuels	32.787	33.905	27.825	38.453	11.463	11.503	11.284	9.716
Paper & Forest Products Personal Products	10.728 4.031	10.720 4.381	10.781 2.179	11.814 2.891	1.104 0.172	1.252 0.205	0.062 0	1.171 0.117
Pharmaceuticals	7.661	7.456	8.395	5.992	0.172	0.203	0.063	0.074
Professional Services	10.444	14.152	9.778	8.848	2.790	4.488	2.485	6.967
Real Estate Management & Development	12.212	20.018	10.191	17.834	3.442	2.031	3.807	1.760
Road & Rail	18.871	16.711	22.547	14.477	0.667	0	1.802	0 653
Semiconductors & Semiconductor Equipment Software	17.679 4.186	17.930 3.293	16.305 6.757	20.064 1.935	0.895 1.185	0.669 0.737	2.127 2.473	0.653 0.228
Specialty Retail	8.227	6.460	11.112	5.651	1.015	1.329	0.501	0.495
Technology Hardware, Storage & Peripherals	4.723	4.872	3.272	4.816	0.489	0.481	0.574	0.528
Textiles, Apparel & Luxury Goods	5.157	4.702	6.723	3.595	0.700	0.422	1.659	0.245
Thrifts & Mortgage Finance	0 11 293	0 11 094	12 0/1	10.258	0 2.034	0 2.279	0	2 /117
Tobacco Trading Companies & Distributors	11.293 10.525	11.094 10.847	12.941 10.360	10.258	2.034 3.847	5.536	2.976	2.417 3.283
Transportation Infrastructure	7.022	3.427	10.205	2.326	2.273	0	4.286	0
Water Utilities	20.029	19.940	20.238	29.206	5.579	5.291	6.250	1.111
Wireless Telecommunication Services	2.232	2.232		2.016	0.158	0.158		0.166
Total	11.025	11.420	10.356	12.108	3.313	3.357	3.238	3.737

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
Panel C	: Patent ratio		` /	` '	` /	` /	` ,	` /			
		GREENRAT	IOEP (in %)		BROWNEFFRATIOEP (in %)						
-	Full	Public	Private	Trucost	Full	Public	Private	Trucost			
2005	7.975	8.363	7.201	9.147	2.835	3.044	2.419	3.408			
2006	8.039	8.761	6.590	9.120	3.171	3.386	2.741	4.487			
2007	8.975	9.679	7.558	9.734	3.174	3.494	2.531	3.703			
2008	8.682	9.736	6.639	10.598	3.282	3.395	3.062	4.080			
2009	9.496	10.210	8.131	10.784	3.029	3.294	2.522	3.819			
2010	10.036	10.531	9.065	11.105	3.113	3.175	2.991	4.024			
2011	10.151	10.747	9.076	11.356	3.337	3.474	3.090	4.261			
2012	10.966	11.366	10.353	12.992	3.413	3.758	2.884	4.811			
2013	11.839	11.911	11.728	12.626	3.311	3.607	2.854	4.192			
2014	11.983	12.264	11.502	13.725	3.460	3.256	3.810	3.688			
2015	11.582	12.157	10.625	13.242	3.507	3.451	3.599	4.219			
2016	12.117	12.794	11.076	13.012	3.251	3.244	3.263	3.505			
2017	12.152	12.094	12.241	11.983	3.615	3.397	3.951	3.353			
2018	12.097	12.132	12.046	12.054	3.560	3.484	3.669	3.802			
2019	12.783	13.482	11.791	13.404	3.276	3.193	3.393	3.318			
2020	12.959	13.064	12.754	13.173	3.203	2.980	3.639	2.970			
Total	11.025	11.420	10.356	12.108	3.313	3.357	3.238	3.737			

TABLE IA.V: SUMMARY STATISTICS OF QUANTITATIVE VARIABLES

The table reports sample averages, medians, and standard deviations of various firm-level characteristics for the period 2005 to 2020. Panel A reports summary statistics for the entire sample (public and private) firms, while summary statistics in Panel B are based on the Trucost sample. Column 1 to 3 aggregate all firm-years with at least one patent at the European Patent Office. Column 4 to 6 aggregate firm-years without any patent at the European Patent Office. Column 7 to 9 aggregate firm-years in the bottom decile based on a firm's average *GREENRATIOEP* across the whole period. This covers only firms with 0 green patents and represents about about 35% of firm-year observations in Panel B. Column 10 to 12 aggregate firm-years in the top decile based on a firm's average *GREENRATIOEP* across the whole period. *OECDRATIOEP* is a patent ratio based on DECD green Env-tech classification, calculated as the number of granted or purchased DECD patents over the total number of granted or purchased patents; *GREENRATIOEP*2 is defined as the number of granted or purchased patents; other patents over the total number of granted or purchased patents; other patent variables are defined in Table 2 and Table 4; emission variables are defined in Table 2 and Table 6; LOGCAPEX is the natural logarithm of capital expenditures; LOGCASH is the natural logarithm of cash and short-term equivalents; other financial variables are defined in Table 1.

Panel A: All public and priva	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Patenting Sample			Sample w/o patents			Bottom decile green ratio			Top decile green ratio			
	mean	p50	sd	mean	p50	sd	mean	p50	sd	mean	p50	sd
GREENRATIOEP (in %)	10.996	0	26.077				0	0	0	75.156	100.000	36.455
BROWNEFFRATIOEP (in %)	3.328	0	14.494				2.719	0	15.267	2.675	0	13.159
GREENRATIOEP2 (in %)	19.594	0	32.851				9.506	0	27.027	78.557	100.000	34.126
OECDRATIOEP (in %)	11.476	0	26.442				5.453	0	20.884	47.628	50.000	45.337
LOGASSETS	4.949	4.878	2.762	1.705	1.144	1.755	4.382	4.335	2.519	4.785	4.661	2.832
LOGPPE	3.517	3.129	3.034	0.824	0.090	1.558	2.957	2.435	2.783	3.505	2.960	3.145
LEVERAGE	15.839	9.308	18.557	10.359	0	18.612	14.768	7.127	18.626	16.585	9.275	19.504
ROE	4.735	7.540	35.930	10.123	5.990	35.817	4.464	7.240	36.837	2.373	6.430	38.912
INVEST/A	5.449	3.296	7.039	4.307	0.431	8.451	5.502	3.144	7.322	5.866	3.478	7.496
LOGCAPEX	2.354	1.900	2.174	0.466	0.010	1.054	1.887	1.423	1.868	2.334	1.751	2.295
LOGCASH	3.123	2.931	2.427	0.546	0.076	1.075	2.580	2.315	2.149	2.948	2.680	2.405

Panel B: Public firms with en	nission data											
	Pa	tenting Sam	ıple	Sam	ple w/o pa	tents	Botton	n decile gree	en ratio	Top o	decile green	ratio
	mean	p50	sd	mean	p50	sd	mean	p50	sd	mean	p50	sd
GREENRATIOEP (in %)	12.107	0	24.172				0	0	0	67.280	75.000	35.579
BROWNEFFRATIOEP (in %)	3.737	0	13.298				2.431	0	14.157	4.400	0	14.787
GREENRATIOEP2 (in %)	21.955	8.642	30.406				13.008	0	29.908	72.057	86.667	33.297
OECDRATIOEP (in %)	12.377	0	24.179				4.727	0	18.624	46.206	44.444	41.557
GREENCITMAXEP	61.153	1.000	610.518				0	0	0	57.471	12.000	147.651
BROWNEFFCITMAXEP	15.378	0	155.893				0.748	0	11.176	8.101	0	42.833
GREENCOUNTBBEP	0.238	0	1.256				0	0	0	0.453	0	1.355
BROWNEFFCOUNTBBEP	0.093	0	0.920				0.004	0	0.069	0.042	0	0.270
LOGS1TOT	6.129	5.921	2.765	4.854	4.536	2.780	5.275	5.046	2.561	6.691	6.259	3.462
LOGS2TOT	6.054	6.098	2.241	4.752	4.770	2.029	5.317	5.356	2.101	5.887	5.971	2.501
LOGS3UPTOT	7.964	8.136	2.260	6.315	6.346	1.967	7.141	7.303	2.121	7.841	8.073	2.557
LOGS3DOWNTOT	7.084	7.492	3.440	6.022	6.213	2.907	6.232	6.589	3.137	7.497	7.895	3.826
LOGS3TOT	8.417	8.540	2.652	7.206	7.170	2.188	7.636	7.815	2.419	8.583	8.810	3.027
S1INT	1.606	0.189	4.710	2.264	0.160	6.267	1.362	0.161	4.462	3.285	0.375	6.993
S2INT	0.407	0.211	0.561	0.414	0.195	0.577	0.353	0.176	0.521	0.503	0.245	0.661
S3UPINT	2.086	1.609	1.716	1.486	0.764	1.697	1.791	1.091	1.741	2.281	1.804	1.645
S3DOWNINT	7.273	1.539	14.603	5.793	1.048	13.555	5.837	0.980	13.203	12.128	2.985	19.340
S3INT	9.407	3.704	15.167	7.458	2.412	14.182	7.787	2.791	13.834	14.450	5.478	19.756
LOGSIZE	7.857	7.894	1.761	6.931	6.983	1.553	7.371	7.388	1.713	7.589	7.659	1.881
LOGPPE	6.200	6.275	2.219	5.028	5.208	2.306	5.493	5.562	2.178	6.426	6.363	2.535
LEVERAGE	23.140	21.705	17.162	24.614	22.122	19.727	22.607	20.136	18.443	24.738	23.591	17.608
ROE	8.191	10.122	27.004	8.605	9.484	23.861	6.818	9.705	29.198	3.923	8.717	31.006
M/B	2.799	1.843	3.026	2.421	1.508	2.812	2.940	1.897	3.268	2.558	1.626	2.890
BETA	0.636	0.693	0.381	0.687	0.695	0.277	0.617	0.659	0.331	0.709	0.732	0.385
VOLAT	0.103	0.087	0.070	0.109	0.090	0.081	0.107	0.089	0.075	0.118	0.096	0.088
MOM	0.006	0.007	0.036	0.003	0.004	0.038	0.005	0.006	0.036	0.005	0.005	0.042
RET	0.018	0.013	0.118	0.014	0.005	0.123	0.019	0.011	0.124	0.017	0.007	0.136
INVEST/A	4.705	3.621	4.370	4.533	2.573	5.796	4.604	3.312	4.712	5.651	4.351	5.255
MSCI	0.405	0	0.491	0.189	0	0.391	0.293	0	0.455	0.369	0	0.483
LOGCAPEX	4.596	4.620	2.018	3.431	3.437	1.914	3.968	3.948	1.934	4.665	4.624	2.293
LOGCASH	5.726	5.719	1.776	4.698	4.724	1.719	5.182	5.171	1.670	5.566	5.613	1.826
AGE	49.171	36.000	39.423	35.312	25.000	30.027	41.570	30.000	34.030	41.168	27.000	36.030

TABLE IA.VI: GREEN PATENT RATIO AND FIRM TYPE - INDUSTRY BY INDUSTRY

The unit of observation is firm-year. The sample period is 2005-2020. The dependent variable is *GREENRATIOEP*. The key independent variables of interest are *LOGSITOT*, *AGE*, and *PATSTOCKGREENEP*. We additionally include the following controls: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI. All intedependent variables are lagged by one year and defined in Table 1 and Table 2. We run the regression individually for each 6-digit GICS Industry with a Poisson pseudo-maximum likelihood regression and include country and year fixed effects. We double cluster standard errors at the firm and year dimension. We report the coefficient and standard error for *LOGS1TOT* in column 1, for *AGE* in column 2 and for *PATSTOCKGREENEP* in column 3 with *** representing 1% significance, ** 5% significance * 10% significance. Column 4 reports the Pseudo R2, column 5 the number of observations in the regression and column 6 the industry average absolute scope 1 emissions by which we rank the table.

Industry	(1) coef (std. err) LOGS1TOT	(2) coef (std. err) AGE (/100)	(3) coef (std. err) PATSTOCKGREENEP (/100)	(4) Pseudo R2	(5) N	(6) Industry Scope
Electric Utilities	0.013 (0.062)	-1.142*** (0.350)	0.269** (0.118)	0.091	254	21966773
Oil, Gas & Consumable Fuels	0.011 (0.061)	-0.065 (0.094)	0.002 (0.031)	0.052	559	20973912
Independent Power and Renewable Electricity Producers	-1.628*** (0.000)	296.113*** (0.000)	-147.142*** (0.000)	0.221	35	18641614
Metals & Mining	-0.187*** (0.068)	-0.090 (0.207)	0.271* (0.155)	0.090	827	16138911
Construction Materials	0.305 (0.212)	0.433 (0.385)	-1.198 (0.979)	0.149	236	9916635
Multi-Utilities	0.064 (0.080)	-0.615 (0.475)	0.640 (0.411)	0.122	116	7344608
Chemicals	-0.020 (0.031)	-0.140 (0.085)	0.041*** (0.011)	0.037	2128	4744375
ndustrial Conglomerates	0.049 (0.035)	0.299 (0.202)	0.021*** (0.007)	0.152	448	1538727
Food Products	0.271*** (0.062)	0.102 (0.191)	1.273*** (0.278)	0.101	719	1141156
Construction & Engineering	0.128* (0.068)	0.376 (0.249)	1.158*** (0.290)	0.093	512	845274
Paper & Forest Products	0.519* (0.299)	0.621 (0.532)	0.867 (1.369)	0.177	223	805302
Diversified Financial Services	-0.018 (0.045)	0.631 (0.476)	0.166 (0.185)	0.151	239	729626
Commercial Services & Supplies	-0.277** (0.129)	-0.558 (0.384)	0.189 (0.831)	0.138	370	696769
Road & Rail	3.472*** (0.000)	na	200.565*** (0.000)	0.208	9	647088
Gas Utilities	0.005 (0.271)	-5.682** (2.758)	-5.525 (3.534)	0.160	55	617602
Trading Companies & Distributors	-0.055 (0.093)	-0.626* (0.348)	0.322 (0.444)	0.172	185	591652
Air Freight & Logistics	0.037 (0.319)	-2.605 (6.275)	-4.720 (3.967)	0.241	39	448489
Totels, Restaurants & Leisure	7.278*** (0.000)	na	na	0.083	6	426348
Building Products	-0.234*** (0.080)	-0.355* (0.202)	0.483*** (0.091)	0.093	480	380646
Machinery	0.043 (0.058)	-0.097 (0.094)	0.161*** (0.034)	0.046	2420	350582
Energy Equipment & Services	0.124** (0.056)	0.305 (0.229)	-0.106 (0.185)	0.093	414	342478
Containers & Packaging	-0.260 (0.241)	-2.216** (1.007)	1.036 (1.383)	0.253	313	319053
Automobiles	0.021 (0.092)	-0.640*** (0.179)	0.017** (0.008)	0.104	418	264498
Electronic Equipment, Instruments & Components	-0.073 (0.053)	-0.054 (0.179)	0.017 (0.008)	0.053	1440	255883
Specialty Retail	2.477*** (0.000)		9.560*** (0.000)	0.187	6	248423
	0.152 (0.339)	na 2.565*** (0.689)	0.738 (0.655)	0.187	170	224142
Beverages				0.084	1299	204997
Semiconductors & Semiconductor Equipment	-0.108*** (0.031)	-0.582** (0.278)	0.274*** (0.067)		98	
nsurance	0.328 (0.485)	-0.208 (0.631)	2.226 (2.489)	0.321		199957
Auto Components	-0.107 (0.093)	-0.344* (0.200)	0.390*** (0.059)	0.067	1013	198076
Real Estate Management & Development	2.663*** (0.000)	na	-34.207*** (0.000)	0.059	14	174526
Pharmaceuticals	-0.079 (0.075)	-0.393** (0.167)	0.185*** (0.048)	0.068	1443	168450
Household Durables	0.095 (0.100)	0.371 (0.332)	0.037*** (0.014)	0.084	626	126895
Entertainment	-1.262** (0.618)	-17.906*** (5.493)	5.241** (2.264)	0.357	41	126049
Textiles, Apparel & Luxury Goods	-0.233 (0.214)	-2.312*** (0.849)	3.064*** (0.969)	0.230	369	125082
Household Products	-0.047 (0.109)	0.941** (0.453)	0.372 (0.381)	0.211	177	111966
Health Care Providers & Services	-0.132 (0.170)	-1.047* (0.612)	8.769** (3.979)	0.248	210	109853
Electrical Equipment	-0.112*** (0.037)	-0.723*** (0.143)	0.151*** (0.023)	0.141	833	109565
Technology Hardware, Storage & Peripherals	-0.011 (0.085)	0.026 (0.325)	0.190*** (0.072)	0.091	674	101589
Aerospace & Defense	0.246*** (0.081)	-0.341* (0.188)	0.177* (0.091)	0.093	569	89730
Wireless Telecommunication Services	-0.555** (0.268)	-1.379 (1.116)	-1.199 (5.829)	0.329	124	88311
Tobacco	-0.782** (0.303)	2.102* (1.123)	0.958 (0.974)	0.238	108	74380
Diversified Telecommunication Services	-1.977*** (0.341)	5.329*** (0.969)	-5.309* (2.872)	0.364	277	55247
Equity Real Estate Investment Trusts (REITs)	0.447*** (0.000)	na	-9.172*** (0.000)	0.091	6	47687
Personal Products	0.300 (0.253)	-1.199 (0.843)	0.579 (1.057)	0.244	190	45429
Banks	0.113 (0.219)	-0.639 (0.474)	-0.214 (0.353)	0.119	279	36212
nternet & Direct Marketing Retail	-10.864** (4.746)	-185.218** (86.651)	45.821*** (17.154)	0.403	48	30579
Health Care Equipment & Supplies	0.273** (0.134)	-0.538 (0.381)	1.264*** (0.441)	0.142	1019	29296
Media (discont. 2018)	0.872*** (0.195)	1.078** (0.477)	-1.298 (2.884)	0.265	206	27369
Media	0.627 (0.605)	-5.134 (3.465)	59.782** (23.360)	0.530	40	26301
T Services	0.140 (0.181)	-1.578*** (0.592)	0.443* (0.233)	0.213	335	20489
Capital Markets	0.058 (0.121)	-0.502 (0.327)	0.676*** (0.153)	0.187	330	17109
Life Sciences Tools & Services	0.172 (0.110)	-0.599 (0.495)	0.791*** (0.197)	0.101	289	16775
Communications Equipment	-0.346* (0.183)	1.771*** (0.604)	0.469 (0.380)	0.218	400	15302
Leisure Products	0.342** (0.140)	0.688** (0.280)	0.659*** (0.105)	0.310	237	15171
Biotechnology	-0.295*** (0.049)	-1.269* (0.726)	2.206*** (0.197)	0.122	1012	13626
Software	-0.897*** (0.335)	4.866** (2.098)	-0.226 (0.554)	0.244	566	9776
Interactive Media & Services	-0.719*** (0.190)	-85.065* (45.813)	2.841 (1.905)	0.218	33	4414
Health Care Technology	0.611*** (0.000)	na (45.615)	5.137*** (0.000)	0.263	7	1291

TABLE IA. VII: BROWN EFFICIENCY PATENT RATIO AND FIRM TYPE - INDUSTRY BY INDUSTRY

The unit of observation is firm-year. The sample period is 2005-2020. The dependent variable is BROWNEFFRATIOEP. The key independent variables of interest are LOGSITOT, AGE, and PATSTOCKBROWNEFFEP. We additionally include the following controls: LOGSIZE, LOGSPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI. All intedependent variables are lagged by one year and defined in Table 1 and Table 2. We run the regression individually for each 6-digit GICS Industry with a Poisson pseudo-maximum likelihood regression and include country and year fixed effects. We double cluster standard errors at the firm and year dimension. We report the coefficient and standard error for LOGSITOT in column 1, for AGE in column 2 and for PATSTOCKBROWNEFFEP in column 3 with **e* representing 1% significance, **5% significance * 10% significance. Column 4 reports the Pseudo R2, column 5 the number of observations in the regression and column 6 the industry average absolute scope 1 emissions by which we rank the table.

Industry	(1) coef (std. err) LOGS1TOT	(2) coef (std. err) AGE (/100)	(3) coef (std. err) PATSTOCKBROWNEFFEP (/100)	(4) Pseudo R2	(5) N	(6) Industry Scope 1
Electric Utilities	0.498*** (0.174)	0.916 (0.753)	8.859* (4.843)	0.239	232	21966773
Oil, Gas & Consumable Fuels	0.123 (0.128)	0.103 (0.160)	0.102 (0.113)	0.095	545	20973912
Independent Power and Renewable Electricity Producers	0.210*** (0.000)	na	-0.949*** (0.000)	0.054	8	18641614
Metals & Mining	-0.179** (0.072)	-0.587* (0.309)	0.770*** (0.236)	0.098	822	16138911
Construction Materials	-0.051 (0.229)	-0.090 (0.697)	5.102* (2.987)	0.170	218	9916635
Multi-Utilities	-0.154 (0.286)	-0.096 (0.868)	2.247 (2.478)	0.277	108	7344608
Chemicals	0.024 (0.103)	-0.107 (0.125)	0.357*** (0.092)	0.102	2034	4744375
Industrial Conglomerates	-0.238*** (0.063)	0.585* (0.341)	0.003 (0.028)	0.182	385	1538727
Food Products	0.511 (0.334)	-2.062* (1.061)	25.834*** (7.804)	0.363	471	1141156
Construction & Engineering	-0.031 (0.100)	-0.191 (0.402)	2.691*** (0.833)	0.115	523	845274
Diversified Financial Services	0.076 (0.064)	0.054 (0.698)	0.775 (0.589)	0.257	221	729626
Commercial Services & Supplies	0.029 (0.237)	-3.009** (1.239)	19.910** (8.770)	0.346	273	696769
Gas Utilities	-8.108*** (0.000)	na	-27.317*** (0.000)	0.081	10	617602
Trading Companies & Distributors	-0.647*** (0.191)	-3.213*** (0.697)	-0.807 (0.738)	0.264	94	591652
Building Products	-0.351** (0.152)	0.161 (0.317)	2.054*** (0.488)	0.145	479	380646
Machinery	-0.120** (0.052)	0.326*** (0.111)	0.167*** (0.029)	0.078	2392	350582
Energy Equipment & Services	-0.126** (0.058)	-0.032 (0.217)	0.223*** (0.048)	0.109	437	342478
Containers & Packaging	0.519 (0.547)	-1.205 (1.344)	25.427 (20.988)	0.430	173	319053
Automobiles	-0.073 (0.131)	1.498*** (0.300)	0.000 (0.010)	0.087	415	264498
Electronic Equipment, Instruments & Components	-0.022 (0.110)	2.036*** (0.355)	0.390*** (0.066)	0.155	1278	255883
Semiconductors & Semiconductor Equipment	0.318 (0.237)	1.843 (1.442)	5.967 (4.528)	0.275	1235	204997
Insurance	1.658*** (0.000)	-6.201*** (0.000)	-3.978*** (0.000)	0.286	83	199957
Auto Components	-0.155* (0.084)	0.033 (0.221)	0.273*** (0.047)	0.062	995	198076
Pharmaceuticals	0.382 (0.310)	-1.299 (0.863)	2.399 (1.584)	0.239	811	168450
Household Durables	0.057 (0.166)	-0.452 (0.439)	1.802*** (0.399)	0.293	572	126895
Household Products	-1.445*** (0.344)	-4.200*** (1.162)	2.298 (10.168)	0.620	129	111966
Health Care Providers & Services	-0.246*** (0.000)	na	na	0.010	10	109853
Electrical Equipment	-0.111 (0.113)	0.308 (0.392)	1.137*** (0.227)	0.144	799	109565
Technology Hardware, Storage & Peripherals	-0.216 (0.136)	4.414** (1.985)	2.786 (7.346)	0.500	627	101589
Aerospace & Defense	0.020 (0.129)	0.314 (0.266)	0.105*** (0.029)	0.126	547	89730
Tobacco	-0.863 (0.874)	5.265 (4.827)	4.440 (5.273)	0.307	87	74380
Banks	-2.585** (1.319)	-1.674* (0.875)	-2.420 (1.600)	0.347	186	36212
Health Care Equipment & Supplies	0.478 (0.291)	0.252 (0.991)	12.868*** (4.730)	0.171	774	29296
Media (discont. 2018)	37.065*** (0.000)	-53.910*** (0.000)	-781.612*** (0.000)	0.587	123	27369
IT Services	0.914*** (0.335)	-0.711 (0.932)	27.555*** (10.118)	0.630	298	20489
Capital Markets	0.277 (0.185)	0.287 (0.726)	-1.139 (2.909)	0.406	212	17109
Life Sciences Tools & Services	0.329 (0.341)	2.224 (2.293)	-18.939 (29.499)	0.300	198	16775
Communications Equipment	0.371 (0.416)	4.158*** (1.611)	-17.779** (8.267)	0.262	264	15302
Leisure Products	0.633 (0.527)	0.656 (0.777)	36.615*** (10.973)	0.442	167	15171
Professional Services	-4.365**** (0.000)	na	-75.640*** (0.000)	0.172	6	9864
Software	-5.699*** (1.821)	26.915 (18.620)	104.187*** (33.025)	0.627	198	9776
Interactive Media & Services	0.459*** (0.000)	na	-35.920*** (0.000)	0.103	6	4414

TABLE IA. VIII: PATENT RATIOS AND FIRM TYPE: ALTERNATIVE "GREEN" CLASSIFICATIONS

The unit of observation is firm-year. The sample period is 2005-2020. The dependent variable is OECDRATIOEP in columns 1 to 3 and GREENRATIOEP2 in columns 4 to 6. All variables are defined in Table 1 and Table 1A.V. All independent variables are lagged by one year. The model is estimated using Poisson pseudo-maximum likelihood. Columns 1 and 4 include year and country fixed effects. Columns 2 and 5 include country and Trucost industry-year fixed effects and columns 3 and 6 year and firm fixed effects. We double cluster standard errors at the firm and year dimension. *** 1% significance, ** 5% significance * 10% significance.

	(1) C	(2) ECDRATIOEP	(3)	(4) GR	(5) EENRATIOEP2	(6)
LOGS1TOT	0.095***	-0.017	-0.008	0.038***	-0.029***	-0.001
AGE (/100)	(0.007) -0.103***	(0.010) -0.068**	(0.015)	(0.005) -0.228***	(0.007) -0.116***	(0.010)
PATSTOCKGREENEP (/100)	(0.029) 0.044*** (0.003)	(0.028) 0.019*** (0.003)	-0.001 (0.003)	(0.023) 0.030*** (0.003)	(0.022) 0.023*** (0.003)	0.003 (0.002)
LOGSIZE	-0.174*** (0.016)	-0.039** (0.017)	0.023 (0.023)	-0.033*** (0.012)	-0.033*** (0.012)	0.035** (0.016)
LOGPPE	0.124*** (0.016)	0.051*** (0.016)	-0.051** (0.025)	0.043*** (0.011)	0.047*** (0.011)	-0.036** (0.016)
LEVERAGE	-0.002*** (0.001)	-0.000 (0.001)	0.003** (0.001)	-0.002*** (0.001)	-0.002*** (0.001)	0.000 (0.001)
ROE	-0.031 (0.058)	-0.063 (0.051)	0.054 (0.037)	-0.087** (0.036)	-0.070** (0.034)	0.015 (0.024)
M/B	0.002 (0.006)	0.006 (0.006)	-0.005 (0.005)	0.000 (0.004)	0.015*** (0.004)	-0.001 (0.003)
INVEST/A	0.002 (0.003)	0.005* (0.003)	0.007** (0.003)	0.008*** (0.002)	0.008*** (0.002)	0.005** (0.002)
BETA	0.363*** (0.035)	0.070* (0.036)	0.018 (0.026)	0.246*** (0.025)	0.062** (0.026)	-0.027 (0.019)
VOLAT	1.273*** (0.235)	1.241*** (0.272)	-0.016 (0.241)	1.074*** (0.180)	0.875*** (0.181)	0.008 (0.143)
MOM	0.850* (0.473)	-0.598 (0.460)	0.384 (0.299)	0.274 (0.329)	-0.162 (0.333)	-0.058 (0.220)
RET	-0.227^* (0.126)	-0.182 (0.119)	-0.067 (0.078)	-0.143 (0.088)	-0.109 (0.086)	0.011 (0.056)
MSCI	0.009 (0.031)	0.029 (0.030)	-0.034 (0.036)	0.045** (0.023)	0.054** (0.022)	0.033 (0.026)
Constant	2.181*** (0.093)	2.932*** (0.098)	3.486*** (0.206)	-1.942*** (0.069)	-1.242*** (0.070)	-1.104*** (0.137)
Country F.E.	yes	yes	no	yes	yes	no
Year F.E.	yes	yes	yes	yes	yes	yes
Industry F.E.	no	yes	no	no	yes	no
Industry X Year F.E.	no	yes	no	no	yes	no
Firm F.E.	no	no 24842	yes	no	no	yes
Observations	27854	24843	20299	27873	25985	23546
Pseudo R2	0.0930	0.342	0.511	0.0169	0.0986	0.162

TABLE IA.IX: WORLDWIDE PATENT RATIOS AND FIRM TYPE

The unit of observation is firm-year. The sample period is 2005-2020. The dependent variable is *GREENRATIOWW* in columns 1 to 3 and *BROWNEFFRATIOWW* in columns 4 to 6. *GREENRATIOWW* is the number of green patent families over the total number of patent families granted or purchased at the firm and year level from any patent office worldwide. *BROWNEFFRATIOWW* similarly is the number of brown efficiency patent families over the total number of patent families at any patent office worldwide. All other variables are defined in Table 1 and Table 2. All independent variables are lagged by one year. The model is estimated using Poisson pseudo-maximum likelihood. Columns 1 and 4 include year and country fixed effects. Columns 2 and 5 include country and Trucost industry-year fixed effects and columns 3 and 6 year and firm fixed effects. We double cluster standard errors at the firm and year dimension. ***1% significance, **5% significance *10% significance.

	(1) GF	(2) REENRATIOWW	(3)	(4) BROW	(5) VNEFFRATIOV	(6) VW
LOGS1TOT	0.105***	-0.022**	-0.008	0.094***	0.042***	0.000
	(0.006)	(0.009)	(0.011)	(0.010)	(0.016)	(0.027)
AGE (/100)	-0.289***	-0.118***	, ,	0.067	0.049	, ,
	(0.029)	(0.027)		(0.041)	(0.042)	
PATSTOCKGREENWW (/100)	0.013***	0.008***	0.001			
	(0.001)	(0.001)	(0.001)			
PATSTOCKBROWNEFFWW (/100)				0.031***	0.015***	-0.004*
				(0.002)	(0.002)	(0.002)
LOGSIZE	-0.152***	-0.068***	0.001	-0.297***	-0.096***	-0.060
	(0.013)	(0.015)	(0.018)	(0.026)	(0.027)	(0.041)
LOGPPE	0.083***	0.091***	0.008	0.241***	0.056**	0.075
	(0.013)	(0.014)	(0.019)	(0.025)	(0.025)	(0.047)
LEVERAGE	-0.005***	-0.003***	0.001	-0.006***	-0.001	-0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)
ROE	-0.289 ^{***}	-0.088**	0.050*	0.307***	0.147*	0.036
	(0.046)	(0.041)	(0.027)	(0.074)	(0.076)	(0.065)
M/B	0.013***	0.012**	-0.003	-0.021**	$-0.003^{'}$	-0.010
	(0.005)	(0.005)	(0.004)	(0.009)	(0.009)	(0.011)
INVEST/A	0.015***	0.007***	-0.000	0.013***	0.007	0.006
	(0.002)	(0.003)	(0.002)	(0.005)	(0.005)	(0.005)
BETA	0.190***	0.051	-0.040^{*}	0.270***	-0.013	-0.061
	(0.031)	(0.032)	(0.023)	(0.054)	(0.050)	(0.046)
VOLAT	1.541***	1.353***	0.010	-0.236	-0.594	-0.377
	(0.224)	(0.175)	(0.142)	(0.402)	(0.423)	(0.392)
MOM	$-0.007^{'}$	-0.737**	0.259	0.601	-0.113	-0.244
	(0.383)	(0.358)	(0.234)	(0.671)	(0.657)	(0.553)
RET	0.025	-0.013	-0.016	-0.046	0.205	0.321*
	(0.098)	(0.092)	(0.058)	(0.180)	(0.177)	(0.145)
MSCI	0.029	0.018	0.056*	-0.049	0.062	-0.017
	(0.028)	(0.027)	(0.030)	(0.051)	(0.048)	(0.059)
Constant	1.962***	2.530***	3.058***	1.074***	2.055***	2.660*
	(0.079)	(0.078)	(0.149)	(0.146)	(0.156)	(0.380)
Country F.E.	yes	yes	no	yes	yes	no
Year F.É.	yes	yes	yes	yes	yes	yes
Industry X Year F.E.	no	yes	no	no	yes	no
Firm F.É.	no	no	yes	no	no	yes
Observations	52568	49362	37346	52339	43021	23558
Pseudo R2	0.0948	0.315	0.565	0.140	0.425	0.556

TABLE IA.X: PATH RATIOS AND FIRM TYPE: ALTERNATIVE INDUSTRY SPECIFICATIONS

The unit of observation is firm-year. The sample period is 2005 to 2020. The dependent variable is GREENRATIOEP in columns 1 to 4 and BROWNEF-FRATIOEP in columns 5 to 8. We include the following controls: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET and MSCI. All variables are defined in Table 1 and Table 2. All independent variables are lagged by one year. The model is estimated using Poisson pseudo-maximum likelihood. All regressions include country and year fixed effects. Column 1 and 5 additionally include industry fixed effects based on the 6-digit level GICS Industry, while column 3 and 7 add industry as well as the industry-year interaction. Column 2 and 6 additionally include year fixed effects and industry fixed effects based on the 8-digit level GICS Subindustry, while column 4 and 8 also include the industry-year interaction. We double cluster standard errors at the firm and year dimension. *** 1% significance, ** 5% significance * 10% significance.

	(1)	(2) GREENI	(3) RATIOEP	(4)	(5)	(6) Browner	(7) FRATIOEP	(8)
LOGS1TOT	-0.032*** (0.009)	-0.036*** (0.010)	-0.033*** (0.009)	-0.036*** (0.010)	-0.010 (0.018)	0.013 (0.018)	-0.009 (0.017)	0.012 (0.017)
AGE (/100)	-0.160*** (0.031)	-0.154*** (0.031)	-0.163*** (0.031)	-0.144*** (0.030)	0.193*** (0.049)	0.202*** (0.049)	0.191*** (0.048)	0.199*** (0.048)
PATSTOCKGREENEP (/100)	0.046*** (0.004)	0.047*** (0.004)	0.046*** (0.004)	(0.047*** (0.004)	, ,	, ,	,	, ,
PATSTOCKBROWNEFFEP (/100)	,	, ,	,	,	0.058*** (0.009)	0.056*** (0.009)	0.067*** (0.009)	0.066*** (0.009)
Controls	yes	yes	yes	yes	yes	yes	yes	yes
Country F.E.	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	GICS Ind	GICS Sub Ind	GICS Ind	GICS Sub Ind	GICS Ind	GICS Sub Ind	GICS Ind	GICS Sub Ind
Industry-Year F.E. Observations	no 27860	no 27687	GICS Ind 27419	GICS Sub Ind 26513	no 27309	no 26411	GICS Ind 23637	GICS Sub Ind 22225
Pseudo R2	0.196	0.216	0.224	0.256	0.277	0.301	0.286	0.329

TABLE IA.XI: PATENT RATIOS AND FIRM TYPE: LEGACY SAMPLE

The unit of observation is firm-year. The sample period is 2005-2020 and the sample restricts inclusion of firms into those that Trucost covers in its database before 2016. The dependent variable is GREENRATIOEP in columns 1 to 3 and BROWNEFFRATIOEP in columns 4 to 6. Panel A covers all firm-years, while we further restricts inclusion in Panel B to firm-years with at least one green patent at the European Patent Office in columns 1 to 3 and one brown efficiency patent at the European Patent Office in columns 4 to 6. We include the following controls: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET and MSCI. All variables are defined in Table 1 and Table 2. All independent variables are lagged by one year. The model is estimated using Poisson pseudo-maximum likelihood. Columns 1 and 4 include year and country fixed effects. Columns 2 and 5 include country and Trucost industry-year fixed effects and columns 3 and 6 year and firm fixed effects. We double cluster standard errors at the firm and year dimension. *** 1% significance, ** 5% significance * 10% significance.

	(1) GR	(2) REENRATIOEP	(3)	(4) BROV	(5) WNEFFRATIO	(6) EP
Panel A: All firm years						
LOGS1TOT	0.101*** (0.008)	-0.040*** (0.012)	0.014 (0.016)	0.063*** (0.014)	0.056*** (0.020)	-0.065** (0.033)
AGE (/100)	-0.311*** (0.034)	-0.185*** (0.032)	(0.020)	0.269***	0.273*** (0.052)	(41444)
PATSTOCKGREENEP (/100)	0.052*** (0.004)	0.039*** (0.004)	-0.002 (0.003)	, ,	, ,	
PATSTOCKBROWNEFFEP (/100)				0.102*** (0.010)	0.044*** (0.008)	-0.000 (0.008)
Country F.E.	yes	yes	no	yes	yes	no
Year F.E.	yes	yes	yes	yes	yes	yes
Industry F.E.	no	yes	no	no	yes	no
Industry X Year F.E.	no	yes	no	no	yes	no
Firm F.E.	no	no	yes	no	no	yes
Observations	22990	20155	18374	22922	16164	11588
Pseudo R2	0.0948	0.361	0.509	0.0973	0.450	0.522
Panel B: Firm-years with at least one						
LOGS1TOT	1.626*** (0.174)	-1.631*** (0.256)	-0.356 (0.275)	0.370* (0.198)	-0.122 (0.345)	-0.263 (0.508)
AGE (/100)	-6.883***	-3.265 ^{***}	(0.275)	$-0.743^{'}$	$-0.141^{'}$	(0.500)
DIFFER ON OPEN IPP ((400)	(0.614)	(0.608)		(0.656)	(0.815)	
PATSTOCKGREENEP (/100)	(0.090)	0.996*** (0.109)	0.478*** (0.072)			
PATSTOCKBROWNEFFEP (/100)	(0.0.0)	(0.207)	(0.01-)	1.316***	0.951***	0.272*
(,,				(0.149)	(0.168)	(0.142)
Country F.E.	yes	yes	no	yes	yes	no
Year F.E.	yes	yes	yes	yes	yes	yes
Industry F.E.	no	yes	no	no	yes	no
Industry X Year F.E.	no	yes	no	no	yes	no
Firm F.E.	no	no	yes	no	no	yes
Observations	11022	9776	10602	5211	4222	4905
R2	0.193	0.551	0.804	0.176	0.533	0.753
Controls	yes	yes	yes	yes	yes	yes
Country F.E.	yes	yes	no	yes	yes	no
Year F.E.	yes	yes	yes	yes	yes	yes
Industry X Year F.E. Firm F.E.	no no	yes no	no yes	no no	yes no	no yes

TABLE IA.XII: PATENT RATIOS AND FIRM TYPE: EXCLUDING M&A FIRMS

The unit of observation is firm-year. The sample period is 2005-2020 and restricits inclusion to firms without green or brown efficiency M&A activity between 2005 and 2020. Specifically, we drop firms that acquired a target with one or more green patents granted by the EPO between 2005 and 2020 in columns 1 to 3 and one or more brown efficiency patents granted by the EPO between 2005 and 2020 in columns 3 to 6. In Panel A, the dependent variable is GREENRATIOEP in columns 1 to 3 and BROWNEFFRATIOEP in columns 4 to 6. In Panel B, the dependent variable is GREENCUTMAXEP in columns 1 to 3 and BROWNEFFCUTMAXEP in columns 4 to 6. In Panel C, the dependent variable is GREENCOUNTBBEP in columns 1 to 3 and BROWNEFFCUNTBBEP in columns 4 to 6. We include the following controls: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET and MSCI. All variables are defined in Table 1, Table 2 and Table 4. All independent variables are lagged by one year. The model is estimated using Poisson pseudo-maximum likelihood. Columns 1 and 4 include year and country fixed effects. Columns 2 and 5 include country and Trucost industry-year fixed effects and columns 3 and 6 year and firm fixed effects. We double cluster standard errors at the firm and year dimension.

	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: Patent ratio	GR	EENRATIOEP		BROV	WNEFFRATIOE	Р
LOGS1TOT	0.092***	-0.052***	0.014	0.059***	0.052**	-0.066**
AGE (/100)	(0.008) -0.306*** (0.033)	(0.011) -0.193*** (0.031)	(0.016)	(0.014) 0.231*** (0.046)	(0.020) 0.212*** (0.052)	(0.032)
PATSTOCKGREENEP (/100)	0.051*** (0.004)	0.035*** (0.004)	-0.001 (0.003)	(0.040)	(0.032)	
PATSTOCKBROWNEFFEP (/100)	(0.004)	(0.004)	(0.003)	0.102*** (0.010)	0.051*** (0.009)	-0.003 (0.009)
Observations Pseudo R2	27375 0.0776	24254 0.317	19634 0.516	27379 0.0990	19499 0.437	11765 0.524
Panel B: Maximum citations	GRE	EENCITMAXEP	,	BROW	NEFFCITMAX	EP
LOGS1TOT	-0.041* (0.023)	-0.193*** (0.056)	-0.068 (0.069)	0.049*** (0.018)	0.083** (0.033)	0.146 (0.105)
AGE (/100)	0.391**	0.617*** (0.160)	(0.009)	0.364***	0.100 (0.079)	(0.103)
PATSTOCKGREENEP (/100)	0.063***	0.058*** (0.010)	-0.033** (0.015)	(0.121)	(0.07)	
PATSTOCKBROWNEFFEP (/100)	(0.005)	(0.010)	(0.010)	0.117*** (0.011)	0.085*** (0.012)	$0.011 \\ (0.017)$
Observations Pseudo R2	27367 0.336	23945 0.632	18945 0.702	27379 0.305	18933 0.626	11027 0.635
Panel C: Blockbuster count	GRE	ENCOUNTBBE	P	BROW	NEFFCOUNTBI	BEP
LOGS1TOT	-0.035** (0.014)	-0.010 (0.031)	-0.028 (0.034)	0.080*** (0.020)	0.103** (0.043)	-0.025 (0.056)
AGE (/100) PATSTOCKGREENEP (/100)	0.077 (0.071) 0.099***	0.056 (0.076) 0.075***	-0.009	0.566*** (0.061)	0.223*** (0.080)	,
PATSTOCKBROWNEFFEP (/100)	(0.006)	(0.006)	(0.007)	0.150*** (0.012)	0.130*** (0.013)	0.025 (0.018)
Observations Pseudo R2	27222 0.314	17382 0.448	10089 0.461	26792 0.331	9218 0.553	4949 0.497
Controls Country F.E. Year F.E. Industry X Year F.E. Firm F.E.	yes yes yes no no	yes yes yes yes no	yes no yes no yes	yes yes yes no no	yes yes yes yes no	yes no yes no yes

TABLE IA.XIII: PATENT RATIO AND FIRM TYPE: SPLITS BASED ON INITIAL FIRM EMISSIONS

The unit of observation is firm-year. The sample period is 2005-2020. We split the Trucost sample with patenting and non-patenting observations into terciles based on firms' initial scope 1 emissions, i.e. the first scope 1 emission we observe. The terciles are calculated within the set of firms entering the sample in a given year. Columns 1 to 3 cover firms with the lowest initial emission tercile, columns 4 to 6 cover firms in the middle group and columns 7 to 9 cover firms in the highest initial emission tercile. The dependent variable is GREENRATIOEP in Panel A and BROWNEFFRATIOEP in Panel B. We include the following controls: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET and MSCI. All variables are defined in Table 1 and Table 2. All independent variables are lagged by one year. The model is estimated using Poisson pseudo-maximum likelihood. Columns 1, 4 and 7 include year and country fixed effects. Columns 2, 5 and 8 include country and Trucost industry-year fixed effects and columns 3, 6 and 9 year and firm fixed effects. We double cluster standard errors at the firm and year dimension. *** 1% significance, ** 5% significance * 10% significance.

Panel A: GREENRATIOEP	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Initial emission tercile:		Lowest			Middle			Highest	
LOGS1TOT	-0.092**	-0.170***	-0.076*	0.046	-0.006	0.005	0.115***	0.014	0.020
AGE (/100)	(0.039) -0.622**	(0.052) $-1.254***$	(0.040)	(0.031) -0.234**	(0.037) -0.083	(0.032)	(0.009) -0.249***	(0.013) -0.113***	(0.019)
PATSTOCKGREENEP (/100)	(0.279) 0.682*** (0.090)	(0.359) 0.349*** (0.115)	-0.182** (0.079)	(0.103) 1.139*** (0.089)	(0.103) 0.949*** (0.132)	-0.456*** (0.093)	(0.035) 0.042*** (0.004)	(0.032) 0.033*** (0.004)	0.002 (0.003)
Observations Pseudo R2	2990 0.145	2189 0.286	1277 0.573	6928 0.129	4984 0.369	4020 0.545	17878 0.0983	15276 0.362	14852 0.494
Panel B: BROWNEFFRATIOEP Initial emission tercile:		Lowest			Middle			Highest	
LOGS1TOT	0.166	0.430*	0.179	0.062	0.074	-0.007	0.052***	0.042*	-0.087**
AGE (/100)	(0.103) -0.994 (0.790)	(0.222) -1.381 (1.356)	(0.131)	(0.055) 0.159 (0.159)	(0.104) 0.168 (0.218)	(0.083)	(0.016) 0.206*** (0.048)	(0.022) 0.214*** (0.051)	(0.036)
PATSTOCKBROWNEFFEP (/100)	1.176*** (0.272)	3.377** (1.648)	-0.093 (0.353)	8.219*** (1.460)	8.113*** (2.014)	-2.391*** (0.726)	0.096***	0.042*** (0.008)	0.003 (0.008)
Observations Pseudo R2	2817 0.289	963 0.749	272 0.683	6818 0.191	2460 0.497	1772 0.539	17803 0.0788	12125 0.422	10132 0.525
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes
Country F.E. Year F.E.	yes	yes	no	yes	yes	no	yes	yes	no
Year F.E. Industry X Year F.E.	yes no	yes ves	yes no	yes no	yes ves	yes no	yes no	yes yes	yes no
Firm F.E.	no	no	yes	no	no	yes	no	no	yes

TABLE IA.XIV: PATENT RATIOS AND FIRM-LEVEL OUTCOMES - INTENSIVE MARGIN

The unit of observation is firm-year. The sample period is 2005 to 2020. We require firm-year observations to have at last one green patent at the EPO in Panel A and one brown efficiency patent at the EPO in Panel B. The dependent variables are logs of cumulative sums of SHTOT, SZIOT, SZUPTOT, SZIOWNINT, SZIOWNINT, SZIOWNINT and INVEST/A for 1,3 or 5 years, respectively long-term averages of SHINT, SZINT, SZUPTOT, SZIOWNINT and INVEST/A for 1,3 or 5 years. In Panel A, the key independent variable is GREENARTIOFP Logged by 1, 3, or 5 years as well as a 5-year or 10 green to 10 years. In Panel B, the key independent variables ismlarly is BROWNEFFRATIOFP. Controls include. LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, MSCI. All variables are defined in Table 1 and Table 2 and lagged by 1, 3, or 5 years. The model is estimated using pooled regression model. All regressions include year and firm fire word effects. We double cluster standard errors at the firm and year dimension. **1* Significance.** 10* Signific

Panel A: Green innovation	(1) LOGS1TOT	(2) LOGS2TOT	(3) LOGS3UPTOT	LOGS3DOWNTOT	(5) LOGS123UPTOT	(6) S1INT	(7) S2INT	(8) S3UPINT	(9) S3DOWNINT	(10) INVEST/A	(11) LOGCAPEX	(12) LOGSALES
L1 GREENRATIOEP	-0.014	-0.011	-0.008	-0.070	-0.019	-0.050	-0.005	0.021	-0.127	-0.119	-0.021	-0.004
	(0.035)	(0.034)	(0.020)	(0.145)	(0.020)	(0.105)	(0.015)	(0.025)	(0.663)	(0.159)	(0.019)	(0.017)
Observations	13226	13226	13224	3868	13226	13226	13226	13226	3868	13226	13226	13225
R2	0.957	0.942	0.978	0.916	0.979	0.940	0.847	0.951	0.889	0.726	0.914	0.979
L3 GREENRATIOEP	-0.003	-0.028	0.001	0.257	0.006	0.116	0.003	0.023	-0.036	-0.131	-0.005	-0.001
	(0.035)	(0.036)	(0.019)	(0.293)	(0.018)	(0.108)	(0.014)	(0.024)	(0.724)	(0.114)	(0.017)	(0.015)
Observations	10830	10830	10830	1514	10830	10830	10830	10830	1514	11718	11718	11714
R2	0.969	0.957	0.984	0.984	0.986	0.965	0.904	0.968	0.986	0.825	0.944	0.986
L5 GREENRATIOEP	-0.044 (0.035)	0.001 (0.039)	0.021 (0.021)		0.013 (0.021)	-0.025 (0.090)	0.004 (0.014)	0.003 (0.022)		0.012 (0.109)	-0.010 (0.017)	0.012 (0.017)
Observations R2	8393 0.977	8393 0.965	8393 0.986		8393 0.988	8393 0.979	8393 0.937	8393 0.978		9135 0.884	9135 0.945	9132 0.989
L1 3YEARAVGGREENRATIOEP	-0.027	-0.025	-0.002	-0.100	-0.010	0.009	0.000	0.040	0.058	-0.198	0.018	-0.025
	(0.043)	(0.044)	(0.024)	(0.191)	(0.024)	(0.140)	(0.020)	(0.029)	(0.976)	(0.169)	(0.022)	(0.020)
Observations	16737	16737	16735	5376	16737	16737	16737	16737	5376	16735	16735	16735
R2	0.964	0.950	0.982	0.932	0.983	0.945	0.854	0.958	0.909	0.737	0.932	0.982
Panel B: Brown efficiency innovation												
L1 BROWNEFFRATIOEP	-0.026	0.014	-0.009	0.122	-0.005	0.200	0.015	0.026	2.548	0.069	-0.017	-0.006
	(0.065)	(0.055)	(0.031)	(0.242)	(0.035)	(0.221)	(0.018)	(0.041)	(1.896)	(0.231)	(0.035)	(0.026)
Observations	6167	6167	6167	1629	6167	6167	6167	6167	1629	6167	6167	6166
R2	0.967	0.942	0.977	0.889	0.979	0.939	0.859	0.948	0.859	0.816	0.911	0.979
L3 BROWNEFFRATIOEP	-0.010	0.109*	0.012	-0.082	0.001	-0.250	0.024	0.023	-1.520	-0.109	-0.045	0.012
	(0.049)	(0.056)	(0.027)	(0.317)	(0.030)	(0.202)	(0.018)	(0.031)	(1.540)	(0.199)	(0.028)	(0.022)
Observations	5138	5138	5138	590	5138	5138	5138	5138	590	5443	5443	5442
R2	0.979	0.961	0.984	0.951	0.986	0.964	0.915	0.970	0.981	0.847	0.933	0.988
L5 BROWNEFFRATIOEP	0.026 (0.054)	0.039 (0.050)	0.048 (0.031)		0.037 (0.030)	0.075 (0.146)	-0.021 (0.018)	0.023 (0.029)		0.118 (0.152)	0.058 (0.039)	0.048* (0.026)
Observations R2	4077 0.984	4077 0.970	4077 0.986		4077 0.989	4077 0.982	4077 0.943	4077 0.978		4349 0.896	4349 0.938	4350 0.990
L1 3YEARAVGBROWNEFFRATIOEP	0.050	0.092	0.007	-0.633	0.029	0.295	0.010	0.040	-1.204	-0.192	-0.038	0.020
	(0.067)	(0.069)	(0.034)	(0.465)	(0.042)	(0.319)	(0.024)	(0.048)	(3.088)	(0.277)	(0.033)	(0.030)
Observations	8588	8588	8588	2502	8588	8588	8588	8588	2502	8586	8586	8586
R2	0.976	0.958	0.986	0.938	0.986	0.943	0.876	0.963	0.898	0.795	0.940	0.984
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Firm F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XV: PATENT COUNT AND FIRM-LEVEL OUTCOMES

The unit of observation is firm-year. The sample period is 2005 to 2020. The dependent variables are logs of cumulative sums of SITOT, SZITOT, SZIPTOT, SZIDUPTOT, SZIDUPTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively long-term averages of SIINT, SZINT, SZIPTNT, SZIDUPNT, SZIDOWNINT and INVEST/A for 1, 3 or 5 years. In Panel A, the key independent variable is GREENCOUNTEP lagged by 1, 3, or 5 years as well as a 3-year rolling average lagged by 1 year. In Panel B, the key independent variable similarly is BROWNEFFCOUNTEP. Controls include: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, MSCI. All variables are defined in Table 1 and are lagged by 1, 5, or 5 years. The model is estimated using pooled regression model. All regressions include year and firm fixed effects. We double cluster standard errors at the firm and year dimension. ** 1% significance.*

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT	LOGS3DOWNTOT	LOGS123UPTOT	SIINT	S2INT	S3UPINT	S3DOWNINT	INVEST/A	LOGCAPEX	LOGSALES
Panel A: Green innovation												
L1 GREENCOUNTEP/100	0.041 (0.149)	0.185 (0.125)	0.198** (0.081)	0.680 (0.906)	0.133* (0.078)	$-0.488^{**} \ (0.247)$	0.052 (0.065)	-0.372*** (0.091)	11.815** (4.758)	-1.075** (0.520)	-0.220*** (0.060)	0.291*** (0.064)
Observations	29585	29585	29584	10349	29585	29585	29585	29585	10349	29578	29578	29580
R2	0.953	0.948	0.980	0.931	0.981	0.922	0.843	0.961	0.898	0.720	0.918	0.980
L3 GREENCOUNTEP/100	0.068	0.056	0.110	0.003	0.062	-0.222	0.056	-0.257***	2.955	-1.820***	-0.178***	0.140**
	(0.139)	(0.116)	(0.075)	(0.887)	(0.074)	(0.200)	(0.060)	(0.084)	(4.812)	(0.430)	(0.062)	(0.063)
Observations	22261	22261	22261	4160	22261	22261	22261	22261	4166	25158	25153	25155
R2	0.967	0.962	0.986	0.982	0.986	0.955	0.902	0.974	0.986	0.827	0.945	0.986
L5 GREENCOUNTEP/100	-0.066 (0.128)	-0.035 (0.108)	0.091 (0.072)		0.045 (0.069)	-0.257 (0.177)	0.100* (0.057)	-0.143* (0.076)		-2.201*** (0.408)	-0.151** (0.063)	0.081 (0.065)
Observations R2	15482 0.973	15482 0.965	15482 0.985		15482 0.986	15482 0.972	15482 0.933	15482 0.981		18347 0.888	18347 0.956	18343 0.989
L1 3YEARAVGGREENCOUNTEP	0.415*	0.737***	0.532***	1.493	0.484***	-0.519	0.200**	-0.743***	10.244	-2.994***	-0.254***	0.672***
	(0.230)	(0.200)	(0.144)	(1.456)	(0.149)	(0.367)	(0.087)	(0.126)	(8.360)	(0.854)	(0.089)	(0.130)
Observations	38221	38221	38220	14552	38221	38221	38221	38221	14552	38210	38210	38214
R2	0.954	0.945	0.974	0.935	0.975	0.928	0.847	0.965	0.907	0.683	0.911	0.970
Panel B: Brown efficiency innovation												
L1 BROWNEFFCOUNTEP/100	-0.159	-1.141***	-0.204	-1.304	-0.328	-0.929	-0.221	-0.574**	15.398	1.081	-0.416**	-0.052
	(0.376)	(0.393)	(0.199)	(2.060)	(0.207)	(0.891)	(0.161)	(0.248)	(13.115)	(0.966)	(0.186)	(0.164)
Observations	29585	29585	29584	10349	29585	29585	29585	29585	10349	29578	29578	29580
R2	0.953	0.948	0.980	0.931	0.981	0.922	0.843	0.961	0.898	0.720	0.918	0.980
L3 BROWNEFFCOUNTEP/100	-0.126	-0.619*	-0.112	0.114	-0.176	-0.659	-0.017	-0.052	-4.847	0.610	-0.388	-0.191
	(0.376)	(0.373)	(0.203)	(2.928)	(0.220)	(0.755)	(0.142)	(0.218)	(9.072)	(0.866)	(0.240)	(0.165)
Observations	22261	22261	22261	4160	22261	22261	22261	22261	4166	25158	25153	25155
R2	0.967	0.962	0.986	0.982	0.986	0.955	0.902	0.974	0.986	0.827	0.945	0.986
L5 BROWNEFFCOUNTEP/100	-0.118 (0.399)	-0.427 (0.367)	-0.002 (0.187)		-0.153 (0.215)	-0.692 (0.803)	-0.035 (0.143)	0.143 (0.203)		1.169 (0.799)	-0.314 (0.285)	-0.054 (0.157)
Observations R2	15482 0.973	15482 0.965	15482 0.985		15482 0.986	15482 0.972	15482 0.933	15482 0.981		18347 0.888	18347 0.956	18343 0.989
L1 3YEARAVGBROWNEFFCOUNTEP	0.066	-1.225*	-0.796**	-1.725	-0.793**	-1.108	-0.080	-2.150***	-7.128	1.485	-1.242***	-0.599*
	(0.652)	(0.664)	(0.388)	(4.363)	(0.384)	(1.406)	(0.265)	(0.432)	(24.206)	(1.828)	(0.291)	(0.352)
Observations	38221	38221	38220	14552	38221	38221	38221	38221	14552	38210	38210	38214
R2	0.954	0.945	0.974	0.935	0.975	0.928	0.847	0.965	0.907	0.682	0.911	0.970
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Firm F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XVI: PATENT MAXIMUM CITATIONS AND FIRM LEVEL OUTCOMES

The unit of observation is firm-year. The sample period is 2005 to 2020. The dependent variables are logs of cumulative sums of SITOT, SZIOT, S3UPIOT, S3DOWNTOT, S123UPIOT, CAPEX, and SALES over 1, 3 or 5 years, respectively long-term averages of SIINT, SZND, S3UPINT, S3DOWNNTA and INVEST/A for 1, 3 or 5 years. In Panel A, the key independent variable is GREEN/CITMAXEP lagged by 1, 3, or 5 years. In Panel B, the key independent variable size of the Controls include. LOGISIZE, LOCPPE, LEVERAGE, ROE, MB, INSEY/A, BETA, VOLAT, MOM, RET, MSCL All variables are defined in Table 1 and lagged by 1, 3, or 5 years. The model is estimated using pooled regression model. All regressions include year and firm fixed effects. We double cluster standard errors at the firm and year dimension. **1 % significance. *1 0% significance.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT	LOGS3DOWNTOT	LOGS123UPTOT	SIINT	S2INT	S3UPINT	S3DOWNINT	INVEST/A	LOGCAPEX	LOGSALES
Panel A: Green innovation	LOGDITOI	20002101	2000001101	LOGODDOMITIOT	200012001101	011111	021111	5501111	SSECTITE 1	1111201/11	LOGGINLX	LOGOTILLO
L1 GREENCITMAXEP/10000	0.074 (0.063)	0.063 (0.057)	0.062* (0.036)	-0.359*** (0.060)	0.061* (0.035)	0.011 (0.035)	-0.004 (0.012)	0.019 (0.023)	-0.430 (0.401)	-0.088 (0.117)	0.033 (0.027)	0.045 (0.030)
Observations	29585	29585	29584	10349	29585	29585	29585	29585	10349	29578	29578	29580
R2	0.953	0.948	0.980	0.931	0.981	0.922	0.843	0.961	0.898	0.720	0.917	0.980
L3 GREENCITMAXEP/10000	0.069	0.055	0.033	-0.162***	0.041	0.042	0.005	0.015	-0.431*	0.048	0.014	0.023
	(0.059)	(0.049)	(0.027)	(0.037)	(0.028)	(0.027)	(0.012)	(0.018)	(0.243)	(0.095)	(0.022)	(0.025)
Observations	22261	22261	22261	4160	22261	22261	22261	22261	4166	25158	25153	25155
R2	0.967	0.962	0.986	0.982	0.986	0.955	0.902	0.974	0.986	0.827	0.945	0.986
L5 GREENCITMAXEP/10000	0.051 (0.076)	0.119** (0.058)	0.029 (0.035)		0.048 (0.035)	0.051 (0.032)	0.028 (0.017)	0.016 (0.021)		0.159 (0.132)	-0.013 (0.016)	0.023 (0.037)
Observations R2	15482 0.973	15482 0.965	15482 0.985		15482 0.986	15482 0.971	15482 0.933	15482 0.981		18347 0.888	18347 0.956	18343 0.989
Panel B: Brown efficiency innovation	on											
L1 BROWNEFFCITMAXEP/10000	-0.232	0.060	0.547	0.080	0.231	-0.483	-0.287	0.110	14.840	2.153**	-0.089	0.361
	(0.262)	(0.160)	(0.467)	(6.439)	(0.271)	(0.317)	(0.223)	(0.193)	(31.518)	(0.971)	(0.104)	(0.295)
Observations	29585	29585	29584	10349	29585	29585	29585	29585	10349	29578	29578	29580
R2	0.953	0.948	0.980	0.931	0.981	0.922	0.843	0.961	0.898	0.720	0.917	0.980
L3 BROWNEFFCITMAXEP/10000	-0.325**	-0.145	0.516	-1.810	0.164	-0.349	-0.293	-0.015	6.474	2.055***	-0.018	0.356
	(0.157)	(0.134)	(0.403)	(4.749)	(0.180)	(0.259)	(0.206)	(0.128)	(17.012)	(0.760)	(0.068)	(0.234)
Observations	22261	22261	22261	4160	22261	22261	22261	22261	4166	25158	25153	25155
R2	0.967	0.962	0.986	0.982	0.986	0.955	0.902	0.974	0.986	0.827	0.945	0.986
L5 BROWNEFFCITMAXEP/10000	-0.351*** (0.090)	-0.248 (0.176)	0.351 (0.321)		0.015 (0.105)	-0.243 (0.205)	-0.268 (0.190)	-0.024 (0.074)		1.167* (0.702)	-0.025 (0.055)	0.205 (0.182)
Observations R2	15482 0.973	15482 0.965	15482 0.985		15482 0.986	15482 0.971	15482 0.933	15482 0.981		18347 0.888	18347 0.956	18343 0.989
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Firm F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XVII: PATENT BLOCKBUSTER COUNTS AND FIRM-LEVEL OUTCOMES

The unit of observation is firm-year. The sample period is 2005 to 2020. We keep only firms with at least one green blockbuster patent in Panel A and one brown efficiency blockbuster patent in Panel B. The dependent variables are logs of cumulative sums of SITOT, S2TOT, S2TOT, S2DVBTOT, S3DOWNIOT, S123UPTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively long-term averages of SIINT, S2INT, S3DVBTNT, S3DOWNIOT and INVEST/A for 1, 3 or 5 years. In Panel A, the key independent variable is GREENCOUNTBBEP legged by 1, 3, or 5 years. In Panel B, the key independent variable similarly is BROWNEFFCOUNTBBEP. Controls include: LOGSIZE, LOGPPE, LEVERAGE, ROE, M, B, INVEST/A, BETA, VOLAT, MOM, RET, MSCI. All variables are defined in Table 4 and lagged by 1, 3, or 5 years. The model is estimated using pooled regression model. All regressions include year and firm fixed effects. We double cluster standard errors at the firm and year dimension. *** 1% significance, ** 5% significance * 10% significance.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT	LOGS3DOWNTOT	LOGS123UPTOT	S1INT	S2INT	S3UPINT	S3DOWNINT	INVEST/A	LOGCAPEX	LOGSALES
Panel A: Green innovation												
L1 GREENCOUNTBBEP	0.027	0.017	0.030**	-0.095	0.028**	-0.059	0.006	0.017	-0.068	-0.077	0.010	0.027***
	(0.023)	(0.021)	(0.012)	(0.089)	(0.013)	(0.052)	(0.009)	(0.013)	(0.319)	(0.060)	(0.013)	(0.010)
Observations	7435	7435	7435	2275	7435	7435	7435	7435	2275	7435	7435	7435
R2	0.948	0.930	0.974	0.904	0.975	0.923	0.828	0.950	0.917	0.731	0.870	0.974
L3 GREENCOUNTBBEP	-0.002	0.016	0.023**	-0.076	0.020*	-0.042	-0.001	0.025**	-0.138	-0.092*	-0.014	0.015
	(0.021)	(0.019)	(0.011)	(0.094)	(0.012)	(0.036)	(0.008)	(0.012)	(0.295)	(0.050)	(0.013)	(0.010)
Observations	5951	5951	5951	1004	5951	5951	5951	5951	1006	6386	6386	6387
R2	0.962	0.949	0.981	0.975	0.981	0.954	0.889	0.967	0.989	0.814	0.911	0.981
L5 GREENCOUNTBBEP	-0.031 (0.020)	0.010 (0.019)	0.015 (0.011)		0.014 (0.011)	-0.006 (0.032)	-0.000 (0.008)	0.022** (0.011)		-0.050 (0.048)	-0.020 (0.014)	0.004 (0.010)
Observations R2	4504 0.971	4504 0.959	4504 0.982		4504 0.984	4504 0.971	4504 0.928	4504 0.977		4967 0.876	4967 0.919	4969 0.985
Panel B: Brown efficiency inno	ovation											
L1 BROWNEFFCOUNTBBEP	-0.032 (0.030)	-0.009 (0.027)	0.008 (0.014)	0.125 (0.140)	-0.005 (0.015)	-0.096 (0.066)	$-0.010 \\ (0.012)$	-0.016 (0.016)	0.484 (0.732)	0.174* (0.104)	0.004 (0.014)	0.018 (0.012)
Observations	4445	4445	4445	1274	4445	4445	4445	4445	1274	4445	4445	4445
R2	0.945	0.909	0.963	0.864	0.968	0.927	0.825	0.944	0.868	0.778	0.832	0.969
L3 BROWNEFFCOUNTBBEP	0.002	0.011	0.016	-0.041	0.008	-0.103*	-0.016	-0.025	0.469	0.157**	0.009	0.022*
	(0.028)	(0.027)	(0.015)	(0.180)	(0.015)	(0.061)	(0.012)	(0.016)	(0.591)	(0.078)	(0.016)	(0.012)
Observations	3685	3685	3685	568	3685	3685	3685	3685	568	3841	3841	3841
R2	0.961	0.934	0.972	0.941	0.976	0.957	0.888	0.964	0.985	0.831	0.873	0.977
L5 BROWNEFFCOUNTBBEP	0.029 (0.029)	0.026 (0.025)	0.016 (0.017)		0.009 (0.016)	-0.042 (0.056)	-0.011 (0.012)	-0.001 (0.015)		0.160** (0.073)	-0.014 (0.018)	0.019 (0.013)
Observations R2	2941 0.971	2941 0.951	2941 0.976		2941 0.981	2941 0.975	2941 0.928	2941 0.975		3100 0.879	3100 0.893	3100 0.981
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Firm F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XVIII: PATENT RATIOS AND FIRM-LEVEL OUTCOMES - TOP QUINTILE

The unit of observation is firm-year. The sample period is 2005 to 2020. We calculate quintiles based on three 5-year intervals' average patent ratios and keep only the top quintile based on the average GREENRATIOEP in Panel B. The dependent variables are logs of cumulative sums of STIOT, SZIOT, SQUPTOT, SQUPTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively long-term averages of SIINT, SZINTS, SQUPTOT, SQUPTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively long-term averages of SIINT, SZINTS, SQUPTOT, SQUPTOT, SQUPTOT, SQUPTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively long-term averages of SIINT, SZINTS, SQUPTOT, SQUPTO

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT	LOGS3DOWNTOT	LOGS123UPTOT	SIINT	S2INT	S3UPINT	S3DOWNINT	INVEST/A	LOGCAPEX	LOGSALES
Panel A: Green innovation												
L1 GREENRATIOEP	0.010 (0.034)	0.001 (0.035)	0.017 (0.021)	0.025 (0.097)	0.006 (0.022)	0.028 (0.087)	-0.019 (0.014)	0.019 (0.024)	0.254 (0.548)	0.028 (0.159)	-0.011 (0.020)	0.012 (0.018)
Observations	4850	4850	4849	1992	4850	4850	4850	4850	1992	4850	4850	4850
R2	0.976	0.957	0.984	0.935	0.986	0.962	0.886	0.956	0.887	0.677	0.935	0.984
L3 GREENRATIOEP	-0.045	-0.003	0.005	-0.029	-0.009	-0.110	-0.014	-0.008	0.415	-0.064	-0.005	0.006
	(0.027)	(0.029)	(0.018)	(0.094)	(0.016)	(0.087)	(0.012)	(0.022)	(0.563)	(0.105)	(0.018)	(0.014)
Observations	3633	3633	3633	780	3633	3633	3633	3633	780	4042	4042	4042
R2	0.988	0.975	0.991	0.986	0.993	0.978	0.941	0.969	0.985	0.803	0.961	0.991
L5 GREENRATIOEP	-0.010 (0.028)	-0.024 (0.036)	-0.016 (0.019)		-0.018 (0.017)	0.084 (0.084)	-0.001 (0.012)	-0.027 (0.020)		-0.109 (0.106)	-0.017 (0.015)	-0.014 (0.015)
Observations R2	2429 0.990	2429 0.975	2429 0.991		2429 0.994	2429 0.983	2429 0.959	2429 0.976		2868 0.851	2868 0.972	2868 0.993
L1 3YEARAVGGREENRATIOEP	-0.026	-0.141***	0.016	-0.113	-0.021	0.164	-0.052***	0.036	-0.311	-0.201	-0.020	-0.018
	(0.043)	(0.047)	(0.024)	(0.168)	(0.026)	(0.153)	(0.018)	(0.029)	(0.846)	(0.183)	(0.024)	(0.021)
Observations	8671	8671	8670	3547	8671	8671	8671	8671	3547	8669	8669	8671
R2	0.973	0.955	0.984	0.936	0.986	0.946	0.888	0.957	0.896	0.704	0.932	0.985
Panel B: Brown efficiency innovation												
L1 BROWNEFFRATIOEP	0.017	-0.021	-0.011	-0.265	-0.020	-0.025	0.014	0.014	0.253	0.037	-0.001	0.001
	(0.041)	(0.039)	(0.019)	(0.171)	(0.021)	(0.127)	(0.012)	(0.024)	(0.989)	(0.153)	(0.023)	(0.016)
Observations	5964	5964	5964	1957	5964	5964	5964	5964	1957	5964	5964	5964
R2	0.971	0.941	0.980	0.849	0.983	0.941	0.885	0.957	0.865	0.799	0.893	0.982
L3 BROWNEFFRATIOEP	-0.002	0.003	0.001	-0.077	-0.008	-0.147	0.023**	0.020	-0.750	0.040	-0.007	0.008
	(0.035)	(0.037)	(0.019)	(0.099)	(0.020)	(0.121)	(0.011)	(0.023)	(0.832)	(0.137)	(0.021)	(0.014)
Observations	4621	4621	4621	790	4621	4621	4621	4621	790	4919	4919	4920
R2	0.984	0.963	0.987	0.947	0.989	0.968	0.943	0.975	0.982	0.846	0.908	0.989
L5 BROWNEFFRATIOEP	-0.016 (0.037)	-0.005 (0.034)	0.001 (0.020)		-0.017 (0.021)	-0.239* (0.132)	-0.013 (0.009)	-0.007 (0.023)		0.359** (0.144)	0.025 (0.020)	0.021 (0.015)
Observations R2	3249 0.987	3249 0.972	3249 0.988		3249 0.991	3249 0.978	3249 0.966	3249 0.983		3544 0.888	3544 0.909	3546 0.991
L1 3YEARAVGBROWNEFFRATIOEP	0.151***	-0.027	0.012	-0.136	0.028	0.095	0.004	0.024	-1.373	-0.014	-0.005	0.025
	(0.049)	(0.049)	(0.024)	(0.223)	(0.027)	(0.190)	(0.018)	(0.031)	(1.354)	(0.224)	(0.024)	(0.023)
Observations	38221	38221	38220	14552	38221	38221	38221	38221	14552	38210	38210	38214
R2	0.958	0.951	0.982	0.935	0.982	0.928	0.847	0.965	0.907	0.718	0.923	0.980
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Firm F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XIX: PATENT RATIOS AND FIRM-LEVEL OUTCOMES - OECD ENV-TECH DEFINITION

The unit of observation is firm-year. The sample period is 2005 to 2020. We keep all firm-year EPO patenting observations in Panel A and require firm-year observations to have at loss one OECD env-tech patent at the EPO in Panel B. The dependent variables are logs of cumulative sums of SITOT, S2TOT, S3DPITOT, S3DOWNTOT, S123UPTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively long-term averages of SIINT, S2INT, S3UPINT, S3DOWNINT and INVEST/A BTA, VOLAT, MOM, RET, MSCI. All variables are defined in Table 1 and Table IA, yor 5 years, sa well as a 3-year rolling ratio lagged by 1 year. Controls include: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, MSCI. All variables are defined in Table 1 and Table IA, yor 5 years. The model is estimated using pooled regression model. All regressions include year and firm fixed effects. We double cluster standard errors at the firm and year dimension. *** 1% significance, ** 5% significance ** 10% significance.

Panel A: All patenting firm-year	(1) LOGS1TOT r observations	(2) LOGS2TOT	(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) LOGS123UPTOT	(6) S1INT	(7) S2INT	(8) S3UPINT	(9) S3DOWNINT	(10) INVEST/A	(11) LOGCAPEX	(12) LOGSALES
L1 OECDRATIOEP	0.026	-0.001	0.004	-0.070	-0.001	-0.068	-0.014	-0.005	0.094	-0.003	0.002	-0.002
	(0.025)	(0.024)	(0.014)	(0.076)	(0.014)	(0.067)	(0.010)	(0.017)	(0.427)	(0.093)	(0.014)	(0.012)
Observations	29585	29585	29584	10349	29585	29585	29585	29585	10349	29578	29578	29580
R2	0.953	0.948	0.980	0.931	0.981	0.922	0.843	0.961	0.898	0.720	0.917	0.980
L3 OECDRATIOEP	0.012 (0.024)	-0.054** (0.023)	-0.010 (0.013)	0.061 (0.120)	-0.015 (0.014)	-0.047 (0.067)	-0.014 (0.010)	-0.004 (0.016)	-0.286 (0.383)	0.003 (0.074)	-0.001 (0.012)	-0.015 (0.011)
Observations	22261	22261	22261	4160	22261	22261	22261	22261	4166	25158	25153	25155
R2	0.967	0.962	0.986	0.982	0.986	0.955	0.902	0.974	0.986	0.827	0.945	0.986
L5 OECDRATIOEP	0.010 (0.026)	-0.049** (0.024)	-0.005 (0.015)		0.002 (0.015)	0.048 (0.072)	-0.006 (0.010)	-0.002 (0.016)		0.041 (0.072)	0.001 (0.011)	-0.010 (0.012)
Observations R2	15482 0.973	15482 0.965	15482 0.985		15482 0.986	15482 0.972	15482 0.933	15482 0.981		18347 0.888	18347 0.956	18343 0.989
L1 3YEARAVGOECDRATIOEP	0.006	-0.068**	-0.008	-0.402***	-0.024	-0.040	-0.045***	0.011	-1.096*	0.005	-0.009	-0.028**
	(0.030)	(0.031)	(0.016)	(0.131)	(0.018)	(0.092)	(0.015)	(0.021)	(0.645)	(0.111)	(0.017)	(0.013)
Observations R2 Panel B: Firm-year observations	38221 0.958 with at least or	38221 0.951 ne OECD env-te	38220 0.982 ech patent	14552 0.935	38221 0.982	38221 0.928	38221 0.848	38221 0.965	14552 0.907	38210 0.718	38210 0.923	38214 0.980
L1 OECDRATIOEP	-0.037	0.003	-0.006	-0.020	-0.018	-0.217**	-0.009	-0.005	1.003	-0.079	-0.010	-0.006
	(0.036)	(0.035)	(0.019)	(0.169)	(0.019)	(0.106)	(0.015)	(0.025)	(0.802)	(0.144)	(0.019)	(0.015)
Observations	13509	13509	13509	3765	13509	13509	13509	13509	3765	13507	13507	13507
R2	0.957	0.938	0.978	0.889	0.980	0.937	0.854	0.950	0.883	0.751	0.910	0.980
L3 OECDRATIOEP	-0.031	-0.075**	-0.031	0.352	-0.041**	-0.096	-0.018	0.002	0.085	0.114	-0.010	-0.023
	(0.036)	(0.033)	(0.019)	(0.367)	(0.019)	(0.109)	(0.014)	(0.022)	(0.949)	(0.109)	(0.016)	(0.015)
Observations	10978	10978	10978	1350	10978	10978	10978	10978	1350	11868	11868	11863
R2	0.967	0.953	0.982	0.966	0.984	0.960	0.906	0.967	0.985	0.834	0.941	0.986
L5 OECDRATIOEP	0.018 (0.034)	-0.016 (0.034)	0.005 (0.020)		0.021 (0.019)	0.091 (0.086)	-0.000 (0.014)	0.014 (0.020)		0.177* (0.099)	0.041*** (0.015)	0.004 (0.016)
Observations R2	8549 0.975	8549 0.962	8549 0.984		8549 0.987	8549 0.977	8549 0.938	8549 0.979		9244 0.888	9244 0.945	9239 0.988
L1 3YEARAVGOECDRATIOEP	-0.038	-0.007	-0.018	-0.390*	-0.022	-0.101	-0.019	0.015	-0.534	0.053	0.001	-0.038**
	(0.043)	(0.046)	(0.022)	(0.211)	(0.023)	(0.147)	(0.020)	(0.030)	(1.103)	(0.164)	(0.021)	(0.018)
Observations	17197	17197	17197	5343	17197	17197	17197	17197	5343	17191	17191	17194
R2	0.964	0.948	0.983	0.921	0.983	0.941	0.860	0.958	0.906	0.753	0.930	0.983
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Firm F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XX: GREEN PATENT CITATIONS AND GICS-6 INDUSTRY-LEVEL OUTCOMES

The unit of observation is GICS-6 industry-year and the sample period is 2005 to 2020. The dependent variables are logs of industry level cumulative sums of S1TOT, S2TOT, S3DOWNTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively cumulative sums over sums for S1INT, S2INT, S3DPINT, S3DOWNINT and INVEST/A for 1, 3 or 5 years. In Panel A.1 and B.1, dependent variables are calculated across all firms within the given industry. In Panel A.2 and B.2, dependent variables are calculated across all ever patenting firms within the given industry. The key explanatory variables are reacculated across all never patenting firms within the given industry. The key explanatory variables or interest is AVGGREENCITMAXEP in Panel A and AVGBROWNEFFCITMAXEP. Dependent variables are calculated across all never patenting firms within the given industry. The key explanatory variables or interest is AVGGREENCITMAXEP in Panel A and AVGBROWNEFFCITMAXEP. Dependent variables are calculated across all never patenting firms in a given year and industry. Other independent variables are calculated as in Table 12 and all are lagged by 1, 3 or 5 years respectively. The model is estimated using pooled regression model. All regression include year and industry fixed effects. We double cluster standard errors at the GICS-6 industry and year dimension. *** 1% significance. *1% significance. *10% significance.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT	LOGS3DOWNTOT	S1INT	S2INT	S3UPINT	S3DOWNINT	INVEST/A	LOGCAPEX	LOGSALES
Panel A: Green innovation Panel A.1: AVGGREENCITMAXEP or	n all firms										
L1 AVGGREENCITMAXEP/10000	5.123 (3.432)	4.892 (3.822)	4.110 (3.263)	39.553* (21.481)	-4.122 (3.514)	$-0.161 \\ (0.714)$	0.798 (0.993)	64.779 (98.512)	-0.019 (0.013)	3.144 (2.898)	3.893 (3.330)
Observations	976	976	976	261	976	976	976	261	976	976	976
R2	0.962	0.932	0.960	0.961	0.988	0.733	0.976	0.842	0.911	0.925	0.936
L3 AVGGREENCITMAXEP/10000	1.423	1.331	1.182	9.856	-3.687	-0.131	0.486	-12.823	-0.002	0.728	0.848
	(1.395)	(0.905)	(0.745)	(12.299)	(2.812)	(0.625)	(0.547)	(57.431)	(0.005)	(0.539)	(0.748)
Observations	837	837	837	122	837	837	837	122	837	837	837
R2	0.981	0.978	0.990	0.990	0.994	0.782	0.987	0.973	0.957	0.984	0.986
L5 AVGGREENCITMAXEP/10000	0.408 (1.393)	-0.009 (0.745)	0.068 (0.717)		-1.638 (2.411)	-0.481 (0.515)	0.521 (0.453)		-0.005 (0.005)	-0.413 (0.543)	-0.238 (0.686)
Observations R2	708 0.986	708 0.985	708 0.991		708 0.997	708 0.852	708 0.992		708 0.966	708 0.984	708 0.987
Panel A.2: AVGGREENCITMAXEP or	n ever patenting j	firms									
L1 AVGGREENCITMAXEP/10000	3.958**	1.105	1.682	44.726*	-4.992	-0.617	1.750	29.369	-0.007	-0.220	0.701
	(2.017)	(1.165)	(1.072)	(23.675)	(5.705)	(0.879)	(1.330)	(67.699)	(0.005)	(0.622)	(0.752)
Observations	974	974	974	261	974	974	974	261	974	974	974
R2	0.962	0.960	0.984	0.954	0.926	0.678	0.973	0.695	0.954	0.979	0.981
L3 AVGGREENCITMAXEP/10000	2.335	1.434	2.016**	-0.455	-4.844	-0.210	1.411**	20.383	-0.009	0.234	0.956
	(1.471)	(0.975)	(0.897)	(10.797)	(3.849)	(0.715)	(0.685)	(67.914)	(0.006)	(0.526)	(0.807)
Observations	834	834	834	122	834	834	834	122	834	834	834
R2	0.976	0.973	0.988	0.986	0.952	0.740	0.984	0.936	0.967	0.982	0.986
L5 AVGGREENCITMAXEP/10000	2.058 (2.072)	0.999 (1.142)	0.887 (1.134)		0.758 (4.697)	-0.757 (0.939)	1.454* (0.804)		-0.006 (0.005)	0.660 (0.851)	-0.041 (1.066)
Observations R2	705 0.982	705 0.982	705 0.991		705 0.970	705 0.824	705 0.989		705 0.975	705 0.986	705 0.988
Panel A.3: AVGGREENCITMAXEP of	n never patenting	firms									
L1 AVGGREENCITMAXEP/10000	-2.829	-1.218	1.181	26.779	-3.186	-1.131	0.942	32.742	-0.016	-1.487	0.968
	(3.842)	(2.707)	(2.239)	(16.749)	(7.748)	(0.910)	(3.654)	(60.013)	(0.060)	(2.685)	(2.282)
Observations	964	964	964	261	964	964	964	261	964	964	964
R2	0.941	0.921	0.940	0.972	0.979	0.735	0.629	0.959	0.794	0.938	0.939
L3 AVGGREENCITMAXEP/10000	-1.541	0.786	0.123	17.597**	-11.922	-0.626	-4.898	-73.881	-0.054	-1.657	0.850
	(2.217)	(1.994)	(1.892)	(8.022)	(8.273)	(0.750)	(4.933)	(55.735)	(0.054)	(2.604)	(1.900)
Observations	819	819	819	122	819	819	819	122	819	819	819
R2	0.960	0.948	0.961	0.998	0.993	0.846	0.860	0.996	0.825	0.958	0.960
L5 AVGGREENCITMAXEP/10000	0.435 (2.699)	1.864 (1.514)	0.326 (1.541)		-7.476 (6.280)	-0.350 (0.583)	-3.978 (3.570)		-0.050 (0.035)	-1.153 (1.274)	1.055 (1.449)
Observations R2	685 0.973	685 0.959	685 0.967		685 0.996	685 0.898	685 0.930		685 0.867	685 0.963	685 0.966
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT	LOGS3DOWNTOT	S1INT	S2INT	S3UPINT	S3DOWNINT	INVEST/A	LOGCAPEX	LOGSALES
Panel B: Brown efficiency innovation Panel B.1: AVGBROWNEFFCITMAXEP of											
L1 AVGBROWNEFFCITMAXEP/10000	-0.627	1.283	0.008	33.930	-5.533	-1.974	2.777	345.615	-0.003	-1.345	-1.608
	(3.144)	(2.345)	(1.559)	(27.867)	(15.384)	(2.748)	(3.220)	(277.515)	(0.016)	(1.795)	(1.848)
Observations	976	976	976	261	976	976	976	261	976	976	976
R2	0.962	0.932	0.959	0.961	0.988	0.734	0.976	0.842	0.911	0.924	0.936
L3 AVGBROWNEFFCITMAXEP/10000	1.339	-0.487	-1.414	3.126	-0.590	-2.252	2.272	104.580	-0.000	-1.735	-2.450
	(4.042)	(2.095)	(1.835)	(21.317)	(10.820)	(2.475)	(2.248)	(91.126)	(0.017)	(2.094)	(2.327)
Observations	837	837	837	122	837	837	837	122	837	837	837
R2	0.981	0.978	0.990	0.990	0.994	0.783	0.988	0.973	0.957	0.984	0.986
L5 AVGBROWNEFFCITMAXEP/10000	2.844 (3.131)	-1.244 (1.625)	-1.812 (1.636)		4.477 (8.864)	-2.424 (2.154)	1.212 (1.614)		0.010 (0.014)	-0.909 (1.894)	-2.374 (1.946)
Observations R2	708 0.986	708 0.985	708 0.991		708 0.997	708 0.852	708 0.992		708 0.966	708 0.984	708 0.987
Panel B.2: AVGBROWNEFFCITMAXEP of	n ever patenting	g firms									
L1 AVGBROWNEFFCITMAXEP/10000	-2.115	0.854	0.667	39.204	-8.492	-2.598	2.820	578.806	0.005	-0.001	-2.477
	(3.535)	(2.816)	(2.352)	(35.840)	(19.671)	(3.220)	(3.205)	(523.196)	(0.009)	(1.794)	(2.469)
Observations	974	974	974	261	974	974	974	261	974	974	974
R2	0.962	0.960	0.984	0.954	0.926	0.678	0.973	0.696	0.954	0.979	0.981
L3 AVGBROWNEFFCITMAXEP/10000	-3.180	-2.018	-1.865	2.681	-1.737	-2.786	1.329	159.525	0.007	-0.770	-3.681
	(4.460)	(3.181)	(2.021)	(24.839)	(13.421)	(2.979)	(1.873)	(188.949)	(0.010)	(1.912)	(2.677)
Observations	834	834	834	122	834	834	834	122	834	834	834
R2	0.976	0.973	0.988	0.986	0.952	0.740	0.984	0.936	0.967	0.982	0.986
L5 AVGBROWNEFFCITMAXEP/10000	-1.055 (4.369)	-1.739 (2.391)	-3.017* (1.702)		-8.655 (9.582)	-2.763 (2.494)	-0.123 (1.349)		0.011 (0.009)	0.440 (1.264)	-3.389* (1.975)
Observations R2	705 0.982	705 0.982	705 0.991		705 0.970	705 0.824	705 0.989		705 0.975	705 0.986	705 0.988
Panel B.3: AVGBROWNEFFCITMAXEP of	n never patenti	ng firms									
L1 AVGBROWNEFFCITMAXEP/10000	5.938	-1.590	-3.651	24.852	39.698	-2.262	0.140	92.524	-0.170**	-2.435	-2.796
	(5.709)	(3.318)	(2.622)	(45.298)	(30.177)	(2.037)	(9.520)	(95.387)	(0.079)	(4.001)	(2.027)
Observations	964	964	964	261	964	964	964	261	964	964	964
R2	0.941	0.921	0.940	0.972	0.980	0.734	0.629	0.959	0.795	0.938	0.939
L3 AVGBROWNEFFCITMAXEP/10000	12.857	4.281	0.254	12.429	46.793	-0.013	21.218	13.544	-0.155	-2.026	-0.795
	(9.586)	(4.864)	(3.691)	(10.184)	(30.469)	(2.023)	(23.349)	(57.324)	(0.096)	(3.160)	(1.729)
Observations	819	819	819	122	819	819	819	122	819	819	819
R2	0.960	0.948	0.961	0.998	0.993	0.846	0.861	0.996	0.825	0.958	0.960
L5 AVGBROWNEFFCITMAXEP/10000	13.582* (7.300)	4.420 (3.423)	1.351 (2.355)		32.154 (19.834)	-0.508 (1.564)	16.545 (15.338)		-0.100 (0.070)	-1.056 (2.530)	0.310 (1.485)
Observations R2	685 0.973	685 0.959	685 0.967		685 0.996	685 0.898	685 0.930		685 0.867	685 0.963	685 0.966
Controls Year F.E. Industry F.E.	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes
muusuy F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XXI: OECD PATENT RATIOS AND GICS-6 INDUSTRY-LEVEL OUTCOMES

The unit of observation is GICS-6 industry-year. The sample period is 2005 to 2020. The dependent variables are logs of industry level cumulative sums of S1TOT, S2TOT, S3UPTOT, S3DOWNTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively cumulative sums over sums for S1INT, S3DOWNTOT, G3DOWNINT and INVEST/A for 1, 3 or 5 years. In Panel A dependent variables are calculated across all firms within the given industry. In Panel B dependent variables are calculated across all lever patenting firms within the given industry. The key explanatory variables of interest is OECDRATIOEP. Controls include LOGSIZE, LOGPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, MSCI. Independent variables are calculated as in Table 12 and IAXX and are lagged by 1, 3 or 5 years respectively. All Independent variables are lagged by 1, 3 or 5 years respectively. The model is estimated using pooled regression model. All regression include year and industry fixed effects. We double cluster standard errors at the GICS-6 industry and year dimension. *** 1% significance, ** 5% significance * 10% significance.

Panel A: OECDRATIOEP on all fire	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT	LOGS3DOWNTOT	S1INT	S2INT	S3UPINT	S3DOWNINT	INVEST/A	LOGCAPEX	LOGSALES
L1 OECDRATIOEP	-0.107	0.064	-0.145*	0.412	0.858	0.145*	-0.033	7.304	0.001*	0.013	-0.129*
	(0.135)	(0.143)	(0.075)	(0.646)	(0.963)	(0.085)	(0.098)	(6.108)	(0.001)	(0.052)	(0.066)
Observations	976	976	976	261	976	976	976	261	976	976	976
R2	0.962	0.932	0.960	0.961	0.988	0.734	0.976	0.843	0.911	0.924	0.936
L3 OECDRATIOEP	0.074	0.033	-0.129*	-0.253	-0.074	0.228**	-0.177*	5.215	0.001**	-0.012	-0.075
	(0.135)	(0.117)	(0.070)	(1.100)	(0.895)	(0.104)	(0.101)	(7.600)	(0.001)	(0.049)	(0.063)
Observations	837	837	837	122	837	837	837	122	837	837	837
R2	0.981	0.978	0.990	0.990	0.994	0.784	0.988	0.974	0.957	0.984	0.986
L5 OECDRATIOEP	0.197* (0.116)	0.077 (0.092)	-0.063 (0.064)		0.734 (0.531)	0.229* (0.138)	-0.045 (0.080)		0.001 (0.000)	-0.034 (0.042)	-0.051 (0.058)
Observations R2	708 0.986	708 0.985	708 0.991		708 0.997	708 0.853	708 0.992		708 0.966	708 0.984	708 0.987
L1 3YEARAVGOECDRATIOEP	0.152	0.219	-0.077	-0.452	1.273	0.385***	-0.169	10.101	0.001	0.115	-0.030
	(0.205)	(0.189)	(0.111)	(0.957)	(1.425)	(0.133)	(0.111)	(10.754)	(0.001)	(0.103)	(0.101)
Observations	988	988	988	267	988	988	988	267	988	988	988
R2	0.962	0.931	0.960	0.967	0.988	0.734	0.976	0.843	0.903	0.914	0.937
Panel B: OECDRATIOEP on ever pe											
L1 OECDRATIOEP	-0.348	-0.088	-0.180**	1.228	2.249	0.136	0.060	14.481	0.002***	0.067	-0.191**
	(0.229)	(0.204)	(0.079)	(0.864)	(2.305)	(0.114)	(0.092)	(11.915)	(0.001)	(0.063)	(0.075)
Observations	974	974	974	261	974	974	974	261	974	974	974
R2	0.962	0.960	0.984	0.954	0.926	0.679	0.973	0.700	0.955	0.979	0.981
L3 OECDRATIOEP	-0.319*	-0.083	-0.143*	0.733	0.792	0.253*	-0.099	5.961	0.001***	0.041	-0.116
	(0.187)	(0.165)	(0.073)	(1.052)	(1.594)	(0.134)	(0.062)	(9.004)	(0.001)	(0.064)	(0.072)
Observations	834	834	834	122	834	834	834	122	834	834	834
R2	0.976	0.973	0.988	0.986	0.952	0.741	0.984	0.936	0.967	0.982	0.986
L5 OECDRATIOEP	-0.136 (0.213)	-0.126 (0.157)	-0.180** (0.083)		2.301 (1.402)	0.199 (0.184)	-0.053 (0.074)		0.001*** (0.000)	-0.007 (0.054)	-0.153* (0.080)
Observations R2	705 0.982	705 0.982	705 0.991		705 0.971	705 0.824	705 0.989		705 0.976	705 0.986	705 0.988
L1 3YEARAVGOECDRATIOEP	-0.423 (0.312)	-0.030 (0.288)	-0.111 (0.121)	0.672 (1.324)	3.345 (3.332)	0.372* (0.195)	$-0.012 \\ (0.125)$	21.939 (23.179)	0.002*** (0.001)	0.185 (0.114)	-0.109 (0.118)
Observations	985	985	985	265	985	985	985	265	985	985	985
R2	0.963	0.961	0.984	0.956	0.927	0.682	0.973	0.697	0.950	0.979	0.982
Panel C: OECDRATIOEP on never											
L1 OECDRATIOEP	-0.113	0.127	-0.102	0.390	0.765	0.179**	-0.157	-0.424	0.001	0.014	-0.065
	(0.143)	(0.136)	(0.087)	(0.671)	(0.909)	(0.074)	(0.177)	(3.490)	(0.001)	(0.060)	(0.079)
Observations	964	964	964	261	964	964	964	261	964	964	964
R2	0.941	0.921	0.940	0.972	0.980	0.735	0.629	0.959	0.794	0.938	0.939
L3 OECDRATIOEP	0.089 (0.127)	-0.007 (0.113)	-0.081 (0.085)	0.573 (0.541)	0.527 (0.892)	0.152* (0.084)	$-0.227 \ (0.147)$	2.739 (2.920)	0.001 (0.001)	0.010 (0.067)	-0.016 (0.077)
Observations	819	819	819	122	819	819	819	122	819	819	819
R2	0.960	0.948	0.961	0.998	0.993	0.847	0.860	0.996	0.824	0.958	0.960
L5 OECDRATIOEP	0.108 (0.111)	0.041 (0.104)	-0.019 (0.084)		0.761 (0.523)	0.156** (0.075)	-0.055 (0.106)		0.000 (0.001)	-0.066 (0.072)	-0.002 (0.082)
Observations R2	685 0.973	685 0.959	685 0.967		685 0.996	685 0.899	685 0.929		685 0.866	685 0.963	685 0.966
L1 3YEARAVGOECDRATIOEP	0.073	0.063	-0.102	-0.044	2.193	0.259**	-0.417	-1.584	0.001	0.052	-0.015
	(0.253)	(0.215)	(0.145)	(0.860)	(1.430)	(0.105)	(0.304)	(4.042)	(0.002)	(0.105)	(0.124)
Observations	976	976	976	267	976	976	976	267	976	976	976
R2	0.941	0.920	0.939	0.974	0.979	0.735	0.631	0.959	0.793	0.932	0.937
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XXII: PATENT RATIOS AND TRUCOST INDUSTRY-LEVEL OUTCOMES

The unit of observation is Trucost industry-year and the sample period is 2005 to 2020. The dependent variables are logs of industry level cumulative sums of S1TOT, S2TOT, S3DOWNTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively cumulative sums over sums for S1NT, S2INT, S3DPINT, S3DOWNINT and INVEST/A for 1, 3 or 5 years for the Trucost sample. In Panel A.1 and B.1, dependent variables are calculated across all firms within the given industry. In Panel A.2 and B.2, dependent variables are calculated across all ever patenting firms within the given industry and in Panel A.3 and B.8. dependent variables are calculated across all ever patenting firms within the given industry. The key explanatory variables of interest are GREENRATIOEP and in Panel A and BROWNEFFRATIOEP in Panel B. Controls include LOCSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, MSCI. Independent variables are either industry level logs of sums (LOGSIZE and LOGPPE), sum over sums (GREENRATIOEP, BROWNEFFRATIOEP, LEVERAGE, ROE, M/B, INVEST/A) or market capitalization weighted averages (BETA, VOLAT, MOM, RET, MSCI). All Independent variables are larged by 1, 3 or 5 years respectively. The model is estimated using pooled regression model. All regression include year and industry fixed effects. We double cluster standard errors at the given industry and year dimension. ** 1% significance. * 10% significance.

Panel A: Green innovation Panel A:1: GREENRATIOEP on all	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT	LOGS3DOWNTOT	S1INT	S2INT	S3UPINT	S3DOWNINT	INVEST/A	LOGCAPEX	LOGSALES
L1 GREENRATIOEP	-0.067	0.017	-0.032	0.092	0.157	0.046	-0.241***	0.266	-0.001	-0.039	0.009
	(0.071)	(0.073)	(0.055)	(0.133)	(0.437)	(0.136)	(0.083)	(1.606)	(0.001)	(0.054)	(0.052)
Observations	4486	4486	4486	1343	4486	4486	4486	1343	4486	4486	4486
R2	0.939	0.923	0.943	0.951	0.873	0.565	0.880	0.860	0.764	0.942	0.950
L3 GREENRATIOEP	-0.051	0.033	-0.043	-0.020	0.164	0.172*	-0.068	-1.347	-0.001	-0.046	-0.032
	(0.076)	(0.077)	(0.062)	(.)	(0.431)	(0.096)	(0.059)	(.)	(0.001)	(0.053)	(0.058)
Observations	3745	3745	3745	644	3745	3745	3745	644	3745	3745	3745
R2	0.959	0.943	0.954	0.992	0.947	0.731	0.978	0.988	0.848	0.956	0.960
L5 GREENRATIOEP	0.046 (0.081)	0.057 (0.074)	0.005 (0.068)		0.290 (0.362)	0.082 (0.052)	0.002 (0.049)		-0.001 (0.001)	-0.004 (0.054)	-0.006 (0.063)
Observations R2	3030 0.971	3030 0.959	3030 0.965		3030 0.965	3030 0.847	3030 0.985		3030 0.890	3030 0.967	3030 0.970
L1 3YEARAVGGREENRATIOEP	-0.036	0.103	-0.012	0.358	0.661	0.207**	-0.213**	-6.362	-0.003**	-0.013	0.035
	(0.089)	(0.098)	(0.071)	(0.224)	(0.513)	(0.100)	(0.098)	(5.112)	(0.001)	(0.055)	(0.066)
Observations	4861	4861	4861	1458	4861	4861	4861	1458	4861	4861	4861
R2	0.936	0.921	0.939	0.950	0.874	0.569	0.886	0.931	0.763	0.935	0.945
Panel A.2: GREENRATIOEP on eve	r patenting firms										
L1 GREENRATIOEP	0.032	0.092	-0.018	0.508**	0.418	0.025	-0.279	0.925	-0.002*	-0.044	0.030
	(0.107)	(0.106)	(0.079)	(0.224)	(0.593)	(0.285)	(0.171)	(2.559)	(0.001)	(0.067)	(0.072)
Observations	4459	4459	4459	1337	4459	4459	4459	1337	4459	4459	4459
R2	0.923	0.905	0.930	0.919	0.384	0.304	0.822	0.798	0.769	0.904	0.937
L3 GREENRATIOEP	-0.154	-0.029	-0.119	0.275	0.258	0.264	-0.134	-2.049	0.000	-0.049	-0.076
	(0.101)	(0.099)	(0.081)	(.)	(0.405)	(0.173)	(0.085)	(.)	(0.001)	(0.065)	(0.073)
Observations	3702	3702	3702	640	3702	3702	3702	640	3702	3702	3702
R2	0.949	0.932	0.946	0.990	0.923	0.560	0.969	0.983	0.851	0.936	0.951
L5 GREENRATIOEP	0.005 (0.096)	0.025 (0.087)	-0.033 (0.076)		0.214 (0.268)	0.126 (0.078)	-0.089 (0.087)		-0.000 (0.001)	-0.017 (0.058)	-0.025 (0.070)
Observations R2	2982 0.965	2982 0.952	2982 0.961		2982 0.955	2982 0.749	2982 0.980		2982 0.883	2982 0.955	2982 0.964
L1 3YEARAVGGREENRATIOEP	-0.012	0.192	-0.084	1.164**	1.143	0.343*	-0.358*	-1.764	-0.002	-0.070	0.003
	(0.151)	(0.151)	(0.112)	(0.469)	(0.716)	(0.177)	(0.213)	(3.907)	(0.002)	(0.082)	(0.101)
Observations	4778	4778	4778	1426	4778	4778	4778	1426	4778	4778	4778
R2	0.917	0.901	0.924	0.920	0.412	0.306	0.830	0.879	0.754	0.901	0.929
Panel A.3: GREENRATIOEP on nev	er patenting firm	s									
L1 GREENRATIOEP	-0.105	0.001	-0.083	-0.144	0.240	0.029	-0.151	-1.772	-0.000	-0.017	-0.046
	(0.098)	(0.093)	(0.066)	(0.175)	(0.627)	(0.080)	(0.134)	(2.021)	(0.002)	(0.065)	(0.063)
Observations	3112	3112	3112	1226	3112	3112	3112	1226	3112	3112	3112
R2	0.927	0.910	0.931	0.949	0.642	0.656	0.331	0.895	0.622	0.910	0.940
L3 GREENRATIOEP	-0.080	0.025	-0.048	-0.083	-0.075	0.139**	-0.074	-0.484	-0.002	-0.095	-0.034
	(0.094)	(0.092)	(0.074)	(0.081)	(0.509)	(0.062)	(0.111)	(1.423)	(0.001)	(0.060)	(0.073)
Observations	2396	2396	2396	576	2396	2396	2396	576	2396	2396	2396
R2	0.949	0.931	0.942	0.994	0.972	0.840	0.994	0.991	0.713	0.931	0.946
L5 GREENRATIOEP	-0.061 (0.109)	-0.051 (0.102)	-0.030 (0.080)		-0.231 (0.506)	-0.007 (0.063)	0.101 (0.094)		-0.000 (0.001)	-0.026 (0.060)	-0.022 (0.080)
Observations R2	1736 0.959	1736 0.941	1736 0.950		1736 0.980	1736 0.897	1736 0.986		1736 0.775	1736 0.947	1736 0.953
L1 3YEARAVGGREENRATIOEP	-0.137	0.123	0.008	-0.349	-0.336	0.131*	-0.083	-7.870**	-0.006***	-0.102	0.019
	(0.116)	(0.111)	(0.083)	(0.299)	(0.517)	(0.071)	(0.163)	(3.776)	(0.002)	(0.072)	(0.079)
Observations	3402	3402	3402	1331	3402	3402	3402	1331	3402	3402	3402
R2	0.925	0.906	0.927	0.945	0.647	0.658	0.336	0.945	0.623	0.908	0.936
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

Panel B: Brown efficiency innovation Panel B.1: BROWNEFFRATIOEP on all		(2) LOGS2TOT	(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 BROWNEFFRATIOEP	-0.377**	-0.438***	-0.221*	-0.020	-1.322	-0.111	0.005	-7.431	0.003	-0.046	-0.193*
	(0.185)	(0.139)	(0.119)	(0.341)	(1.011)	(0.075)	(0.190)	(7.885)	(0.002)	(0.102)	(0.109)
Observations	4486	4486	4486	1343	4486	4486	4486	1343	4486	4486	4486
R2	0.939	0.923	0.943	0.951	0.873	0.565	0.880	0.860	0.764	0.942	0.950
L3 BROWNEFFRATIOEP	-0.145	-0.245*	-0.120	-0.242	-1.512	-0.018	-0.092	6.606	0.002	0.005	-0.089
	(0.158)	(0.137)	(0.127)	(.)	(0.946)	(0.065)	(0.128)	(.)	(0.002)	(0.091)	(0.121)
Observations	3745	3745	3745	644	3745	3745	3745	644	3745	3745	3745
R2	0.959	0.943	0.954	0.992	0.947	0.731	0.978	0.988	0.848	0.956	0.960
L5 BROWNEFFRATIOEP	-0.090 (0.146)	-0.160 (0.135)	-0.039 (0.123)		-0.547 (0.733)	0.008 (0.050)	-0.020 (0.083)		0.003* (0.002)	0.049 (0.100)	-0.035 (0.123)
Observations R2	3030 0.971	3030 0.959	3030 0.965		3030 0.965	3030 0.847	3030 0.985		3030 0.890	3030 0.967	3030 0.970
L1 3YEARAVGBROWNEFFRATIOEP	-0.367	-0.474***	-0.305**	0.002	-2.244*	-0.057	-0.168	26.777	0.001	-0.063	-0.231*
	(0.230)	(0.183)	(0.145)	(0.524)	(1.307)	(0.088)	(0.145)	(16.300)	(0.003)	(0.110)	(0.128)
Observations	4861	4861	4861	1458	4861	4861	4861	1458	4861	4861	4861
R2	0.936	0.922	0.939	0.950	0.874	0.569	0.886	0.931	0.763	0.935	0.945
Panel B.2: BROWNEFFRATIOEP on evo	er patenting firm	s									
L1 BROWNEFFRATIOEP	-0.254 (0.182)	-0.424*** (0.160)	-0.050 (0.135)	0.164 (0.464)	-0.420 (1.004)	-0.321** (0.117)	(0.141)	-1.371 (8.440)	0.004 (0.003)	0.039 (0.113)	-0.049 (0.125)
Observations	4459	4459	4459	1337	4459	4459	4459	1337	4459	4459	4459
R2	0.923	0.906	0.930	0.919	0.384	0.304	0.822	0.798	0.769	0.904	0.937
L3 BROWNEFFRATIOEP	-0.096	-0.278*	-0.024	-0.377	-0.539	-0.162	-0.076	-2.798	0.004**	0.028	-0.004
	(0.149)	(0.145)	(0.124)	(.)	(0.553)	(0.108)	(0.067)	(.)	(0.002)	(0.103)	(0.119)
Observations	3702	3702	3702	640	3702	3702	3702	640	3702	3702	3702
R2	0.949	0.932	0.946	0.990	0.923	0.559	0.969	0.983	0.851	0.936	0.951
L5 BROWNEFFRATIOEP	-0.105 (0.143)	-0.190 (0.137)	0.010 (0.125)		-0.130 (0.470)	-0.019 (0.075)	0.046 (0.067)		0.004** (0.002)	0.097 (0.107)	-0.005 (0.121)
Observations R2	2982 0.965	2982 0.952	2982 0.961		2982 0.955	2982 0.749	2982 0.980		2982 0.883	2982 0.955	2982 0.964
L1 3YEARAVGBROWNEFFRATIOEP	-0.177	-0.486**	-0.155	-0.180	-0.995	-0.365**	-0.165	-0.177	0.005*	0.043	-0.064
	(0.231)	(0.247)	(0.162)	(0.870)	(1.340)	(0.149)	(0.142)	(23.636)	(0.003)	(0.131)	(0.139)
Observations	4778	4778	4778	1426	4778	4778	4778	1426	4778	4778	4778
R2	0.917	0.901	0.924	0.920	0.412	0.305	0.830	0.879	0.754	0.901	0.929
Panel B.3: BROWNEFFRATIOEP on ne	ver patenting fir										
L1 BROWNEFFRATIOEP	0.152	-0.049	-0.195*	-0.568*	2.221	0.287	-0.088	-15.837*	0.002	-0.071	-0.177
	(0.258)	(0.179)	(0.113)	(0.330)	(1.442)	(0.194)	(0.397)	(9.223)	(0.005)	(0.123)	(0.119)
Observations	3112	3112	3112	1226	3112	3112	3112	1226	3112	3112	3112
R2	0.927	0.910	0.931	0.949	0.642	0.656	0.331	0.896	0.623	0.910	0.940
L3 BROWNEFFRATIOEP	-0.044 (0.257)	-0.094 (0.210)	-0.045 (0.182)	0.016 (0.123)	0.179 (1.248)	-0.061 (0.157)	0.025 (0.414)	12.087* (6.709)	-0.001 (0.003)	-0.003 (0.126)	-0.017 (0.183)
Observations	2396	2396	2396	576	2396	2396	2396	576	2396	2396	2396
R2	0.949	0.931	0.942	0.994	0.972	0.840	0.994	0.991	0.713	0.931	0.946
L5 BROWNEFFRATIOEP	0.283 (0.173)	0.085 (0.182)	0.087 (0.155)		0.909 (1.029)	-0.097 (0.130)	-0.164 (0.189)		0.000 (0.002)	0.084 (0.091)	0.084 (0.154)
Observations R2	1736 0.959	1736 0.941	1736 0.950		1736 0.980	1736 0.897	1736 0.986		1736 0.775	1736 0.947	1736 0.953
L1 3YEARAVGBROWNEFFRATIOEP	-0.102	-0.188	-0.396***	0.252	2.241	0.218	0.147	20.808	0.002	-0.248	-0.414***
	(0.255)	(0.213)	(0.143)	(0.455)	(1.682)	(0.215)	(0.586)	(13.606)	(0.004)	(0.162)	(0.146)
Observations	3402	3402	3402	1331	3402	3402	3402	1331	3402	3402	3402
R2	0.925	0.906	0.927	0.945	0.647	0.658	0.336	0.945	0.622	0.908	0.936
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	ves	yes	yes	ves	yes	yes	ves	ves	ves

TABLE IA.XXIII: GREEN PATENT RATIOS IN NORTH AMERICA AND CROSS-COUNTRY INDUSTRY-LEVEL OUTCOMES

The unit of observation is GICS-6 industry-year. The sample period is 2005 to 2020. The dependent variables are GICS-6 sector industry level logs of cumulative sums of SITOT, S2IDTOT, S3DOWNTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively cumulative sums over sums for SINT, S2IDT, S3DOWNINT and INVEST/A for 1, 3 or 5 years. In Panel A, dependent variables are calculated across all firms with their headquarter in North America. In Panel B, dependent variables are calculated across all firms within the given industry and region. In Panel A,2 and B2, dependent variables are calculated across all ever patenting firms within the given industry and region and in Panel A.3 and B3, dependent variables are calculated across all ever patenting firms within the given industry and region and in Panel A.3 and B3, dependent variables are calculated across all ever patenting firms within the given industry and region and in Panel A.3 and B3, dependent variables are calculated based on firms with their based on the patenting firms within the given industry and region. All independent variables are calculated based on firms with their based patenting firms within the given industry and region and in Panel A.3 and B3, dependent variables are calculated based on firms with their based patenting firms within the given industry and region and in Panel A.3 and B3, dependent variables are calculated based on firms with their based patenting firms within the given industry and region and in Panel A.3 and B3, dependent variables are calculated across all ever patenting firms within the given industry and region and in Panel A.2 and B2, dependent variables are calculated across all ever patenting firms within the given industry and region and in Panel A.3 and B3, dependent variables are calculated across all represents in Panel A.3 and B3, dependent variables are legated across all represents in Panel A.3 and B3, dependent variables are legated across all represents in Panel A.3 and B3, dependent variables are legated across all

Panel A: NA-firm based GREENR Panel A.1: And all firms	(1) LOGS1TOT ATIOEP On N	(2) LOGS2TOT A firms	(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 GREENRATIOEP	-0.046	-0.168	-0.057	0.292	-1.364	-0.082	-0.005	3.808**	-0.000	-0.008	-0.066
	(0.138)	(0.181)	(0.087)	(0.411)	(1.326)	(0.071)	(0.127)	(1.870)	(0.001)	(0.061)	(0.063)
Observations	861	861	861	233	861	861	861	233	861	861	861
R2	0.958	0.934	0.974	0.958	0.962	0.910	0.968	0.919	0.924	0.959	0.975
L3 GREENRATIOEP	-0.022	-0.046	-0.049	-0.181	0.418	-0.067	0.009	-1.454	0.000	-0.046	-0.047
	(0.146)	(0.127)	(0.091)	(0.404)	(1.527)	(0.070)	(0.095)	(2.739)	(0.001)	(0.065)	(0.066)
Observations	737	737	737	108	737	737	737	108	737	737	737
R2	0.963	0.964	0.978	0.997	0.970	0.952	0.985	0.995	0.923	0.964	0.979
L5 GREENRATIOEP	0.077 (0.146)	-0.019 (0.101)	0.023 (0.088)		0.794 (1.486)	-0.092 (0.065)	0.067 (0.088)		0.000 (0.000)	-0.019 (0.069)	0.009 (0.064)
Observations R2	616 0.967	616 0.972	616 0.980		616 0.978	616 0.969	616 0.990		616 0.921	616 0.968	616 0.979
L1 3YEARAVGGREENRATIOEP	0.018	-0.311	-0.075	-1.948*	1.791	-0.220*	-0.041	-14.001	-0.000	0.023	-0.074
	(0.181)	(0.321)	(0.120)	(1.145)	(1.927)	(0.113)	(0.177)	(12.980)	(0.001)	(0.071)	(0.094)
Observations	907	907	907	255	907	907	907	255	907	907	907
R2	0.959	0.939	0.975	0.960	0.961	0.910	0.967	0.907	0.929	0.957	0.975
Panel A.2: And ever-patenting firms											
L1 GREENRATIOEP	0.001	-0.039	-0.085	0.728	0.146	0.013	0.006	3.554	0.000	-0.008	-0.097
	(0.135)	(0.304)	(0.076)	(0.474)	(2.735)	(0.117)	(0.164)	(2.958)	(0.001)	(0.067)	(0.063)
Observations	861	861	861	233	861	861	861	233	861	861	861
R2	0.948	0.917	0.975	0.941	0.930	0.878	0.961	0.876	0.916	0.943	0.975
L3 GREENRATIOEP	-0.060	-0.143	-0.111	0.270	1.020	-0.037	-0.007	3.512	0.000	-0.038	-0.102
	(0.148)	(0.274)	(0.078)	(0.749)	(2.037)	(0.123)	(0.104)	(3.750)	(0.001)	(0.076)	(0.063)
Observations	737	737	737	108	737	737	737	108	737	737	737
R2	0.955	0.936	0.978	0.995	0.963	0.922	0.981	0.994	0.913	0.953	0.978
L5 GREENRATIOEP	0.044 (0.137)	-0.130 (0.220)	-0.045 (0.068)		1.574 (1.450)	-0.062 (0.110)	-0.032 (0.091)		-0.000 (0.001)	-0.076 (0.089)	-0.025 (0.056)
Observations R2	616 0.961	616 0.955	616 0.980		616 0.978	616 0.948	616 0.988		616 0.929	616 0.963	616 0.979
L1 3YEARAVGGREENRATIOEP	-0.030	0.035	-0.130	-1.774	-1.291	-0.246*	-0.292	-23.729	-0.001	0.063	-0.048
	(0.209)	(0.464)	(0.123)	(1.459)	(5.802)	(0.149)	(0.246)	(20.617)	(0.001)	(0.091)	(0.106)
Observations	907	907	907	255	907	907	907	255	907	907	907
R2	0.945	0.927	0.977	0.946	0.928	0.879	0.961	0.845	0.909	0.948	0.977
Panel A.3: And never-patenting firms											
L1 GREENRATIOEP	0.033	-0.210	0.122	0.059	-4.563	-0.041	0.182	2.641	0.000	-0.003	0.094
	(0.173)	(0.264)	(0.149)	(0.451)	(3.853)	(0.125)	(0.255)	(2.204)	(0.002)	(0.113)	(0.130)
Observations	696	696	696	233	696	696	696	233	696	695	696
R2	0.942	0.884	0.925	0.967	0.854	0.804	0.908	0.962	0.771	0.888	0.916
L3 GREENRATIOEP	0.178	0.240	0.202	-0.431	-1.754	0.030	0.229	-6.160**	-0.001	-0.055	0.131
	(0.181)	(0.171)	(0.150)	(0.280)	(4.574)	(0.068)	(0.275)	(2.384)	(0.001)	(0.108)	(0.130)
Observations	557	557	557	108	557	557	557	108	557	557	557
R2	0.964	0.937	0.954	0.999	0.894	0.888	0.959	0.999	0.885	0.944	0.949
L5 GREENRATIOEP	0.078 (0.167)	0.103 (0.169)	0.171 (0.148)		1.513 (3.916)	0.019 (0.063)	0.414 (0.268)		0.001 (0.001)	-0.038 (0.107)	0.050 (0.117)
Observations R2	426 0.976	426 0.966	426 0.969		426 0.931	426 0.942	426 0.970		426 0.931	426 0.963	426 0.968
L1 3YEARAVGGREENRATIOEP	0.415*	-0.190	0.388*	-0.885	4.226	0.042	0.349	-4.551	-0.000	0.121	0.261
	(0.234)	(0.437)	(0.210)	(0.998)	(6.175)	(0.127)	(0.402)	(4.916)	(0.002)	(0.163)	(0.200)
Observations	738	738	738	255	738	738	738	255	738	737	738
R2	0.944	0.883	0.923	0.967	0.822	0.803	0.904	0.955	0.773	0.888	0.913
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

Panel B: NA-firm based GREENR Panel B.1: And all firms			(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 GREENRATIOEP	-0.162	0.004	-0.197**	0.083	-2.534	0.730	-0.517***	1.083	0.001	0.039	-0.045
	(0.103)	(0.191)	(0.085)	(0.421)	(1.908)	(0.533)	(0.141)	(2.726)	(0.001)	(0.049)	(0.083)
Observations	863	863	863	233	863	863	863	233	863	863	863
R2	0.967	0.951	0.968	0.958	0.985	0.715	0.968	0.807	0.934	0.936	0.950
L3 GREENRATIOEP	-0.041	-0.052	-0.042	-0.772	-1.915	0.479	-0.226*	-4.179	0.000	0.026	-0.005
	(0.099)	(0.182)	(0.078)	(0.612)	(1.609)	(0.353)	(0.136)	(4.187)	(0.001)	(0.046)	(0.072)
Observations	740	740	740	108	740	740	740	108	740	740	740
R2	0.985	0.978	0.990	0.987	0.993	0.754	0.982	0.966	0.940	0.982	0.984
L5 GREENRATIOEP	-0.000 (0.089)	-0.010 (0.164)	-0.041 (0.078)		0.549 (0.693)	0.564 (0.487)	-0.112 (0.143)		0.000 (0.000)	0.005 (0.047)	0.003 (0.067)
Observations R2	619 0.989	619 0.984	619 0.992		619 0.997	619 0.834	619 0.989		619 0.951	619 0.982	619 0.986
L1 3YEARAVGGREENRATIOEP	-0.229	-0.211	-0.258*	-1.003	-4.702	1.260*	-0.530***	-4.315	0.001	0.071	-0.138
	(0.185)	(0.331)	(0.148)	(0.637)	(3.342)	(0.647)	(0.189)	(3.307)	(0.001)	(0.088)	(0.143)
Observations	910	910	910	257	910	910	910	257	910	910	910
R2	0.968	0.949	0.968	0.964	0.986	0.721	0.967	0.808	0.930	0.926	0.950
Panel B.2: And ever-patenting firms											
L1 GREENRATIOEP	-0.326**	-0.075	-0.237**	0.638	-2.021	0.911	-0.435***	1.460	0.000	-0.065	-0.093
	(0.146)	(0.199)	(0.105)	(0.619)	(1.926)	(0.672)	(0.132)	(3.095)	(0.001)	(0.055)	(0.116)
Observations	855	855	855	233	855	855	855	233	855	855	855
R2	0.969	0.965	0.982	0.950	0.933	0.663	0.964	0.644	0.947	0.976	0.974
L3 GREENRATIOEP	-0.369**	-0.095	-0.177*	-1.582	-1.107	0.593	-0.148	-5.855	0.000	-0.132**	-0.123
	(0.179)	(0.189)	(0.101)	(1.111)	(2.418)	(0.395)	(0.142)	(4.896)	(0.001)	(0.064)	(0.112)
Observations	731	731	731	108	731	731	731	108	731	731	731
R2	0.976	0.973	0.985	0.981	0.937	0.708	0.975	0.922	0.951	0.980	0.977
L5 GREENRATIOEP	-0.271 (0.174)	-0.088 (0.179)	-0.247** (0.104)		2.258 (1.959)	0.705 (0.576)	-0.056 (0.172)		0.000 (0.001)	-0.173*** (0.062)	-0.209* (0.108)
Observations R2	609 0.980	609 0.979	609 0.987		609 0.952	609 0.803	609 0.983		609 0.966	609 0.981	609 0.979
L1 3YEARAVGGREENRATIOEP	-0.985*** (0.309)	-0.273 (0.324)	-0.522*** (0.199)	-1.224 (0.781)	-4.592 (3.385)	1.653** (0.796)	* -0.471* (0.246)	-4.645 (4.056)	0.000 (0.001)	-0.224** (0.110)	-0.348 (0.214)
Observations	900	900	900	254	900	900	900	254	900	900	900
R2	0.964	0.959	0.977	0.954	0.906	0.675	0.955	0.656	0.938	0.965	0.966
Panel B.3: And never-patenting firms	;										
L1 GREENRATIOEP	-0.075	0.122	0.003	0.063	-2.467	0.204	-0.950	2.999	0.001	0.129*	0.112
	(0.121)	(0.218)	(0.097)	(0.321)	(3.269)	(0.248)	(0.589)	(2.324)	(0.001)	(0.074)	(0.086)
Observations	845	845	845	233	845	845	845	233	845	845	845
R2	0.944	0.937	0.952	0.972	0.949	0.702	0.449	0.972	0.796	0.939	0.954
L3 GREENRATIOEP	-0.043	-0.093	0.065	0.107	-2.647	0.216	-0.321	-1.809	0.001	0.125	0.098
	(0.114)	(0.191)	(0.093)	(0.317)	(2.565)	(0.295)	(0.202)	(2.069)	(0.001)	(0.077)	(0.080)
Observations	717	717	717	108	717	717	717	108	717	717	717
R2	0.961	0.959	0.970	0.998	0.981	0.824	0.752	0.997	0.820	0.955	0.969
L5 GREENRATIOEP	-0.016 (0.113)	-0.085 (0.156)	0.071 (0.101)		-1.138 (1.669)	0.233 (0.247)	-0.010 (0.220)		0.001 (0.001)	0.079 (0.088)	0.072 (0.088)
Observations R2	593 0.973	593 0.970	593 0.977		593 0.990	593 0.882	593 0.857		593 0.845	593 0.961	593 0.973
L1 3YEARAVGGREENRATIOEP	-0.208 (0.181)	-0.068 (0.377)	0.117 (0.151)	-0.322 (0.453)	-10.059* (5.467)	0.299 (0.340)	-0.888 (0.563)	-0.152 (2.332)	0.001 (0.002)	0.234** (0.104)	0.140 (0.136)
Observations	891	891	891	257	891	891	891	257	891	891	891
R2	0.946	0.935	0.953	0.974	0.954	0.696	0.455	0.968	0.797	0.934	0.953
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XXIV: BROWN EFFICIENCY PATENT RATIOS IN NORTH AMERICA AND CROSS-COUNTRY INDUSTRY-LEVEL OUTCOMES

The unit of observation is GICS-6 industry-year. The sample period is 2005 to 2020. The dependent variables are GICS-6 sector industry level logs of cumulative sums of SITOT, S2IDTOT, S3DOWNTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively cumulative sums over sums for S1INT, S2INT, S3DPINT, S3DOWNINT and INVEST/A for 1, 3 or 5 years. In Panel A, dependent variables are calculated across all firms with their headquarter in North America. In Padel B, dependent variables are calculated across all firms within their given industry and region and In Panel A.3 and B.2, dependent variables are calculated across all firms within the given industry and region and In Panel A.3 and B.3, dependent variables are calculated across all enters within the given industry and region and In Panel A.3 and B.3, dependent variables are calculated based on firms with their headquarter in North America. The key explanatory variables are interest is BROWNEFFRATIOEP. Controls include LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, MSCI. Independent variables are either GICS-6 industry level sums (LOGSIZE and LOGPPE), sum over sums (BROWNEFFRATIOEP, LEVERAGE, ROE, M/B, INVEST/A) or market capitalization value weighted averages (BETA, VOLAT, MOM, RET, MSCI). Independent variables are leaded to sign pooled regression model. All regression include year and industry fixed effects. We double cluster standard errors at the GICS-6 industry and year dimension. ***1% significance, **5% significance *10% significance.

Panel A: NA-firm based BROWNEFFR Panel A.1: And all firms	(1) LOGS1TOT ATIOEP On N	(2) LOGS2TOT A firms	(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 BROWNEFFRATIOEP	0.124	0.086	0.216	-0.992	4.714**	0.071	0.456**	-4.241	0.001	-0.046	0.067
	(0.226)	(0.410)	(0.131)	(1.213)	(2.274)	(0.120)	(0.223)	(5.090)	(0.001)	(0.112)	(0.085)
Observations	861	861	861	233	861	861	861	233	861	861	861
R2	0.958	0.934	0.974	0.958	0.963	0.909	0.968	0.918	0.924	0.959	0.975
L3 BROWNEFFRATIOEP	-0.087	0.025	0.035	0.807	0.109	0.077	0.047	5.496	0.001	0.010	0.041
	(0.213)	(0.200)	(0.124)	(0.805)	(2.466)	(0.086)	(0.154)	(3.746)	(0.001)	(0.095)	(0.075)
Observations	737	737	737	108	737	737	737	108	737	737	737
R2	0.963	0.964	0.978	0.997	0.970	0.951	0.985	0.995	0.923	0.964	0.979
L5 BROWNEFFRATIOEP	-0.410* (0.212)	-0.037 (0.160)	-0.200 (0.134)		-2.194 (2.762)	0.103 (0.097)	-0.189 (0.162)		0.000 (0.001)	-0.054 (0.117)	-0.064 (0.090)
Observations R2	616 0.967	616 0.972	616 0.980		616 0.979	616 0.969	616 0.990		616 0.921	616 0.968	616 0.979
L1 3YEARAVGBROWNEFFRATIOEP	-0.089	0.190	0.152	-2.331	-1.126	0.217	0.302	-9.378	0.001	-0.175	0.089
	(0.292)	(0.479)	(0.204)	(2.104)	(3.342)	(0.168)	(0.342)	(12.702)	(0.001)	(0.128)	(0.133)
Observations	907	907	907	255	907	907	907	255	907	907	907
R2	0.959	0.939	0.975	0.959	0.961	0.909	0.967	0.903	0.929	0.958	0.975
Panel A.2: And ever-patenting firms											
L1 BROWNEFFRATIOEP	-0.041	0.224	0.129	0.364	5.783	0.137	0.465*	5.776	0.001*	-0.062	-0.007
	(0.199)	(0.653)	(0.110)	(0.978)	(6.409)	(0.188)	(0.276)	(8.275)	(0.001)	(0.097)	(0.089)
Observations	861	861	861	233	861	861	861	233	861	861	861
R2	0.948	0.917	0.975	0.940	0.932	0.878	0.962	0.875	0.916	0.943	0.975
L3 BROWNEFFRATIOEP	-0.202	-0.063	-0.033	2.669	1.707	0.099	0.028	7.051	0.001*	-0.021	-0.013
	(0.205)	(0.458)	(0.098)	(1.948)	(3.445)	(0.161)	(0.148)	(4.818)	(0.001)	(0.078)	(0.067)
Observations	737	737	737	108	737	737	737	108	737	737	737
R2	0.955	0.936	0.978	0.995	0.964	0.923	0.981	0.994	0.913	0.953	0.978
L5 BROWNEFFRATIOEP	-0.549*** (0.208)	-0.069 (0.357)	-0.250** (0.107)		-1.263 (2.395)	0.172 (0.181)	-0.133 (0.148)		0.001** (0.001)	-0.032 (0.079)	-0.132* (0.070)
Observations R2	616 0.961	616 0.955	616 0.981		616 0.977	616 0.948	616 0.988		616 0.929	616 0.963	616 0.979
L1 3YEARAVGBROWNEFFRATIOEP	-0.530	-0.441	0.029	-0.996	13.335	0.349	0.592	-12.710	0.001	-0.206*	-0.079
	(0.441)	(0.913)	(0.193)	(2.159)	(11.931)	(0.259)	(0.441)	(21.131)	(0.002)	(0.118)	(0.135)
Observations	907	907	907	255	907	907	907	255	907	907	907
R2	0.945	0.928	0.977	0.945	0.933	0.878	0.961	0.836	0.909	0.948	0.977
Panel A.3: And never-patenting firms											
L1 BROWNEFFRATIOEP	0.434	0.119	0.366	-0.091	8.692	-0.145	0.307	-0.672	-0.004**	-0.047	0.258
	(0.298)	(0.510)	(0.238)	(1.495)	(9.226)	(0.175)	(0.375)	(4.111)	(0.002)	(0.218)	(0.245)
Observations	696	696	696	233	696	696	696	233	696	695	696
R2	0.942	0.884	0.925	0.967	0.855	0.804	0.908	0.961	0.772	0.888	0.916
L3 BROWNEFFRATIOEP	0.294	0.093	0.196	0.088	0.355	0.005	-0.106	9.683**	-0.003	0.091	0.247
	(0.239)	(0.311)	(0.210)	(0.861)	(9.156)	(0.137)	(0.291)	(3.981)	(0.002)	(0.154)	(0.204)
Observations	557	557	557	108	557	557	557	108	557	557	557
R2	0.964	0.937	0.954	0.998	0.894	0.888	0.959	0.998	0.886	0.944	0.949
L5 BROWNEFFRATIOEP	-0.067 (0.259)	-0.143 (0.295)	-0.138 (0.234)		-5.613 (8.455)	-0.073 (0.110)	-0.419* (0.248)		-0.002* (0.001)	-0.125 (0.194)	0.010 (0.198)
Observations R2	426 0.976	426 0.966	426 0.969		426 0.933	426 0.942	426 0.970		426 0.932	426 0.963	426 0.968
L1 3YEARAVGBROWNEFFRATIOEP	0.261	0.467	0.449	-1.276	-16.281	-0.062	-0.336	-2.625	-0.004	-0.008	0.595*
	(0.386)	(0.561)	(0.305)	(2.178)	(11.656)	(0.164)	(0.521)	(6.986)	(0.003)	(0.302)	(0.323)
Observations	738	738	738	255	738	738	738	255	738	737	738
R2	0.944	0.883	0.923	0.967	0.826	0.803	0.904	0.955	0.773	0.888	0.914
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
manufit.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

Panel B: NA-firm based BROWNEFF			(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 BROWNEFFRATIOEP	0.092	-0.058	0.132	-1.443	6.233	-0.133	0.366	-10.327	-0.001	0.017	0.007
	(0.107)	(0.312)	(0.121)	(1.221)	(4.410)	(0.089)	(0.255)	(9.043)	(0.001)	(0.071)	(0.095)
Observations	863	863	863	233	863	863	863	233	863	863	863
R2	0.967	0.951	0.968	0.958	0.986	0.703	0.967	0.808	0.934	0.936	0.950
L3 BROWNEFFRATIOEP	0.199**	-0.047	0.171	4.328	4.893	-0.120	0.212	18.206	-0.000	0.063	0.094
	(0.096)	(0.278)	(0.116)	(2.666)	(3.026)	(0.077)	(0.218)	(15.748)	(0.001)	(0.060)	(0.088)
Observations	740	740	740	108	740	740	740	108	740	740	740
R2	0.985	0.978	0.990	0.988	0.993	0.749	0.982	0.967	0.940	0.982	0.984
L5 BROWNEFFRATIOEP	0.254** (0.116)	0.163 (0.226)	0.194* (0.107)		-1.241 (1.566)	-0.080 (0.080)	-0.206 (0.166)		0.000 (0.001)	0.170** (0.071)	0.210** (0.090)
Observations R2	619 0.989	619 0.984	619 0.992		619 0.997	619 0.825	619 0.989		619 0.951	619 0.983	619 0.986
L1 3YEARAVGBROWNEFFRATIOEP	0.256	-0.437	0.141	1.676	15.149**	-0.204	0.187	20.710	-0.001	0.063	0.070
	(0.171)	(0.435)	(0.167)	(1.612)	(6.084)	(0.146)	(0.341)	(14.639)	(0.001)	(0.122)	(0.148)
Observations	910	910	910	257	910	910	910	257	910	910	910
R2	0.968	0.949	0.968	0.964	0.988	0.703	0.966	0.810	0.930	0.926	0.950
Panel B.2: And ever-patenting firms											
L1 BROWNEFFRATIOEP	0.270	0.069	0.202	-4.139**	3.537	-0.130	0.369*	-15.405	0.000	0.133	0.036
	(0.175)	(0.309)	(0.192)	(1.994)	(4.694)	(0.104)	(0.205)	(13.999)	(0.001)	(0.093)	(0.210)
Observations	855	855	855	233	855	855	855	233	855	855	855
R2	0.969	0.965	0.982	0.952	0.933	0.647	0.963	0.646	0.947	0.976	0.974
L3 BROWNEFFRATIOEP	0.429***	-0.026	0.232**	3.772	2.542	-0.167*	0.207	22.021	-0.000	0.169*	0.140
	(0.157)	(0.267)	(0.113)	(2.546)	(4.711)	(0.093)	(0.177)	(19.141)	(0.001)	(0.102)	(0.146)
Observations	731	731	731	108	731	731	731	108	731	731	731
R2	0.976	0.973	0.985	0.981	0.938	0.701	0.975	0.923	0.951	0.980	0.977
L5 BROWNEFFRATIOEP	0.301 (0.204)	0.136 (0.178)	0.339*** (0.102)		-5.066 (3.780)	-0.160 (0.100)	-0.257 (0.173)		-0.000 (0.001)	0.220** (0.088)	0.416*** (0.118)
Observations R2	609 0.980	609 0.979	609 0.987		609 0.954	609 0.791	609 0.983		609 0.966	609 0.981	609 0.979
L1 3YEARAVGBROWNEFFRATIOEP	0.771***	-0.441	0.255	-0.211	13.340**	-0.228	0.421	34.788	-0.001	0.216	0.040
	(0.295)	(0.453)	(0.282)	(2.755)	(6.456)	(0.178)	(0.355)	(22.755)	(0.001)	(0.202)	(0.333)
Observations	900	900	900	254	900	900	900	254	900	900	900
R2	0.963	0.959	0.977	0.954	0.912	0.647	0.955	0.659	0.938	0.965	0.965
Panel B.3: And never-patenting firms											
L1 BROWNEFFRATIOEP	0.001	0.170	-0.037	-1.487*	2.857	-0.153	-0.427	-10.906*	-0.002	-0.031	-0.020
	(0.173)	(0.389)	(0.147)	(0.780)	(7.796)	(0.194)	(0.804)	(6.564)	(0.002)	(0.099)	(0.126)
Observations	845	845	845	233	845	845	845	233	845	845	845
R2	0.944	0.937	0.952	0.973	0.949	0.702	0.448	0.972	0.796	0.939	0.954
L3 BROWNEFFRATIOEP	-0.007	0.110	-0.056	0.824	5.600	0.067	-0.178	1.804	-0.000	-0.012	-0.077
	(0.177)	(0.331)	(0.152)	(0.944)	(4.852)	(0.102)	(0.479)	(7.106)	(0.002)	(0.095)	(0.127)
Observations	717	717	717	108	717	717	717	108	717	717	717
R2	0.961	0.959	0.970	0.998	0.982	0.823	0.752	0.997	0.820	0.955	0.969
L5 BROWNEFFRATIOEP	-0.099 (0.212)	0.152 (0.273)	-0.176 (0.172)		2.529 (3.111)	0.055 (0.113)	-0.539 (0.487)		0.003 (0.003)	0.053 (0.127)	-0.075 (0.144)
Observations R2	593 0.973	593 0.970	593 0.977		593 0.990	593 0.880	593 0.857		593 0.845	593 0.961	593 0.973
L1 3YEARAVGBROWNEFFRATIOEP	0.097 (0.285)	0.102 (0.611)	-0.152 (0.235)	0.808 (1.056)	22.034** (11.014)	0.112 (0.218)	-1.164 (1.749)	3.081 (7.716)	0.002 (0.004)	-0.035 (0.151)	-0.153 (0.170)
Observations	891	891	891	257	891	891	891	257	891	891	891
R2	0.946	0.935	0.953	0.974	0.956	0.695	0.454	0.968	0.797	0.934	0.953
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XXV: GREEN PATENT RATIOS IN EUROPE AND CROSS-COUNTRY INDUSTRY-LEVEL OUTCOMES

The unit of observation is GICS-6 industry-year. The sample period is 2005 to 2020. The dependent variables are GICS-6 sector industry level logs of cumulative sums of SITOT, S2TOT, S3DOWNTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively cumulative sums over sums for SINT, S2INT, S3DOWNINT and INVEST/A for 1, 3 or 5 years. In Panel A, dependent variables are calculated across all firms with their headquarter in Europe. In Panel B, dependent variables are calculated across all firms within the given industry and region. In Panel A.2 and B.2, dependent variables are calculated across all firms within the given industry and region and in Panel A.3 and B.3, dependent variables are calculated across all firms within the given industry and region and in Panel A.3 and B.3, dependent variables are calculated across all ever patenting firms within the given industry and region. All independent variables are calculated based on firms with their headquarter in Europe. The key explanatory variables of interest is GREENRATIOEP. Controls include LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A) BETA, VOLAT, MOM, RET, MSCI. Independent variables are either GICS-6 industry level sums (LOGSIZE and LOGPPE), sum over sums (GREENRATIOEP, LEVERAGE, ROE, M/B, INVEST/A) or market capitalization value weighted averages (BETA, VOLAT, MOM, RET, MSCI. Independent variables are algaged by 1, 3 or 5 years respectively. The model is estimated using pooled regression model. All regression include year and industry fixed effects. We double cluster standard errors at the GICS-6 industry and year dimension. *** 1% significance.** 10% significance.*

Panel A: EU-firm based GREENR Panel A.1: And all firms			(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 GREENRATIOEP	0.415**	0.102	0.141	0.149	1.753	-0.035	-0.173	-2.930	0.000	0.175*	0.170
	(0.177)	(0.216)	(0.141)	(0.534)	(1.896)	(0.102)	(0.157)	(4.169)	(0.001)	(0.098)	(0.152)
Observations	887	887	887	241	887	887	887	241	887	887	887
R2	0.961	0.941	0.965	0.950	0.931	0.909	0.922	0.867	0.946	0.924	0.955
L3 GREENRATIOEP	0.356***	0.094	0.169	-0.057	0.315	0.017	-0.129	-0.060	0.001	0.153*	0.219
	(0.133)	(0.189)	(0.134)	(0.301)	(1.208)	(0.041)	(0.081)	(0.918)	(0.001)	(0.090)	(0.139)
Observations	757	757	757	114	757	757	757	114	757	757	757
R2	0.978	0.967	0.983	0.988	0.971	0.953	0.947	0.993	0.946	0.968	0.977
L5 GREENRATIOEP	0.081 (0.114)	0.039 (0.126)	0.079 (0.103)		-0.585 (0.757)	0.008 (0.032)	-0.066 (0.077)		-0.000 (0.001)	0.066 (0.066)	0.113 (0.104)
Observations R2	634 0.986	634 0.980	634 0.987		634 0.988	634 0.972	634 0.960		634 0.952	634 0.976	634 0.982
L1 3YEARAVGGREENRATIOEP	0.601***	0.105	0.276*	0.453	4.197*	0.004	-0.014	-0.490	0.001	0.215*	0.244
	(0.202)	(0.248)	(0.164)	(1.413)	(2.358)	(0.093)	(0.191)	(6.282)	(0.001)	(0.119)	(0.172)
Observations	924	924	924	252	924	924	924	252	924	924	924
R2	0.960	0.938	0.963	0.948	0.933	0.907	0.921	0.870	0.945	0.921	0.953
Panel A.2: And ever-patenting firms											
L1 GREENRATIOEP	0.262 (0.241)	0.150 (0.233)	0.124 (0.154)	-0.021 (0.676)	-1.819 (3.187)	$-0.050 \\ (0.152)$	-0.323 (0.256)	-1.889 (4.032)	-0.000 (0.002)	0.195** (0.095)	0.183 (0.174)
Observations	884	884	884	241	884	884	884	241	884	884	884
R2	0.957	0.947	0.970	0.950	0.835	0.876	0.891	0.868	0.902	0.948	0.964
L3 GREENRATIOEP	0.350*	0.117	0.224	-0.194	-0.326	0.033	-0.157*	-0.616	0.000	0.129	0.268
	(0.186)	(0.204)	(0.156)	(0.328)	(2.042)	(0.049)	(0.086)	(1.104)	(0.001)	(0.094)	(0.165)
Observations	751	751	751	114	751	751	751	114	751	751	751
R2	0.974	0.966	0.982	0.986	0.926	0.944	0.936	0.993	0.935	0.964	0.975
L5 GREENRATIOEP	0.060 (0.187)	-0.026 (0.138)	0.065 (0.125)		0.363 (1.803)	-0.007 (0.036)	-0.104 (0.080)		-0.000 (0.001)	0.006 (0.084)	0.125 (0.125)
Observations R2	628 0.982	628 0.979	628 0.987		628 0.956	628 0.966	628 0.952		628 0.958	628 0.972	628 0.981
L1 3YEARAVGGREENRATIOEP	0.374	0.033	0.221	0.611	-1.220	-0.013	-0.231	3.091	0.001	0.101	0.212
	(0.272)	(0.300)	(0.149)	(1.859)	(3.826)	(0.142)	(0.288)	(6.455)	(0.002)	(0.141)	(0.180)
Observations	917	917	917	252	917	917	917	252	917	917	917
R2	0.955	0.942	0.971	0.949	0.828	0.873	0.891	0.870	0.902	0.943	0.963
Panel A.3: And never-patenting firms	;										
L1 GREENRATIOEP	0.198	-0.325	0.159	0.297	5.213	0.063	0.004	2.382	0.001	0.062	0.126
	(0.749)	(0.366)	(0.382)	(0.507)	(7.713)	(0.145)	(0.221)	(2.376)	(0.003)	(0.163)	(0.266)
Observations	756	756	756	217	756	756	756	217	756	754	756
R2	0.889	0.855	0.878	0.964	0.780	0.697	0.908	0.875	0.725	0.881	0.899
L3 GREENRATIOEP	-0.083	0.300	0.038	0.065	3.235	0.133	-0.021	0.264	0.003	0.273	0.094
	(0.688)	(0.373)	(0.244)	(0.274)	(7.664)	(0.100)	(0.199)	(1.553)	(0.003)	(0.177)	(0.177)
Observations	614	614	614	96	614	614	614	96	614	614	614
R2	0.915	0.878	0.900	0.998	0.816	0.817	0.942	0.990	0.833	0.889	0.909
L5 GREENRATIOEP	-0.016 (0.665)	0.195 (0.338)	-0.136 (0.211)		-4.681 (7.282)	0.099 (0.105)	-0.145 (0.182)		0.003 (0.003)	0.147 (0.153)	-0.014 (0.135)
Observations R2	494 0.938	494 0.915	494 0.928		494 0.868	494 0.868	494 0.964		494 0.877	494 0.940	494 0.941
L1 3YEARAVGGREENRATIOEP	-0.416	-0.134	-0.292	0.301	6.112	0.247	-0.005	2.937	0.006	0.255	-0.187
	(1.139)	(0.533)	(0.566)	(1.164)	(13.497)	(0.202)	(0.330)	(4.325)	(0.004)	(0.224)	(0.351)
Observations	790	790	790	228	790	790	790	228	790	788	790
R2	0.885	0.854	0.876	0.964	0.763	0.696	0.909	0.874	0.728	0.880	0.898
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
	,	<i>y</i> ==	<i>y</i> co	,	,	,	,	,	,	,	,

Panel B: EU-firm based GREENR Panel B.1: And all firms			(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 GREENRATIOEP	-0.038	0.180	-0.060	0.103	1.573	0.028	-0.002	-6.386	0.000	-0.015	-0.053
	(0.145)	(0.160)	(0.061)	(0.536)	(1.246)	(0.097)	(0.132)	(9.593)	(0.000)	(0.038)	(0.048)
Observations	888	888	888	241	888	888	888	241	888	888	888
R2	0.955	0.916	0.952	0.959	0.988	0.603	0.976	0.840	0.887	0.923	0.930
L3 GREENRATIOEP	0.074	0.054	-0.019	-2.444*	0.194	0.043	-0.076	-28.824	0.001	0.021	0.004
	(0.126)	(0.114)	(0.060)	(1.317)	(0.583)	(0.091)	(0.128)	(20.879)	(0.000)	(0.033)	(0.044)
Observations	759	759	759	114	759	759	759	114	759	759	759
R2	0.976	0.972	0.989	0.991	0.995	0.651	0.991	0.979	0.960	0.980	0.986
L5 GREENRATIOEP	0.094 (0.119)	0.174* (0.097)	-0.039 (0.059)		-0.578 (0.511)	0.119 (0.100)	-0.030 (0.082)		0.000 (0.000)	-0.031 (0.037)	-0.033 (0.044)
Observations R2	636 0.982	636 0.980	636 0.990		636 0.997	636 0.732	636 0.995		636 0.969	636 0.980	636 0.987
L1 3YEARAVGGREENRATIOEP	-0.061	0.319	0.004	-0.363	1.260	0.131	-0.031	-2.040	0.001	0.056	0.013
	(0.168)	(0.229)	(0.090)	(1.267)	(1.660)	(0.110)	(0.167)	(11.719)	(0.001)	(0.066)	(0.073)
Observations	926	926	926	254	926	926	926	254	926	926	926
R2	0.955	0.917	0.953	0.962	0.989	0.603	0.976	0.837	0.873	0.920	0.931
Panel B.2: And ever-patenting firms											
L1 GREENRATIOEP	-0.050 (0.147)	0.037 (0.212)	-0.003 (0.070)	0.636 (0.873)	2.647 (2.958)	0.002 (0.133)	0.120 (0.089)	-12.975 (16.256)	0.000 (0.000)	-0.080 (0.058)	-0.063 (0.069)
Observations	879	879	879	241	879	879	879	241	879	879	879
R2	0.973	0.945	0.990	0.951	0.939	0.515	0.980	0.672	0.963	0.976	0.987
L3 GREENRATIOEP	0.051 (0.151)	0.144 (0.208)	-0.023 (0.076)	-4.516*** (1.282)	0.110 (1.650)	0.167 (0.141)	-0.002 (0.057)	-82.719** (32.811)	0.000 (0.000)	-0.074 (0.055)	-0.041 (0.068)
Observations	749	749	749	114	749	749	749	114	749	749	749
R2	0.978	0.958	0.990	0.990	0.977	0.565	0.991	0.967	0.964	0.978	0.988
L5 GREENRATIOEP	0.134 (0.148)	0.192 (0.160)	-0.056 (0.061)		-0.462 (1.066)	0.183 (0.127)	0.012 (0.043)		-0.000 (0.000)	-0.093* (0.056)	-0.065 (0.057)
Observations R2	626 0.982	626 0.972	626 0.991		626 0.990	626 0.648	626 0.995		626 0.968	626 0.981	626 0.990
L1 3YEARAVGGREENRATIOEP	-0.178	-0.019	-0.030	1.287	3.484	0.164	0.175	-5.809	0.001	-0.125	-0.109
	(0.222)	(0.328)	(0.107)	(2.169)	(4.455)	(0.178)	(0.154)	(21.070)	(0.001)	(0.084)	(0.102)
Observations	916	916	916	252	916	916	916	252	916	916	916
R2	0.969	0.943	0.989	0.946	0.944	0.520	0.980	0.668	0.955	0.977	0.987
Panel B.3: And never-patenting firms	;										
L1 GREENRATIOEP	-0.112	0.250	-0.069	-0.046	1.795	0.135	0.058	1.962	-0.001	-0.120*	-0.086
	(0.154)	(0.177)	(0.100)	(0.402)	(1.348)	(0.085)	(0.189)	(2.190)	(0.001)	(0.065)	(0.085)
Observations	867	867	867	241	867	867	867	241	867	867	867
R2	0.932	0.911	0.933	0.969	0.972	0.690	0.584	0.961	0.788	0.922	0.932
L3 GREENRATIOEP	0.002	0.017	-0.031	0.131	-0.136	0.052	-0.004	0.442	0.000	-0.008	-0.048
	(0.146)	(0.141)	(0.105)	(0.451)	(0.635)	(0.061)	(0.177)	(2.921)	(0.001)	(0.070)	(0.090)
Observations	726	726	726	114	726	726	726	114	726	726	726
R2	0.951	0.945	0.960	0.998	0.989	0.814	0.839	0.996	0.832	0.950	0.960
L5 GREENRATIOEP	-0.042 (0.136)	-0.018 (0.136)	-0.089 (0.097)		-0.813 (0.625)	0.081 (0.075)	0.001 (0.137)		0.001 (0.001)	-0.056 (0.067)	-0.102 (0.083)
Observations R2	593 0.966	593 0.960	593 0.966		593 0.995	593 0.875	593 0.922		593 0.889	593 0.953	593 0.967
L1 3YEARAVGGREENRATIOEP	-0.021 (0.177)	0.560** (0.237)	0.080 (0.142)	-0.510 (1.129)	0.410 (1.810)	0.214** (0.091)	* -0.012 (0.226)	4.372 (4.600)	0.000 (0.002)	-0.037 (0.103)	0.042 (0.123)
Observations	905	905	905	254	905	905	905	254	905	905	905
R2	0.932	0.912	0.933	0.972	0.974	0.691	0.591	0.961	0.786	0.917	0.931
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XXVI: BROWN EFFICIENCY PATENT RATIOS IN EUROPE AND CROSS-COUNTRY INDUSTRY-LEVEL OUTCOMES

The unit of observation is GICS-6 industry-year. The sample period is 2005 to 2020. The dependent variables are GICS-6 sector industry level logs of cumulative sums of SITOT, S2IDTOT, S3DOWNTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively cumulative sums over sums for S1INT, S2INT, S3DPINT, S3DOWNTOT and INVEST/A for 1, 3 or 5 years. In Panel A, dependent variables are calculated across all firms with their headquarter in Europe. In Panel B, dependent variables are calculated across all firms within the given industry and region. In Panel A.2 and B.2, dependent variables are calculated across all ever patenting firms within the given industry and region and B.2, dependent variables are calculated across all ever patenting firms within the given industry and region and B.2, dependent variables are calculated across all ever patenting firms within the given industry variables are followed interest is 8ROWNEFERATIOEP. CONTOS include LOGSIZE, LOGPEP, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, MSCI. Independent variables are either GICS-6 industry level sums (LOGSIZE LOGPE), sum over sums (BROWNEFERATIOEP. CENTENTIOEP. CENTENTIOEP. CENTENTIOEP. CENTENTIOEP. CENTENTIOEP. CENTENTIOEP. CENTENTIAL PROPERTIES AND ASSETT ASSETT

(1) LOGS1TOT ATIOEP On EU	(2) LOGS2TOT J firms	(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
-1.129***	-0.624***	-0.549**	-5.308**	-1.399	0.091	-0.077	-2.971	-0.001	-0.407***	-0.452**
(0.338)	(0.227)	(0.270)	(2.276)	(0.950)	(0.101)	(0.232)	(15.640)	(0.001)	(0.115)	(0.215)
887	887	887	241	887	887	887	241	887	887	887
0.962	0.941	0.965	0.951	0.931	0.909	0.922	0.867	0.946	0.924	0.955
-0.679***	-0.207	-0.170*	-0.161	-1.382**	0.071	-0.067	7.416	0.000	-0.127	-0.087
(0.238)	(0.175)	(0.094)	(2.372)	(0.624)	(0.079)	(0.182)	(9.685)	(0.001)	(0.088)	(0.084)
757	757	757	114	757	757	757	114	757	757	757
0.978	0.967	0.983	0.988	0.971	0.953	0.947	0.993	0.945	0.967	0.977
-0.420* (0.221)	-0.157 (0.121)	-0.160* (0.090)		-0.443 (0.595)	0.008 (0.058)	-0.284 (0.223)		0.001 (0.001)	0.153* (0.087)	-0.010 (0.102)
634 0.986	634 0.980	634 0.987		634 0.988	634 0.972	634 0.960		634 0.952	634 0.976	634 0.982
-1.764***	-0.540	-0.686	-0.762	-3.214**	0.188	-0.505	10.431	0.000	-0.259	-0.253
(0.537)	(0.495)	(0.434)	(3.481)	(1.441)	(0.127)	(0.411)	(26.899)	(0.003)	(0.236)	(0.400)
924	924	924	252	924	924	924	252	924	924	924
0.960	0.938	0.963	0.948	0.931	0.907	0.921	0.870	0.945	0.921	0.952
-0.940***	-0.341	-0.340	-5.034**	0.049	0.112	0.089	-2.971	-0.001	-0.047	-0.324
(0.313)	(0.267)	(0.262)	(2.209)	(1.135)	(0.104)	(0.252)	(15.815)	(0.001)	(0.096)	(0.227)
884	884	884	241	884	884	884	241	884	884	884
0.958	0.947	0.970	0.951	0.834	0.876	0.891	0.868	0.902	0.948	0.964
-0.631**	-0.142	-0.085	1.637	-0.259	0.083	-0.042	0.717	-0.000	0.083	-0.022
(0.252)	(0.213)	(0.097)	(2.228)	(0.771)	(0.086)	(0.191)	(8.122)	(0.001)	(0.091)	(0.094)
751	751	751	114	751	751	751	114	751	751	751
0.974	0.966	0.981	0.986	0.926	0.944	0.935	0.993	0.935	0.964	0.975
-0.520** (0.260)	-0.209 (0.156)	-0.135 (0.093)		-0.162 (0.616)	0.021 (0.066)	-0.189 (0.214)		0.000 (0.001)	0.124 (0.118)	-0.042 (0.107)
628 0.982	628 0.979	628 0.987		628 0.956	628 0.966	628 0.952		628 0.958	628 0.972	628 0.981
-1.585***	-0.036	-0.138	1.155	-2.138	0.231	-0.086	12.825	-0.002	0.278	0.036
(0.558)	(0.539)	(0.449)	(4.517)	(1.349)	(0.145)	(0.474)	(29.626)	(0.002)	(0.216)	(0.400)
917	917	917	252	917	917	917	252	917	917	917
0.955	0.942	0.971	0.949	0.828	0.873	0.891	0.871	0.902	0.943	0.963
-0.402	-0.296	-0.263	-4.659*	-2.865	-0.246	0.068	-16.731	0.001	-0.248	-0.288
(0.516)	(0.628)	(0.393)	(2.560)	(2.221)	(0.253)	(0.203)	(19.783)	(0.007)	(0.280)	(0.358)
756	756	756	217	756	756	756	217	756	754	756
0.889	0.855	0.878	0.964	0.778	0.698	0.908	0.875	0.725	0.881	0.899
0.392	0.396	0.125	-0.142	1.442	0.026	0.290*	7.935	0.010	0.113	0.007
(0.437)	(0.575)	(0.351)	(2.087)	(2.033)	(0.221)	(0.174)	(19.643)	(0.007)	(0.298)	(0.359)
614	614	614	96	614	614	614	96	614	614	614
0.915	0.877	0.900	0.998	0.815	0.817	0.942	0.990	0.834	0.888	0.909
0.973*** (0.357)	0.551 (0.431)	0.586** (0.282)		3.259** (1.656)	-0.166 (0.148)	0.233 (0.160)		-0.003 (0.004)	0.295 (0.238)	0.578** (0.291)
494 0.939	494 0.915	494 0.929		494 0.866	494 0.868	494 0.964		494 0.876	494 0.940	494 0.941
0.951	1.092	0.557	0.083	2.004	-0.186	0.415	-6.119	0.017	0.747	0.572
(0.971)	(1.205)	(0.760)	(3.851)	(3.538)	(0.434)	(0.373)	(33.942)	(0.011)	(0.608)	(0.714)
790	790	790	228	790	790	790	228	790	788	790
0.885	0.854	0.876	0.964	0.761	0.695	0.909	0.874	0.728	0.880	0.898
ves	ves	ves	ves	ves	ves	ves	ves	yes	ves	ves
	LOCSITOT ATIOEP On EU -1.129*** (0.338) 887 0.962 -0.679*** (0.238) 757 0.978 -0.420* (0.238) -1.764*** (0.537) 924 0.960 -0.940*** (0.313) 884 0.958 -0.631** (0.252) 751 0.974 -0.520** (0.260) 628 0.982 -1.585*** (0.558) 917 0.955 -0.402 (0.516) 756 0.889 0.392 (0.437) 614 0.915 0.973*** (0.951) 0.973***	LOGSTOT LOGSTOT ATIOEP On EU Farman	LOCSITOT LOCSZIOT LOCSJUPTO	LOGSITOT LOGSZIOT LOGS3UPTOT LOGS3DOWNTOT	ATIOEP On EU Brans	ATIOEP On EU firms	DOSSITOT LOGSZUPT LOGSSUPTOT LOGSSUP			

Panel B: EU-firm based BROWNEFFR Panel B.1: And all firms			(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 BROWNEFFRATIOEP	-0.016	-0.549	-0.169	-3.850**	0.142	-0.350	0.054	-24.655	-0.000	-0.179	-0.080
	(0.247)	(0.388)	(0.236)	(1.627)	(0.871)	(0.451)	(0.114)	(17.004)	(0.001)	(0.175)	(0.205)
Observations	888	888	888	241	888	888	888	241	888	888	888
R2	0.955	0.916	0.952	0.960	0.988	0.603	0.976	0.840	0.887	0.923	0.930
L3 BROWNEFFRATIOEP	-0.013	-0.316	-0.101	2.868	-0.193	0.158	0.094	-11.787	-0.001	-0.091	-0.037
	(0.200)	(0.253)	(0.174)	(2.735)	(0.736)	(0.434)	(0.080)	(14.795)	(0.001)	(0.130)	(0.146)
Observations	759	759	759	114	759	759	759	114	759	759	759
R2	0.976	0.972	0.989	0.990	0.995	0.651	0.991	0.969	0.960	0.980	0.986
L5 BROWNEFFRATIOEP	0.005 (0.174)	-0.290 (0.188)	-0.093 (0.134)		-0.098 (0.618)	0.344 (0.533)	-0.040 (0.076)		-0.001 (0.001)	-0.036 (0.097)	-0.035 (0.104)
Observations R2	636 0.982	636 0.980	636 0.990		636 0.997	636 0.732	636 0.995		636 0.969	636 0.980	636 0.987
L1 3YEARAVGBROWNEFFRATIOEP	0.194	-1.057**	-0.453*	-2.313	-0.244	-0.298	0.223	-28.662	0.002	-0.128	-0.381
	(0.448)	(0.445)	(0.260)	(3.815)	(1.474)	(0.437)	(0.195)	(21.357)	(0.003)	(0.223)	(0.252)
Observations	926	926	926	254	926	926	926	254	926	926	926
R2	0.955	0.917	0.953	0.962	0.989	0.603	0.976	0.838	0.873	0.920	0.932
Panel B.2: And ever-patenting firms											
L1 BROWNEFFRATIOEP	0.189	-0.574	-0.092	-3.630**	0.291	-0.313	0.097	-20.988	0.000	-0.033	-0.114
	(0.238)	(0.355)	(0.166)	(1.786)	(0.789)	(0.631)	(0.132)	(19.673)	(0.001)	(0.133)	(0.171)
Observations	879	879	879	241	879	879	879	241	879	879	879
R2	0.973	0.945	0.990	0.951	0.938	0.515	0.980	0.668	0.963	0.976	0.987
L3 BROWNEFFRATIOEP	0.444*	-0.324	0.056	-0.444	0.014	0.229	0.156*	-24.582	-0.000	0.063	-0.004
	(0.255)	(0.289)	(0.138)	(2.989)	(0.665)	(0.592)	(0.089)	(20.226)	(0.001)	(0.133)	(0.155)
Observations	749	749	749	114	749	749	749	114	749	749	749
R2	0.978	0.958	0.990	0.987	0.977	0.564	0.991	0.918	0.964	0.978	0.988
L5 BROWNEFFRATIOEP	0.538 (0.327)	-0.150 (0.284)	0.166 (0.174)		0.164 (0.539)	0.494 (0.765)	-0.015 (0.079)		-0.002 (0.001)	0.176 (0.165)	0.156 (0.162)
Observations R2	626 0.982	626 0.972	626 0.991		626 0.990	626 0.649	626 0.995		626 0.968	626 0.981	626 0.990
L1 3YEARAVGBROWNEFFRATIOEP	0.833**	-0.868*	-0.121	-5.686	-0.857	-0.447	0.307	-12.975	-0.000	0.010	-0.272
	(0.413)	(0.498)	(0.236)	(3.687)	(1.113)	(0.642)	(0.196)	(31.582)	(0.003)	(0.201)	(0.242)
Observations	916	916	916	252	916	916	916	252	916	916	916
R2	0.969	0.944	0.989	0.946	0.943	0.520	0.980	0.668	0.954	0.976	0.987
Panel B.3: And never-patenting firms											
L1 BROWNEFFRATIOEP	0.425	-0.173	0.153	-6.750***	1.535	-0.365	0.031	-26.138	-0.004	0.062	0.216
	(0.362)	(0.355)	(0.216)	(1.881)	(2.302)	(0.231)	(0.217)	(19.851)	(0.003)	(0.163)	(0.205)
Observations	867	867	867	241	867	867	867	241	867	867	867
R2	0.932	0.911	0.933	0.971	0.972	0.690	0.584	0.962	0.788	0.922	0.932
L3 BROWNEFFRATIOEP	-0.074 (0.294)	-0.233 (0.273)	-0.104 (0.197)	2.660** (1.159)	1.020 (1.924)	0.116 (0.229)	0.124 (0.268)	11.144 (7.109)	-0.001 (0.002)	-0.074 (0.170)	0.014 (0.184)
Observations	726	726	726	114	726	726	726	114	726	726	726
R2	0.951	0.945	0.960	0.998	0.989	0.814	0.839	0.996	0.832	0.950	0.960
L5 BROWNEFFRATIOEP	-0.421 (0.296)	-0.520** (0.243)	-0.459** (0.205)		0.645 (1.164)	0.123 (0.200)	0.010 (0.174)		0.002 (0.002)	-0.258* (0.149)	-0.335* (0.177)
Observations R2	593 0.966	593 0.960	593 0.966		593 0.995	593 0.875	593 0.922		593 0.889	593 0.953	593 0.967
L1 3YEARAVGBROWNEFFRATIOEP	0.342	-0.692	-0.120	-1.504	3.401	-0.222	0.217	-36.969	-0.006	0.021	0.067
	(0.529)	(0.443)	(0.337)	(4.967)	(2.152)	(0.235)	(0.343)	(26.568)	(0.004)	(0.265)	(0.317)
Observations	905	905	905	254	905	905	905	254	905	905	905
R2	0.932	0.912	0.933	0.972	0.974	0.690	0.591	0.962	0.786	0.917	0.931
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XXVII: GREEN PATENT RATIOS IN ASIA AND CROSS-COUNTRY INDUSTRY-LEVEL OUTCOMES

The unit of observation is GICS-6 industry-year. The sample period is 2005 to 2020. The dependent variables are GICS-6 sector industry level logs of cumulative sums of STOT, S2IPTO, S3DOWNTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively cumulative sums over sums for SIINT, S2INT, S3UPINT, S3DOWNINT and INVEST/A for 1, 3 or 5 years. In Panel A, dependent variables are calculated across all firms with their headquarter in Asia. In Panel B, dependent variables are calculated across all firms within the given industry and region. In Panel A.2 and B.3, dependent variables are calculated across all firms within the given industry and region and in Panel A.3 and B.3, dependent variables are calculated across all firms within the given industry and region and in Panel A.3 and B.3, dependent variables are calculated across all ever patenting firms within the given industry and region. All independent variables are calculated across all ever patenting firms within the given industry and region. All independent variables are calculated across all ever patenting firms within the given industry and region. All independent variables are calculated across all ever patenting firms within the given industry and region. All independent variables are calculated across all ever patenting firms within the given industry and region. All independent variables are calculated across all ever patenting firms within the given industry and region and in Panel A.3 and B.3, dependent variables are Entry ATOLAT, MOM, RET, WOM, RET, W

Panel A: ASIA-firm based GREEN Panel A.1: And all firms		(2) LOGS2TOT Asian firms	(3) LOGS3UPTOT	(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 GREENRATIOEP	0.302**	0.352**	-0.007	1.071*	2.199*	0.031	-0.109	-2.105	0.002	0.052	0.055
	(0.132)	(0.160)	(0.088)	(0.610)	(1.329)	(0.139)	(0.119)	(6.086)	(0.001)	(0.069)	(0.089)
Observations	835	835	835	240	835	835	835	240	835	835	835
R2	0.957	0.933	0.960	0.960	0.981	0.524	0.932	0.806	0.922	0.930	0.950
L3 GREENRATIOEP	0.183	0.251*	0.006	-0.418	-0.824	0.178	-0.193*	-1.742	0.000	0.003	0.069
	(0.129)	(0.134)	(0.078)	(0.809)	(0.687)	(0.136)	(0.110)	(2.169)	(0.001)	(0.060)	(0.073)
Observations	704	704	704	114	704	704	704	114	704	704	704
R2	0.973	0.956	0.981	0.987	0.994	0.567	0.967	0.960	0.940	0.965	0.976
L5 GREENRATIOEP	0.125 (0.124)	0.202 (0.136)	0.021 (0.077)		-0.407 (0.823)	0.183 (0.163)	-0.002 (0.126)		0.000 (0.001)	-0.045 (0.070)	0.025 (0.076)
Observations R2	586 0.978	586 0.964	586 0.983		586 0.997	586 0.645	586 0.978		586 0.949	586 0.965	586 0.975
L1 3YEARAVGGREENRATIOEP	0.539**	0.810***	0.098	1.320	0.257	0.331**	-0.276*	-2.279	-0.000	0.175	0.210
	(0.221)	(0.244)	(0.146)	(1.102)	(1.416)	(0.159)	(0.145)	(10.147)	(0.002)	(0.114)	(0.145)
Observations	878	878	878	255	878	878	878	255	878	878	878
R2	0.957	0.936	0.960	0.966	0.978	0.529	0.933	0.807	0.907	0.920	0.950
Panel A.2: And ever-patenting firms											
L1 GREENRATIOEP	0.529**	0.156	-0.038	1.603*	-1.329	-0.055	-0.245	0.777	0.003	0.121	0.058
	(0.266)	(0.211)	(0.128)	(0.859)	(1.671)	(0.175)	(0.203)	(5.695)	(0.002)	(0.090)	(0.098)
Observations	832	832	832	240	832	832	832	240	832	832	832
R2	0.944	0.942	0.972	0.950	0.922	0.451	0.946	0.599	0.869	0.948	0.968
L3 GREENRATIOEP	0.401*	0.314*	0.076	-1.032	-3.344**	0.254	-0.253	-3.705	0.001	0.082	0.143
	(0.226)	(0.168)	(0.111)	(1.205)	(1.596)	(0.179)	(0.202)	(4.935)	(0.001)	(0.072)	(0.093)
Observations	698	698	698	114	698	698	698	114	698	698	698
R2	0.955	0.950	0.975	0.974	0.954	0.488	0.964	0.891	0.912	0.964	0.971
L5 GREENRATIOEP	0.426** (0.194)	0.333** (0.152)	0.155* (0.091)		-1.334 (2.018)	0.371 (0.256)	0.070 (0.225)		0.001 (0.001)	0.024 (0.079)	0.135 (0.091)
Observations R2	578 0.965	578 0.961	578 0.979		578 0.969	578 0.567	578 0.975		578 0.924	578 0.971	578 0.975
L1 3YEARAVGGREENRATIOEP	0.739*	0.666**	0.043	1.671	-3.860	0.239	-0.314	-4.530	0.003	0.212	0.182
	(0.430)	(0.289)	(0.188)	(1.128)	(2.351)	(0.195)	(0.282)	(12.135)	(0.004)	(0.134)	(0.156)
Observations	869	869	869	250	869	869	869	250	869	869	869
R2	0.945	0.945	0.975	0.957	0.917	0.453	0.946	0.598	0.881	0.951	0.970
Panel A.3: And never-patenting firms											
L1 GREENRATIOEP	0.009	0.419**	0.026	0.953*	3.261*	0.370*	-0.199	2.588	0.003*	-0.024	0.112
	(0.169)	(0.169)	(0.116)	(0.528)	(1.734)	(0.206)	(0.318)	(2.608)	(0.002)	(0.088)	(0.109)
Observations	804	804	804	240	804	804	804	240	804	804	804
R2	0.938	0.917	0.942	0.969	0.935	0.437	0.355	0.977	0.822	0.928	0.945
L3 GREENRATIOEP	-0.303	0.000	-0.200*	0.180	-1.233	0.221	-0.591	-1.906	0.001	-0.173*	-0.078
	(0.189)	(0.159)	(0.115)	(0.439)	(1.026)	(0.136)	(0.367)	(1.958)	(0.002)	(0.094)	(0.096)
Observations	665	665	665	114	665	665	665	114	665	665	665
R2	0.948	0.931	0.958	0.997	0.977	0.645	0.693	0.997	0.871	0.941	0.956
L5 GREENRATIOEP	-0.369** (0.162)	-0.140 (0.168)	-0.221* (0.122)		-0.745 (1.009)	0.120 (0.126)	-0.523 (0.366)		0.002 (0.002)	-0.171* (0.096)	-0.152 (0.107)
Observations R2	543 0.962	543 0.941	543 0.961		543 0.989	543 0.757	543 0.838		543 0.906	543 0.946	543 0.954
L1 3YEARAVGGREENRATIOEP	-0.014	0.521**	-0.001	1.500	1.536	0.696**	-0.381	7.747*	0.004	-0.134	0.122
	(0.232)	(0.257)	(0.160)	(1.100)	(1.832)	(0.304)	(0.302)	(4.450)	(0.002)	(0.125)	(0.144)
Observations	846	846	846	255	846	846	846	255	846	846	846
R2	0.938	0.908	0.939	0.973	0.932	0.445	0.359	0.977	0.812	0.919	0.939
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
mauou y 1.L.	yes	yes	ycs	yes	ycs	yes	yes	ycs	yes	yes	yes

Panel B: ASIA-firm based GREEN Panel B.1: And all firms				(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 GREENRATIOEP	0.058	0.091	0.008	1.040	-1.232	-0.018	-0.071	3.476	-0.000	-0.014	0.078
	(0.137)	(0.098)	(0.054)	(0.803)	(0.882)	(0.028)	(0.065)	(2.817)	(0.000)	(0.048)	(0.051)
Observations	834	834	834	240	834	834	834	240	834	834	834
R2	0.964	0.940	0.959	0.946	0.967	0.954	0.977	0.916	0.939	0.924	0.940
L3 GREENRATIOEP	-0.003	0.125*	0.023	0.143	-2.377**	* -0.015	-0.172***	1.538	-0.001	-0.011	0.111**
	(0.133)	(0.075)	(0.048)	(0.451)	(0.829)	(0.022)	(0.056)	(2.017)	(0.000)	(0.037)	(0.045)
Observations	702	702	702	114	702	702	702	114	702	702	702
R2	0.980	0.975	0.982	0.990	0.979	0.975	0.985	0.994	0.950	0.978	0.981
L5 GREENRATIOEP	0.008 (0.151)	0.112* (0.063)	-0.001 (0.050)		-0.916 (0.790)	-0.003 (0.020)	-0.100* (0.058)		-0.001 (0.000)	-0.053 (0.042)	0.057 (0.046)
Observations R2	584 0.986	584 0.984	584 0.985		584 0.990	584 0.986	584 0.990		584 0.953	584 0.980	584 0.983
L1 3YEARAVGGREENRATIOEP	0.224	0.417**	0.094	-0.114	-3.299**	0.002	-0.237**	-1.320	-0.001	0.025	0.180**
	(0.166)	(0.170)	(0.078)	(1.315)	(1.454)	(0.042)	(0.104)	(6.565)	(0.001)	(0.063)	(0.084)
Observations	876	876	876	253	876	876	876	253	876	876	876
R2	0.965	0.944	0.961	0.953	0.968	0.954	0.976	0.916	0.943	0.927	0.944
Panel B.2: And ever-patenting firms											
L1 GREENRATIOEP	0.053	0.045	-0.001	1.054	-1.656*	-0.044	-0.085	0.901	0.000	0.071	0.071
	(0.152)	(0.117)	(0.066)	(1.085)	(0.971)	(0.033)	(0.072)	(5.648)	(0.000)	(0.045)	(0.063)
Observations	833	833	833	240	833	833	833	240	833	833	833
R2	0.958	0.950	0.971	0.938	0.935	0.942	0.972	0.863	0.950	0.970	0.968
L3 GREENRATIOEP	-0.107	0.024	-0.017	0.072	-2.643**	-0.036	-0.196***	* 1.135	-0.000	0.006	0.082
	(0.145)	(0.109)	(0.061)	(0.323)	(1.136)	(0.029)	(0.069)	(2.276)	(0.000)	(0.041)	(0.059)
Observations	701	701	701	114	701	701	701	114	701	701	701
R2	0.974	0.966	0.977	0.990	0.950	0.966	0.980	0.994	0.963	0.976	0.978
L5 GREENRATIOEP	-0.121 (0.171)	0.021 (0.091)	-0.011 (0.057)		-0.556 (1.258)	-0.022 (0.026)	-0.079 (0.069)		-0.000 (0.000)	-0.028 (0.045)	0.038 (0.057)
Observations R2	583 0.982	583 0.980	583 0.984		583 0.965	583 0.981	583 0.986		583 0.967	583 0.980	583 0.982
L1 3YEARAVGGREENRATIOEP	0.069	0.286	0.079	-0.294	-3.519**	-0.031	-0.252**	-12.296	-0.000	0.102	0.163
	(0.202)	(0.201)	(0.104)	(1.710)	(1.724)	(0.048)	(0.117)	(15.825)	(0.001)	(0.074)	(0.109)
Observations	875	875	875	253	875	875	875	253	875	875	875
R2	0.961	0.955	0.973	0.948	0.937	0.942	0.971	0.866	0.953	0.973	0.971
Panel B.3: And never-patenting firms	;										
L1 GREENRATIOEP	0.036	0.053	-0.031	0.086	0.187	0.017	-0.043	0.318	0.002	-0.265**	0.002
	(0.188)	(0.173)	(0.116)	(0.463)	(1.634)	(0.037)	(0.102)	(1.767)	(0.002)	(0.128)	(0.102)
Observations	790	790	790	240	790	790	790	240	790	789	790
R2	0.933	0.903	0.913	0.969	0.924	0.863	0.940	0.962	0.733	0.922	0.920
L3 GREENRATIOEP	0.201 (0.159)	0.044 (0.121)	0.013 (0.098)	0.358 (0.304)	-0.941 (1.241)	-0.005 (0.049)	-0.080 (0.074)	0.393 (0.725)	0.002 (0.002)	-0.122 (0.080)	0.038 (0.082)
Observations	648	648	648	114	648	648	648	114	648	648	648
R2	0.957	0.941	0.943	0.998	0.953	0.929	0.961	0.998	0.758	0.953	0.946
L5 GREENRATIOEP	0.244* (0.143)	0.091 (0.099)	0.007 (0.103)		-1.440 (0.996)	-0.007 (0.044)	-0.100 (0.064)		-0.001 (0.001)	-0.130 (0.094)	0.062 (0.094)
Observations R2	524 0.976	524 0.968	524 0.963		524 0.974	524 0.962	524 0.973		524 0.822	524 0.966	524 0.960
L1 3YEARAVGGREENRATIOEP	0.252	0.242	-0.138	-0.297	-1.461	0.143	-0.155	1.557	0.006*	-0.386***	-0.118
	(0.296)	(0.272)	(0.177)	(1.020)	(2.097)	(0.094)	(0.127)	(3.324)	(0.003)	(0.146)	(0.159)
Observations	829	829	829	253	829	829	829	253	829	828	829
R2	0.934	0.903	0.915	0.971	0.925	0.846	0.941	0.961	0.738	0.922	0.921
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XXVIII: BROWN EFFICIENCY PATENT RATIOS IN ASIA AND CROSS-COUNTRY INDUSTRY-LEVEL OUTCOMES

The unit of observation is GICS-6 industry-year. The sample period is 2005 to 2020. The dependent variables are GICS-6 sector industry level logs of cumulative sums of SITOT, S2TOT, S3DPNOTOT, CAPEX, and SALES over 1, 3 or 5 years, respectively cumulative sums over sums for SINT, S2INT, S3DPNOT, S3DDWNINT and INVEST/A for 1, 3 or 5 years. In Panel A, dependent variables are calculated across all firms with their headquarter in Asia. In Panel B, dependent variables are calculated across all firms within the given industry and region. In Panel A.2 and B.2, dependent variables are calculated across all ever patenting firms within the given industry and region and B.2, dependent variables are calculated across all ever patenting firms within the given industry and region. All independent variables are calculated across all ever patenting firms within the given industry and region. All independent variables are calculated based on firms with their headquarter in Asia. The key explanatory variables are Calculated across all ever patenting firms within the given industry and region. All independent variables are calculated based on firms with their headquarter in Asia. The key explanatory variables are calculated based on firms with their headquarter in Asia. The key explanatory variables are calculated based on firms with their headquarter in Asia. The key explanatory variables are calculated based on firms with their headquarter in Asia. The key explanatory variables are calculated across all every explanatory variables are calculated across all explanatory and region. All independent variables are explanatory variables are calculated across all explanatory and region. All independent variables are explanatory variables are calculated across all explanatory and region. All indepen

$-0.013 \ (0.184)$	-0.545**									
	(0.275)	-0.095 (0.164)	1.048 (1.374)	5.499** (2.748)	-0.296 (0.380)	0.580** (0.294)	25.500 (25.426)	0.002 (0.002)	-0.106 (0.131)	-0.162 (0.158)
835	835	835	240	835	835	835	240	835	835	835
0.957	0.933	0.960	0.959	0.981	0.525	0.933	0.813	0.922	0.930	0.950
0.070	-0.097	0.001	2.021	2.767	-0.585	0.306	23.884	0.002	-0.009	-0.012
(0.188)	(0.203)	(0.111)	(2.231)	(2.035)	(0.439)	(0.323)	(29.066)	(0.002)	(0.090)	(0.108)
704	704	704	114	704	704	704	114	704	704	704
0.973	0.956	0.981	0.987	0.994	0.568	0.967	0.962	0.940	0.965	0.976
0.371* (0.190)	-0.093 (0.208)	0.038 (0.096)		1.756 (1.647)	-0.638 (0.418)	0.082 (0.317)		0.001 (0.002)	0.065 (0.088)	0.025 (0.120)
586 0.978	586 0.964	586 0.983		586 0.997	586 0.648	586 0.978		586 0.949	586 0.965	586 0.975
0.212	-0.387	-0.052	4.553**	8.146*	-0.936	0.626*	52.914	0.000	-0.217	-0.085
(0.238)	(0.306)	(0.191)	(2.237)	(4.257)	(0.674)	(0.342)	(42.805)	(0.002)	(0.201)	(0.194)
878	878	878	255	878	878	878	255	878	878	878
0.957	0.935	0.960	0.967	0.978	0.531	0.933	0.818	0.907	0.920	0.950
0.189	-0.753**	-0.070	-0.228	11.615***	-0.426	1.044**	37.607	0.006	-0.199	-0.241
(0.420)	(0.353)	(0.214)	(1.972)	(4.230)	(0.494)	(0.454)	(39.020)	(0.004)	(0.167)	(0.174)
832	832	832	240	832	832	832	240	832	832	832
0.944	0.943	0.972	0.949	0.929	0.452	0.947	0.609	0.869	0.948	0.968
0.254	-0.451	-0.051	1.591	8.650*	-0.897	0.687	42.693	0.005	-0.092	-0.176
(0.372)	(0.282)	(0.172)	(2.791)	(4.752)	(0.610)	(0.586)	(57.516)	(0.004)	(0.141)	(0.159)
698	698	698	114	698	698	698	114	698	698	698
0.954	0.950	0.975	0.973	0.957	0.491	0.964	0.898	0.912	0.964	0.971
0.548 (0.358)	-0.123 (0.281)	0.073 (0.141)		4.752 (5.114)	-0.810 (0.573)	0.409 (0.596)		0.006 (0.004)	0.055 (0.149)	-0.055 (0.174)
578 0.965	578 0.961	578 0.979		578 0.970	578 0.569	578 0.975		578 0.925	578 0.971	578 0.975
0.097	-1.069***	-0.044	3.407	18.429***	-1.235	1.306**	96.704	0.001	-0.354*	-0.235
(0.487)	(0.381)	(0.231)	(2.690)	(5.820)	(0.876)	(0.542)	(84.731)	(0.004)	(0.191)	(0.171)
869	869	869	250	869	869	869	250	869	869	869
0.945	0.945	0.975	0.957	0.926	0.456	0.948	0.626	0.881	0.951	0.970
0.089	-0.329	0.151	0.608	6.483*	-0.232	1.069**	0.104	0.003	0.006	-0.019
(0.190)	(0.283)	(0.167)	(0.987)	(3.442)	(0.450)	(0.515)	(5.464)	(0.002)	(0.142)	(0.155)
804	804	804	240	804	804	804	240	804	804	804
0.938	0.917	0.942	0.968	0.935	0.435	0.356	0.977	0.822	0.928	0.945
0.257	0.147	0.227	0.492	3.807*	-0.086	0.739	2.691	0.001	0.058	0.119
(0.226)	(0.231)	(0.187)	(0.770)	(2.208)	(0.251)	(0.616)	(5.176)	(0.002)	(0.119)	(0.147)
665	665	665	114	665	665	665	114	665	665	665
0.948	0.931	0.958	0.997	0.977	0.643	0.692	0.997	0.871	0.941	0.956
0.215 (0.226)	-0.105 (0.218)	0.129 (0.191)		1.956 (1.781)	-0.482* (0.254)	0.435 (0.594)		0.002 (0.002)	0.087 (0.108)	0.050 (0.144)
543 0.962	543 0.941	543 0.961		543 0.989	543 0.759	543 0.837		543 0.906	543 0.945	543 0.954
0.225	0.085	0.413*	3.375*	8.178	-0.458	0.491	9.997	0.003	-0.083	0.281
(0.262)	(0.347)	(0.223)	(1.797)	(5.045)	(0.465)	(0.822)	(8.253)	(0.003)	(0.213)	(0.211)
846	846	846	255	846	846	846	255	846	846	846
0.939	0.908	0.939	0.973	0.933	0.442	0.359	0.977	0.812	0.919	0.939
yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes yes
	(0.188) 704 0.973 0.371* (0.190) 586 0.978 0.212 (0.238) 878 0.957 0.189 (0.420) 832 0.944 0.254 (0.378) 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.955 0.965 0.978 0.965 0.978 0.965 0.978 0.965 0.978 0.	(0.188) (0.203) 704 704 0.973 704 0.973 0.995 0.371* -0.093 (0.190) (0.208) 586 586 0.978 0.964 0.212 -0.387 (0.238) (0.306) 878 878 0.957 0.935 0.189 -0.753** (0.420) (0.353) 832 832 0.944 0.943 0.254 -0.451 (0.372) (0.282) 698 698 0.954 0.950 0.548 -0.123 (0.358) (0.281) 578 578 0.965 0.961 0.097 -1.069*** (0.487) (0.381) 869 869 0.945 0.945 0.089 (0.945) 0.945 0.945 0.089 (0.945) 0.945 0.945 0.089 (0.945) 0.945 0.945 0.089 (0.991) 0.257 0.147 (0.226) (0.231) 665 665 0.948 0.931 0.215 -0.105 (0.226) (0.231) 665 665 0.948 0.931 0.215 -0.105 (0.226) (0.218) 543 543 0.962 0.941 0.225 (0.085 (0.262) (0.347) 846 846 0.939 0.908 yes yes yes	(0.188) (0.203) (0.111) 704 704 704 704 (0.973 0.956 0.981) 0.371* -0.093 0.038 (0.190) (0.208) (0.096) \$86 586 0.978 0.964 0.983 0.212 -0.387 -0.052 (0.238) (0.306) (0.191) 878 878 878 878 0.957 0.935 0.960 0.189 -0.753** -0.070 (0.420) (0.353) (0.214) 832 832 832 832 0.944 0.943 0.972 0.254 -0.451 -0.051 (0.372) (0.172) 698 698 698 0.954 0.950 0.975 0.548 -0.123 0.073 (0.353) (0.214) 808 698 698 0.954 0.950 0.975 0.548 0.950 0.975 0.548 0.950 0.975 0.548 0.950 0.975 0.548 0.950 0.975 0.548 0.950 0.975 0.548 0.950 0.975 0.578 578 578 0.965 0.961 0.979 0.097 -1.069*** -0.044 (0.487) (0.381) (0.231) 869 869 869 0.945 0.945 0.945 0.958 0.945 0.945 0.089 -0.329 0.151 (0.190) (0.283) (0.167) 804 804 804 0.938 0.917 0.942 0.257 0.147 0.227 (0.226) (0.231) (0.187) 665 665 665 665 0.948 0.931 0.958 0.215 -0.105 0.129 (0.226) (0.231) (0.187) 665 665 665 665 0.948 0.931 0.958 0.215 -0.105 0.129 (0.226) (0.218) (0.191) 543 543 543 543 0.962 0.941 0.961	(0.188) (0.203) (0.111) (2.231) 704 704 704 704 114 (0.973 0.956 0.981 0.987 0.371* -0.093 0.038 (0.190) (0.208) (0.096) 586 586 586 0.978 0.964 0.983 0.212 -0.387 -0.052 4.553** (0.238) (0.306) (0.191) (2.237) 878 878 878 878 878 2.55 0.957 0.935 0.960 0.367 0.189 -0.753** -0.070 -0.228 (0.420) (0.333) (0.214) (1.972) 832 832 832 240 0.944 0.943 0.972 0.949 0.254 -0.451 -0.051 1.591 (0.372) (0.282) (0.172) (2.791) 698 698 698 698 114 0.954 0.950 0.975 0.973 0.548 -0.123 0.073 (0.358) (0.281) (0.141) 578 578 578 0.965 0.961 0.979 0.097 -1.069*** -0.044 3.407 (0.487) (0.381) (0.231) (2.690) 869 869 869 869 0.945 0.945 0.975 0.957 0.089 -0.329 0.151 0.608 (0.190) (0.283) (0.167) (0.987) 0.089 -0.329 0.151 0.608 (0.190) (0.283) (0.167) (0.987) 0.089 -0.329 0.151 0.608 (0.190) (0.283) (0.167) (0.987) 804 804 804 240 0.938 0.917 0.942 0.968 0.0257 0.147 0.227 0.492 (0.226) (0.231) (0.187) (0.191) 543 543 543 543 0.962 0.941 0.961 0.225 0.085 546 846 846 255 0.939 0.998 0.999 0.973 Pes yes yes yes yes yes yes yes yes yes y	(0.188) (0.203) (0.111) (2.231) (2.035) 704 704 704 704 114 704 0.973 0.956 0.981 0.987 0.994 0.371*	(0.188) (0.203) (0.111) (2.231) (2.035) (0.439) 704 704 704 704 704 114 704 704 (0.973 0.956 0.981 0.987 0.994 0.568 0.371* -0.093 0.038 1.756 -0.638 (0.190) (0.208) (0.096) 1.756 -0.638 (0.190) (0.208) (0.096) 1.756 -0.638 (0.190) (0.208) (0.096) 1.756 -0.638 (0.190) (0.208) (0.096) 1.756 -0.638 (0.190) (0.208) (0.096) 1.756 -0.638 (0.190) (0.208) 0.993 0.997 0.648 0.212 -0.387 -0.052 4.553** 8.146* -0.936 (0.238) (0.306) (0.191) (2.237) (4.257) (0.674) 878 878 878 878 878 2.255 878 878 (0.957 0.935 0.960 0.967 0.978 0.531 0.189 -0.753** -0.070 -0.228 11.615*** -0.426 (0.420) (0.353) (0.214) (1.972) (4.230) (0.494) 832 832 832 832 240 832 832 0.944 0.943 0.972 0.949 0.929 0.452 0.254 -0.451 -0.051 1.591 8.650* -0.897 (0.372) (0.282) (0.172) (2.791) (4.752) (0.610) 668 698 698 698 698 0.954 0.950 0.975 0.973 0.957 0.491 0.548 -0.123 0.073 4.752 -0.810 (0.338) (0.281) (0.141) (5.114) (5.514) (0.573) 578 578 578 578 0.965 0.961 0.979 0.970 0.569 0.097 -1.069*** -0.044 3.407 18.429*** -1.235 (0.487) (0.381) (0.231) (2.690) (5.820) (0.876) 869 869 869 869 869 869 869 869 869 869	(0.188) (0.203) (0.111) (2.231) (2.035) (0.439) (0.329) (0.323) (0.1704 704 704 704 704 704 704 0.956 0.951 0.956 0.957 0.994 0.568 0.967 0.994 0.568 0.967 0.994 0.568 0.967 0.994 0.568 0.967 0.994 0.568 0.967 0.994 0.568 0.967 0.997 0.648 0.982 0.997 0.648 0.983 0.997 0.648 0.983 0.997 0.648 0.998 0.998 0.964 0.983 0.997 0.648 0.998 0.997 0.648 0.998 0.997 0.648 0.998 0.997 0.648 0.998 0.997 0.648 0.998 0.997 0.648 0.998 0.997 0.648 0.998 0.997 0.648 0.998 0.997 0.648 0.998 0.997 0.648 0.998 0.997 0.648 0.998 0.997 0.648 0.998 0.998 0.998 0.999 0.999 0.999 0.531 0.933 0.942 0.958 0.959	(0.188) (0.203) (0.111) (2.231) (2.035) (0.439) (0.323) (29.066) 704 704 704 704 704 704 704 704 0.973 (0.956) (0.981) (0.114 704 0.568 0.967 0.962 0.371* -0.093 (0.388	(0.188) (0.203) (0.111) (2.231) (2.005) (0.489) (0.323) (2.90.66) (0.002) (0.973) (0.974) (0.974) (0.975) (0.981) (0.987) (0.987) (0.944) (0.568) (0.967) (0.962) (0.940) (0.973) (0.208) (0.988) (0.988) (0.987) (0.944) (0.568) (0.967) (0.962) (0.940) (0.208) (0.006) (0.1647) (0.418) (0.317) (0.002) (0.208) (0.096) (0.096) (1.647) (0.418) (0.317) (0.002) (0.208) (0.964) (0.983) (0.964) (0.985) (0.967) (0.648) (0.976) (0.648) (0.976) (0.988) (0.978) (0.988) (0.997) (0.648) (0.997) (0.648) (0.997) (0.648) (0.997) (0.648) (0.997) (0.648) (0.997) (0.648) (0.997) (0.648) (0.997) (0.648) (0.997) (0.648) (0.997) (0.648) (0.997) (0.648) (0.997) (0.	(0.188) (0.203) (0.111) (2.231) (2.035) (0.439) (0.323) (29.066) (0.002) (0.009) (0.00

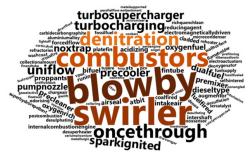
Panel B: ASIA-firm based BROWNER Panel B.1: And all firms				(4) LOGS3DOWNTOT	(5) S1INT	(6) S2INT	(7) S3UPINT	(8) S3DOWNINT	(9) INVEST/A	(10) LOGCAPEX	(11) LOGSALES
L1 BROWNEFFRATIOEP	0.126	-0.159	-0.006	-0.760	4.276	-0.158*	0.185	-8.662*	0.001	0.001	-0.144
	(0.104)	(0.187)	(0.077)	(1.341)	(2.658)	(0.093)	(0.145)	(5.228)	(0.001)	(0.081)	(0.094)
Observations	834	834	834	240	834	834	834	240	834	834	834
R2	0.964	0.940	0.959	0.945	0.968	0.954	0.977	0.916	0.939	0.924	0.940
L3 BROWNEFFRATIOEP	-0.079 (0.103)	-0.146 (0.121)	-0.085 (0.070)	1.430 (1.913)	4.972** (2.170)	-0.107 (0.075)	0.208** (0.098)	6.432 (9.528)	0.001 (0.001)	-0.061 (0.074)	-0.172** (0.081)
Observations	702	702	702	114	702	702	702	114	702	702	702
R2	0.980	0.975	0.982	0.990	0.980	0.975	0.985	0.994	0.950	0.978	0.981
L5 BROWNEFFRATIOEP	-0.065 (0.083)	-0.098 (0.081)	-0.009 (0.081)		1.661 (2.017)	$-0.088 \ (0.054)$	0.144 (0.094)		0.000 (0.001)	-0.028 (0.079)	-0.050 (0.098)
Observations R2	584 0.986	584 0.984	584 0.985		584 0.990	584 0.986	584 0.990		584 0.953	584 0.980	584 0.983
L1 3YEARAVGBROWNEFFRATIOEP	0.250	-0.188	0.194	3.476**	8.198**	-0.318**	0.410*	9.146	0.001	-0.064	-0.099
	(0.188)	(0.238)	(0.146)	(1.710)	(3.475)	(0.148)	(0.211)	(7.366)	(0.001)	(0.124)	(0.165)
Observations	876	876	876	253	876	876	876	253	876	876	876
R2	0.965	0.944	0.961	0.954	0.971	0.955	0.976	0.917	0.942	0.927	0.944
Panel B.2: And ever-patenting firms											
L1 BROWNEFFRATIOEP	0.130	-0.288	-0.093	-0.882	5.801**	-0.152	0.230	-5.320	0.000	-0.015	-0.238*
	(0.112)	(0.289)	(0.101)	(1.374)	(2.665)	(0.099)	(0.162)	(6.453)	(0.001)	(0.075)	(0.122)
Observations	833	833	833	240	833	833	833	240	833	833	833
R2	0.958	0.950	0.971	0.937	0.939	0.942	0.972	0.863	0.950	0.970	0.968
L3 BROWNEFFRATIOEP	0.010	-0.178	-0.108	-0.878	6.216**	-0.098	0.298**	-2.894	0.000	-0.023	-0.227*
	(0.101)	(0.162)	(0.092)	(1.372)	(3.003)	(0.082)	(0.128)	(10.363)	(0.000)	(0.072)	(0.116)
Observations	701	701	701	114	701	701	701	114	701	701	701
R2	0.974	0.966	0.977	0.990	0.953	0.966	0.980	0.994	0.963	0.976	0.978
L5 BROWNEFFRATIOEP	0.008 (0.087)	-0.063 (0.117)	0.033 (0.090)		1.374 (3.582)	-0.093 (0.061)	0.164 (0.131)		-0.000 (0.000)	0.033 (0.061)	-0.014 (0.125)
Observations R2	583 0.982	583 0.980	583 0.984		583 0.965	583 0.981	583 0.986		583 0.967	583 0.980	583 0.982
L1 3YEARAVGBROWNEFFRATIOEP	0.321*	-0.063	0.140	4.766**	8.468**	-0.298*	0.414*	24.659	0.001	0.198*	-0.109
	(0.184)	(0.286)	(0.194)	(2.345)	(4.007)	(0.153)	(0.230)	(17.383)	(0.001)	(0.119)	(0.214)
Observations	875	875	875	253	875	875	875	253	875	875	875
R2	0.961	0.954	0.973	0.950	0.941	0.944	0.971	0.867	0.953	0.973	0.971
Panel B.3: And never-patenting firms											
L1 BROWNEFFRATIOEP	0.191	0.108	-0.046	1.398	1.913	-0.049	-0.361*	2.880	0.000	0.104	0.066
	(0.178)	(0.276)	(0.137)	(0.871)	(6.497)	(0.069)	(0.200)	(4.012)	(0.002)	(0.176)	(0.122)
Observations	790	790	790	240	790	790	790	240	790	789	790
R2	0.933	0.903	0.913	0.970	0.924	0.863	0.941	0.962	0.733	0.921	0.920
L3 BROWNEFFRATIOEP	-0.211 (0.149)	-0.011 (0.199)	-0.275** (0.125)	0.036 (1.207)	1.077 (4.322)	-0.040 (0.048)	-0.378** (0.180)	-0.037 (3.477)	0.002 (0.002)	-0.085 (0.126)	-0.090 (0.094)
Observations	648	648	648	114	648	648	648	114	648	648	648
R2	0.957	0.941	0.943	0.998	0.953	0.929	0.961	0.998	0.758	0.953	0.946
L5 BROWNEFFRATIOEP	-0.092 (0.115)	0.020 (0.133)	-0.154 (0.115)		2.047 (2.741)	-0.030 (0.034)	-0.155 (0.140)		0.002 (0.002)	-0.047 (0.113)	-0.063 (0.091)
Observations R2	524 0.976	524 0.968	524 0.963		524 0.974	524 0.962	524 0.973		524 0.822	524 0.966	524 0.960
L1 3YEARAVGBROWNEFFRATIOEP	0.251	-0.342	-0.181	1.493	7.455	-0.166	-0.536*	-0.612	-0.000	-0.120	0.079
	(0.298)	(0.372)	(0.235)	(1.284)	(6.683)	(0.110)	(0.294)	(4.285)	(0.004)	(0.242)	(0.217)
Observations	829	829	829	253	829	829	829	253	829	828	829
R2	0.934	0.903	0.915	0.971	0.927	0.845	0.941	0.961	0.738	0.922	0.921
Controls	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

TABLE IA.XXIX: EX-POST CHARACTERISTICS OF INDIRECT EMISSION DECREASING VS INCREASING FIRMS

The unit of observation is firm-year and the sample period is 2005 to 2020. To split firms in emission reduction samples (column 1 to 4) and emission increase samples (column 5 to 8) we calculate changes in emissions over three years. Panel A covers total scope 2 emissions, Panel B upstream scope 3 emissions and Panel C downstream scope 3 emissions. We calculate mean, standard deviation, median and the count for each sample as well as the difference and p-value between the two samples for a variety of variables at the three year lag. Panel A.1, B.1 and C.1 cover the full Trucost sample. Panel A.2, B.2 and C.2 zoom in on the Trucost sample with at least one patent at the European Patent Office and the greatest emission change. Within the emission decrease sample, we focus on the 50% with the greatest emission decrease. Similarly within the emission increase sample, we focus on the 50% with the greatest emission increase. DUMMYANYEP (DUMMYGREENEP, DUMMYBROWNEFFEP, and DUMMYOECDEP) are dummies equal to one if a firm has at least one (one green, one brown efficiency and one OECD env-tech) patent and zero otherwise. SALES3YRCHG is the change in sales across the three year period in decimals. All other variables are defined in Table 1, Table 2 and Table 4.

	(1)	(2) Emission dec	(3) crease samp	(4)	(5)	(6) Emission inc	(7) rease samp	(8)	(9) Differe	(10) ence
	Mean	Std. Dev.	Median	Count	Mean	Std. Dev.	Median	Count	Difference	p-value
Panel A: 3-year changes in s Panel A.1: Patenting and non-p		firms								
DUMMYANYEP	0.296		0	29199	0.292	0.455	0	42027	0.004	0.228
DUMMYGREENEP	0.138		0	29199	0.126	0.332	0	42027	0.012	0.000
DUMMYBROWNEFFEP	0.065		0	29199	0.057	0.232	0	42027	0.008	0.000
DUMMYOECDEP	0.144		0	29199	0.129	0.335	0	42027	0.015	0.000
AGE LOGSIZE	47.280 7.690		34.000 7.723		41.438 7.714	35.990	28.000	39054 42027	5.842	0.000
LOGPPE	5.962			29199	5.871	1.548 2.278		42027	-0.023 0.092	0.062 0.000
MB	2.402			29199	2.774	2.278		42027	-0.373	0.000
LEVERAGE	24.072		22.416		23.187	18.131		42027	0.885	0.000
ROE	10.519		10.359	29199	11.960	23.463	11.477	42027	-1.441	0.000
SALES3YRCHG	-0.117		-0.038		0.314	0.501	0.241	41957	-0.431	0.000
Panel A.2: Firm-years with at l	east one E	P patent & gree	atest emissio	n decreases	, resp. increase	es				
GREENRATIOEP	12.646		0	4325	12.119	24.608	0	6136	0.527	0.281
BROWNEFFRATIOEP	4.305		0	4325	3.406	13.053	0	6136	0.898	0.001
OECDRATIOEP	13.876		0	4325	12.233	24.368	0	6136	1.643	0.001
GREENCITMAXEP	44.640		0	4325	65.211	573.680	0	6136	-20.571	0.009
BROWNEFFCITMAXEP	13.322 0.230		0	4325 4325	9.421 0.212	47.241 1.018	0	6136	3.901 0.018	0.257
GREENCOUNTBBEP BROWNEFFCOUNTBBEP	0.230		0	4325	0.212	0.431	0	6136 6136	0.018	0.373 0.024
AGE	56.880		45.000	4281	47.383	39.415	33.000	6094	9.496	0.024
LOGSIZE	8.353		8.361	4325	8.291	1.575	8.271	6136	0.062	0.058
LOGPPE	6.747		6.847	4325	6.446	2.143	6.508	6136	0.300	0.000
MB	2.551		1.778	4325	3.174	3.171	2.211	6136	-0.623	0.000
LEVERAGE	23.615		22.637	4325	22.291	16.697	21.329	6136	1.325	0.000
ROE	8.585		10.271	4325	9.604	28.328	11.476	6136	-1.019	0.076
SALES3YRCHG	-0.163	0.579	-0.075	4321	0.401	0.587	0.324	6132	-0.564	0.000
Panel B: 3-year changes in u Panel B.1: Patenting and non-p DUMMYANYEP		irms	ions	28408	0.290	0.454	0	42885	0.008	0.026
DUMMYGREENEP	0.298		0	28408	0.290	0.434	0	42885	0.008	0.026
DUMMYBROWNEFFEP	0.140		0	28408	0.125	0.330	0	42885	0.013	0.000
DUMMYOECDEP	0.146		0	28408	0.128	0.334	0	42885	0.018	0.000
AGE	46.931		34.000		41.749	36.293	29.000	39765	5.182	0.000
LOGSIZE	7.631		7.690		7.754	1.569	7.785	42885	-0.124	0.000
LOGPPE	6.062		6.255		5.808	2.290		42885	0.254	0.000
MB	2.248	2.547	1.528	28408	2.869	3.000	1.931	42885	-0.621	0.000
LEVERAGE	24.414	18.091	22.840	28408	22.983	18.146	20.968	42885	1.430	0.000
ROE	9.732			28408	12.452	23.891	11.721	42885	-2.720	0.000
SALES3YRCHG	-0.198	0.507	-0.102	28347	0.360	0.473	0.266	42815	-0.558	0.000
Panel B.2: Firm-years with at le							0	6220	1 277	0.005
GREENRATIOEP BROWNEFFRATIOEP	13.261 4.592		0	4237 4237	11.883 3.370	24.392 13.040	0	6229 6229	1.377 1.222	0.005 0.000
OECDRATIOEP	14.522		0	4237	11.960	24.008	0	6229	2.561	0.000
GREENCITMAXEP	47.269		0	4237	54.588	327.325	0	6229	-7.320	0.000
BROWNEFFCITMAXEP	19.165		0	4237	8.678	42.631	0	6229	10.487	0.032
GREENCOUNTBBEP	0.243		0	4237	0.216	0.925	0	6229	0.026	0.198
BROWNEFFCOUNTBBEP	0.123		0	4237	0.067	0.496	0	6229	0.056	0.000
AGE	57.208		46.000	4215	45.397	39.138	31.000	6168	11.812	0.000
LOGSIZE	8.234	1.696	8.227	4237	8.294	1.611	8.285	6229	-0.060	0.070
LOGPPE	6.889		7.039	4237	6.222	2.139	6.266	6229	0.667	0.000
MB	2.215		1.601	4237	3.526	3.384	2.512	6229	-1.310	0.000
LEVERAGE	24.170		23.076	4237	21.742	16.918	20.308	6229	2.428	0.000
ROE	7.362		9.306	4237	10.395	29.696	11.984	6229	-3.033	0.000
SALES3YRCHG	-0.315	0.528	-0.217	4232	0.497	0.533	0.392	6226	-0.812	0.000

	(1) E1	(2) mission dec	(3) rease sam	(4) ple	(5) E	(6) mission inc	(7) rease samj	(8) ole	(9) Differe	(10) ence
	Mean	Std. Dev.	Median	Count	Mean	Std. Dev.	Median	Count	Difference	p-value
Panel C: 3-year changes in o	downstrea	am scope 3	emissions							•
Panel C.1: Patenting and non-	patenting f	firms								
DUMMYANYEP	0.244	0.430	0	6412	0.210	0.407	0	4628	0.034	0.000
DUMMYGREENEP	0.094	0.292	0	6412	0.082	0.275	0	4628	0.012	0.026
DUMMYBROWNEFFEP	0.041	0.198	0	6412	0.033	0.179	0	4628	0.008	0.036
DUMMYOECDEP	0.094	0.292	0	6412	0.079	0.270	0	4628	0.015	0.005
AGE	42.999	33.724	32.000	5865	37.566	32.005	26.000	4219	5.433	0.000
LOGSIZE	7.128	1.550	7.053	6412	7.218	1.631	7.115	4628	-0.090	0.003
LOGPPE	5.214	2.232	5.306	6412	4.933	2.374	5.030	4628	0.282	0.000
MB	2.609	2.827	1.735	6412	2.971	3.225	1.879	4628	-0.362	0.000
LEVERAGE	22.372	18.573	19.725	6412	22.749	18.804	20.577	4628	-0.377	0.296
ROE	9.932	22.883	9.682	6412	9.211	25.840	9.994	4628	0.721	0.130
SALES3YRCHG	-0.012	0.526	0.061	6408	0.268	0.603	0.184	4624	-0.280	0.000
Panel C.2: Firm-years with at	least one E	P patent & g	reatest emi	ssion decrei	ases, resp. in	ncreases				
GREENRATIOEP	11.955	23.128	0	784	13.742	26.184	0	486	-1.787	0.217
BROWNEFFRATIOEP	2.861	11.181	0	784	2.346	9.927	0	486	0.516	0.392
OECDRATIOEP	12.019	23.823	0	784	9.269	21.192	0	486	2.750	0.032
GREENCITMAXEP	16.356	103.591	0	784	72.142	1115.594	0	486	-55.786	0.272
BROWNEFFCITMAXEP	3.171	14.083	0	784	2.891	13.033	0	486	0.280	0.718
GREENCOUNTBBEP	0.255	1.489	0	784	0.226	0.853	0	486	0.029	0.662
BROWNEFFCOUNTBBEP	0.101	1.160	0	784	0.109	1.062	0	486	-0.008	0.896
AGE	54.055	39.770	45.000	781	46.300	39.119	31.000	477	7.755	0.001
LOGSIZE	7.760	1.680	7.706	784	8.113	1.850	8.094	486	-0.354	0.001
LOGPPE	5.916	2.111	5.913	784	5.629	2.519	5.744	486	0.287	0.036
MB	2.916	2.942	2.071	784	3.981	3.858	2.817	486	-1.065	0.000
LEVERAGE	21.707	16.440	21.170	784	21.921	18.852	19.407	486	-0.214	0.837
ROE	8.980	26.828	9.502	784	5.596	38.696	10.700	486	3.384	0.091
SALES3YRCHG	-0.038	0.552	0.045	784	0.440	0.830	0.203	486	-0.478	0.000


FIGURE IA.I: PATENTS FROM SPECIFIC PATENT CLASSIFICATIONS VS ALL OTHER PATENTS

The sample is all patents granted by the European Patent Office from 2005 to 2020 that belong to the Trucost sample. The wordclouds display the top 100 words (unigrams) based on the TF-IDF comparing patent titles of patents in the given classification to all other patents. We compare "green" patent titles to all other patent titles in Panel A, "brown efficiency" to all others in Panel B, "general efficiency" to all others in Panel C, OECD-env tech to all others in Panel D, IPC green inventory to all others in Panel E, Corporate Knights self classified to all others in Panel F, and Fossil Fuel technologies to all others in Panel G.

(A) GREEN AGAINST ALL OTHERS

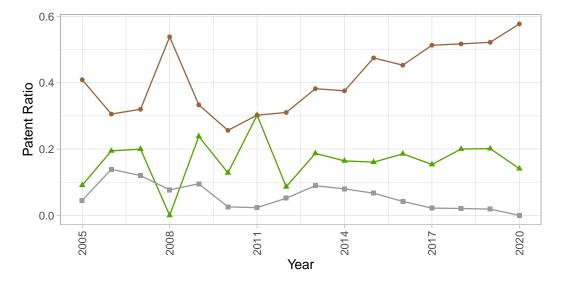
(B) BROWN EFFICIENCY AGAINST ALL OTHERS

(C) GENERAL EFFICIENCY AGAINST ALL OTHERS

(D) OECD AGAINST ALL OTHERS

(E) IPC AGAINST ALL OTHERS

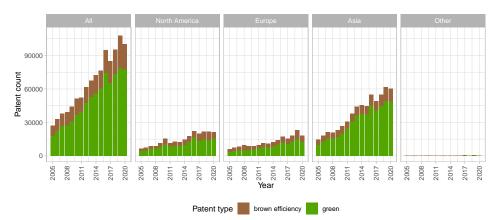
(F) CK AGAINST ALL OTHERS



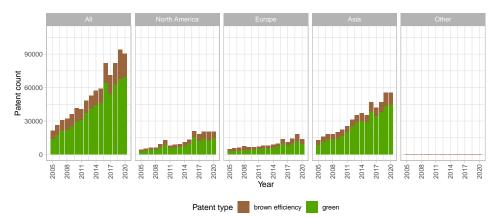
(G) FF AGAINST ALL OTHERS

FIGURE IA.II: PATENT RATIOS FOR HALLIBURTON COMPANY

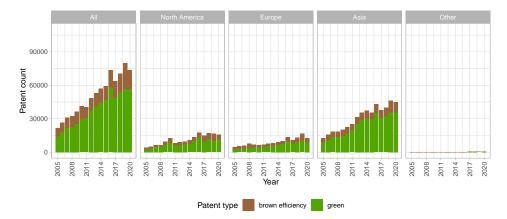
We report GREENRATIOEP, BROWNEFFRATIOEP and OECDRATIOEP for Halliburton Company per year between 2005 and 2020. The variables are defined in Table 2 and Table IA.V.



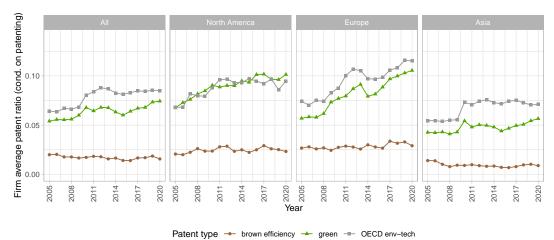
Patent type - Brown Efficiency EP - Green EP - OECD EP

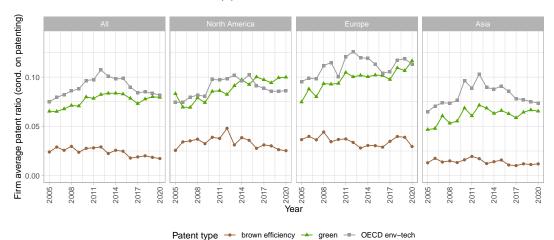

FIGURE IA.III: GREEN AND BROWN EFFICIENCY WORLDWIDE PATENT COUNTS ACROSS REGIONS

The sample period is 2005 to 2020. We report the total number of granted or purchased green and brown efficiency patent families from world wide patent offices. We report the total across all regions and by region, namely North America, Europe, Asia, and other (rest of the world), per year. In Panel A the sample covers the full sample, i.e all public and private firms. In Panel B the sample covers only public firms with emission data from Trucost and in Panel C we restrict the sample inclusion further to those firms that Trucost covers in its database before 2016.

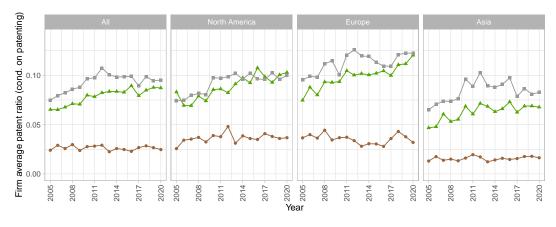

(A) FULL (PUBLIC/PRIVATE) SAMPLE

(B) TRUCOST SAMPLE

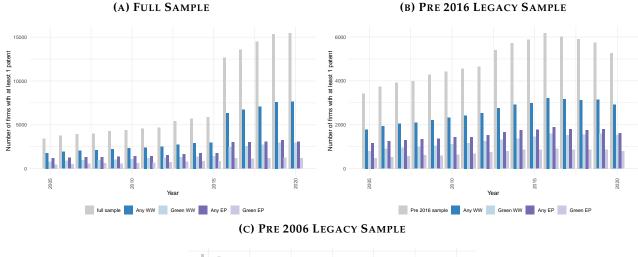

(C) TRUCOST (PRE 2016) LEGACY SAMPLE

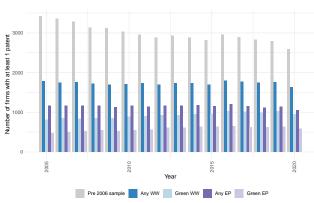

FIGURE IA.IV: GREEN AND BROWN EFFICIENCY WORLDWIDE PATENT RATIOS ACROSS REGIONS

The sample period is 2005 to 2020. We report the average GREENRATIOWW, BROWNEFFRATIOWW and OECDRATIOWW across all regions and for the regions North America, Europe and Asia per year. The patent ratios are defined in Table IA.IX and capture worldwide patent office activity. In Panel A the sample covers the full sample, i.e all public and private firms. In Panel B the sample covers only public firms with emission data from Trucost and in Panel C we restrict the sample inclusion further to those firms that Trucost covers in its database before 2016.


(A) FULL (PUBLIC/PRIVATE) SAMPLE

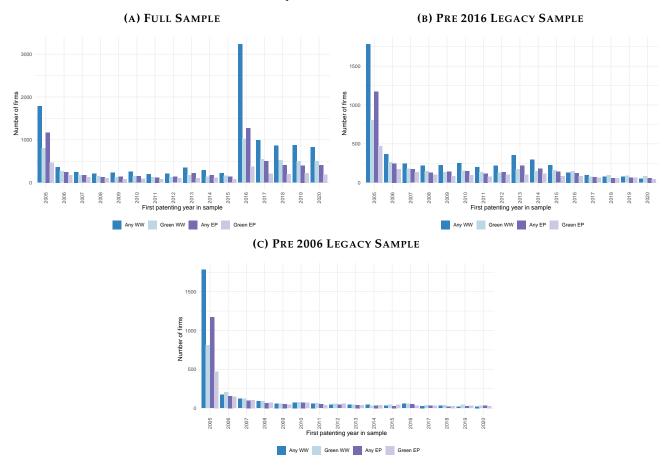
(B) TRUCOST SAMPLE

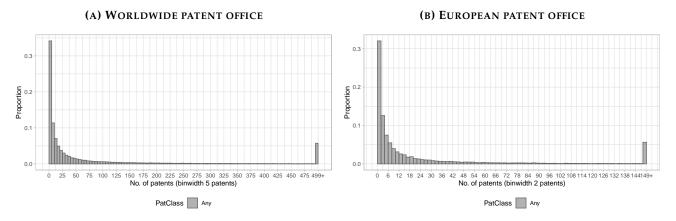

(C) TRUCOST (PRE 2016) LEGACY SAMPLE



Patent type 🔷 brown efficiency 📥 green 🖜 OECD env-tech

FIGURE IA.V: FIRM-YEAR OBSERVATIONS WITH AT LEAST ONE GRANTED/PURCHASED PATENT PER YEAR


Each graph presents the annual number of firms from the whole Trucost sample (full sample - grey bars), that have a patent granted or purchased at any patent office world wide (Any WW - dark blue bars), that have a green patent granted or purchased at any patent office world wide (Green WW - light blue bars), that have a patent granted or purchased at the European Patent Office wide (Any EP - dark purple bars), that have a green patent granted or purchased at the European Patent Office (Green EP - light purple bars). Panel A covers the full sample. Panel B is restricted to firms with emission data from Trucost prior to 2016. Panel C is restricted to firms with emission data from Trucost in 2006.


FIGURE IA.VI: FIRM COUNT BY FIRST YEAR WITH A GRANTED/PURCHASED PATENT

Each graph covers the Trucost sample and documents a firm's first year with a granted or purchased patent. The bars represent the number of firms with their first patent in the given year. Dark blue bars cover any patent from any patent office world wide (Any WW), light blue bars cover green patents from any patent office world wide (Green WW), dark purple bars cover any patent from the European Patent Office (Any EP) and light purple bars cover green patents from the European Patent Office (Green EP). Panel A covers the full sample. Panel B is restricted to firms with emission data from Trucost prior to 2016. Panel C is restricted to firms with emission data from Trucost in 2006.

FIGURE IA.VII: HISTOGRAMS OF PATENT COUNTS FOR FIRM-YEAR OBSERVATIONS

The histograms plot the proportion of firm-year observations in bins based on the number of granted/purchased patents for the Trucost sample between 2005 and 2020. In Panel A, the patent count is based on patents granted or purchased at any patent office worldwide accounting for patent families. The binwidth is 5 patents. The last bin is an overflow bin with 499 patents and more. In Panel B, the patent count is based on patents granted or purchased by the European Patent Office and the binwidth is 2 patents. The last bin is an overflow bin with 149 patents and more.

