

# To Vaccinate or To Wait

Jan 23

Hajar Fatemi
Babak Lotfaliei
Iksu Jurn
Timothy E. Trombley

(University of Windsor)(Saginaw Valley State University)(Saginaw Valley State University)(Illinois State University)

### In Brief



• Main question:

Does vaccine irreversibility influence a rational individual's decision to delay vaccination?

• Answer: Yes, even if immediate vaccination has net positive benefit Vaccine costs < Vaccine benefits

Basic model: Irreversibility => 1 no-vaccination likelihood

Model with uncertainty: Irreversibility no-vaccination likelihood

Application: Effectiveness of <u>rewarding</u> vaxxers > <u>taxing</u> non-vaxxers

### Motivation



#### Vaxxers and non-vaxxers:

- Quebec (Canada) opts for <u>Covid non-vaxxer taxes</u> (later cancelled).
- Some countries (e.g., Germany, Australia) <u>fine parents who do not vaccinate</u> their child for Measles. (Vox news 2019).

• "Instead of forcing, we need to go and see what's behind it for those who are not currently vaccinated" (public health director of the Gaspé region, Quebec)

### Motivation



#### Vaxxers and non-vaxxers:

• Irreversibility: "I believe in vaccines' effectiveness...yet I would rather wait for others to take it and eliminate the disease, so I avoid the vaccine sickness."

- Irreversibility (or costly to reverse) & real options:
  - ➤ Positive Net Present Value (NPV) irreversible projects may be delayed (Siegel & McDonald-86)
  - ➤ Borrowing may be delayed with positive net debt benefits => Zero leverage firms (Lundberg & Lotfaliei-19)

• Question: Can we quantify the value in waiting?

### Motivation



Irreversibility (or costly to reverse), uncertainty, & real option:

A basic example





• Motivation question: Can we quantify the <u>value in waiting to vaccinate</u>?

# Model 1: irreversibility



Vaccination is irreversible (or costly to reverse):

Classical assumption:

Vaccine gain H<sub>1</sub>-V>0

→ Vaccinate

Irreversibility implication:

Vaccine gain  $H_1$ -V<  $e^{-rt}(V-H_2)>0$ 

→ Not vaccinate

Future infection costs ↓↓



# Model 1: irreversibility- Intuition



#### Classical assumption:

Vaccine benefit =  $H_1$ >V=vaccine cost  $\rightarrow$  Vaccinate

#### Irreversibility implication:

Vaccine benefit =  $H_1$ >V=vaccine cost +  $e^{-rt}(V-H_2)$  =irreversibility cost = Value in waiting



Vaccine net gain

# Model 2: irreversibility & uncertainty





Uncertainty ↑ → Irreversibility cost ↑

# Model 3: irreversibility & uncertainty



• A continuous-time model: Uncertainty  $\uparrow \rightarrow$  Irreversibility cost  $\uparrow$ 



Fatemi, Jurn, Lotfaliei, & Trombley

To Vaccinate or To Wait

# Model 3: irreversibility & uncertainty



• A continuous-time model: Uncertainty ↑ → Irreversibility cost ↑



# Model 3: application



• A continuous-time model: Tax < Reward=subsidy at vaccination



Fatemi, Jurn, Lotfaliei, & Trombley

To Vaccinate or To Wait

### Contributions



Irreversibility (value in waiting) + uncertainty = Magnifying glass on costs

✓ We extend real option theory to individual health decisions

Rational model that complements irrational models for vaccination:

- Assumption required by some studies: "inflated perceived vaccination cost" (Bhattacharyya and Bauch 2011):
  - ➤ E.g., regret theory: "an agent may have <u>inaccurate perceptions of the probabilities</u> of states occurring or may have <u>imperfect information</u> about the efficacy of the vaccination technology" (Sadique et al. 2005)
  - ➤ Rumors (Verelst, Willem, and Beutels 2016)
- ✓ This paper: with perfect information & perception, inaction may be optimal

### Conclusion



Rational individuals with perfect information may delay vaccination

1- We develop 3 models that show irreversibility & uncertainty reduces probability of vaccination

- 2- Demonstrate an example of application:
  - Reward (subsidy) at vaccination > tax on non-vaxxers

• Future research:

Check the model & implications with empirical and behavioral tests



# Thank you

Fatemi, Jurn, Lotfaliei, & Trombley To Vaccinate or To Wait