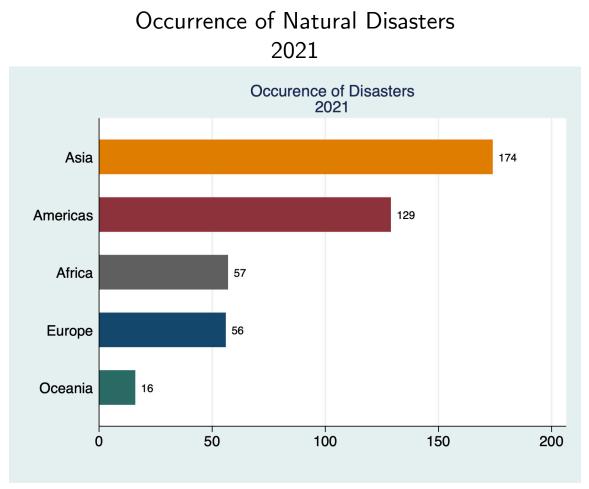
Climate Disasters, Innovation, and Productivity in Africa

Amira El-Shal, PhD

Cairo University

AFEA/ASSA 2023 Annual Meetings New Orleans, 7 January 2023

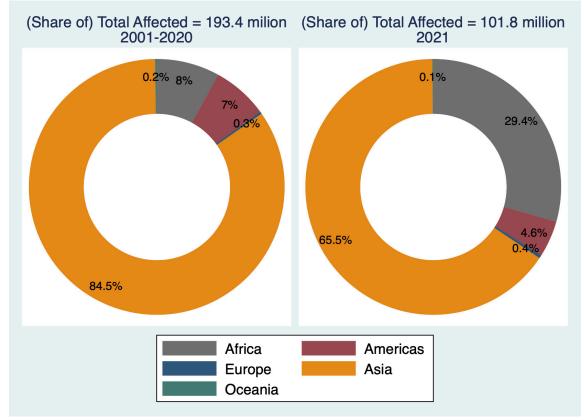
This presentation is based on the personal views of the presenter and does not necessarily represent the views of Cairo University.


Background

- Africa is the most vulnerable region to climate change effects despite its low contribution to greenhouse gas emissions.
- Evidence on the impact of climate disasters on firm performance in Africa is limited if not inexistent.
- This gap in the literature hampers the design of disaster risk reduction and climate change adaptation strategies for the business sector.

Existing Work

- Evidence on disaster impacts is divided into:
 - Direct impacts: e.g., property losses
 - Indirect economic impacts: e.g., effects on economic growth
- Direct impacts are relatively well understood.
- Evidence on economic growth impacts of natural disasters is more uncertain:
 - Inconclusive: failure to fully account for the differences in disaster types, locations, economic and financial development, institutional quality, time periods, disaster cost definitions, etc.
 - Macro: mostly obtained from highly aggregated macroeconomic data at the country or regional levels


Motivation: Some Worrying Figures!

Source: Author's calculations based on EM-DAT data.

Motivation: And Even More Worrying!

Share of Total Affected by Natural Disasters 2001-2021

Source: Author's calculations based on EM-DAT data.

This Study

Objectives:

- Estimate the impact of climate disasters on firm-level innovation and productivity in Africa
- Allow for heterogeneous effects of climate disasters over several respects: disaster compound, firm size, etc.

Contribution:

- Conceptually, extend the literature on the determinants of firm-level innovation and productivity to incorporate climate disasters as exogenous shocks
- Methodologically, our estimation strategy of the CDM model attenuates potential endogeneity concerns, especially that arising from OVB, by including a "latent" variable to reflect the effect of unobserved factors underlying the relationships b/w R&D, innovation output, and productivity

Generalized Structural Equation Model

We use the CDM model—developed by Crépon et al. (1998)—to integrate the links between R&D, innovation output, and productivity in a recursive framework.

We extend this framework by including in the three stages of the analysis the effect of climate disasters as exogenous shocks.

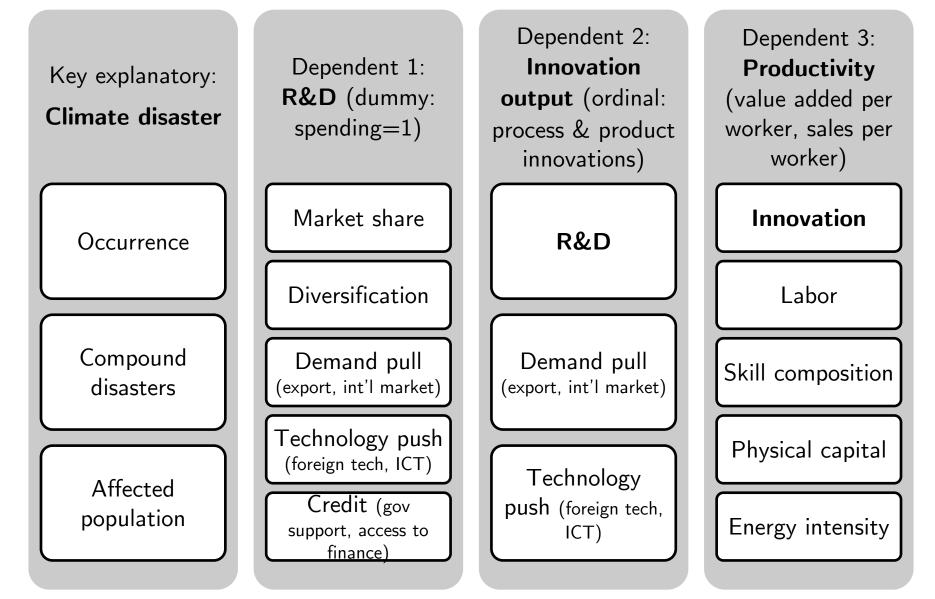
1. R&D spending:

$$\Pr(RD_i = 1 \mid X_{i,RD}) = \Phi(\alpha_o + \mathbf{Z}_{i,RD}\alpha_Z + \alpha_D \mathbf{D}_{i,RD} + \mathbf{L}_i)$$

2. Innovation output:

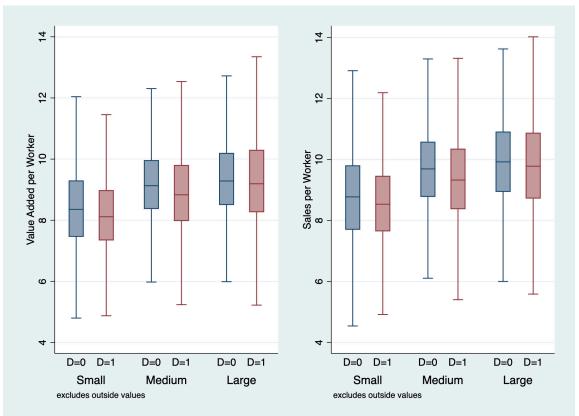
 $\Pr(IO_i = j \mid \kappa, X_{i,IO}) = \Psi(\kappa_{j-1} < \beta_o + \beta_{RD}RD_i + \mathbf{Z}_{i,IO}\beta_Z + \beta_D D_{i,IO} + \beta_L \mathbf{L}_i + \varepsilon_{i,IO} \leq \kappa_j)$

3. Productivity:


$$P_{i} = \gamma_{o} + \gamma_{IO}IO_{i} + \mathbf{Z}_{i,P}\gamma_{Z} + \gamma_{D}\mathbf{D}_{i,P} + \gamma_{L}\mathbf{L}_{i} + \varepsilon_{i,P}$$

Data: Description

Data sources:


- R&D, innovation output, and productivity: microdata from the World Bank Enterprise Survey
- Climate disasters: the Emergency Events Database (EM-DAT) by the Centre for Research on the Epidemiology of Disasters (CRED)
- Sample coverage: 47 African countries
- Sample size: 22,547 firms
- Working sample: 15,533 firms in the manufacturing sector
- Time framework: 2006-2021

Data: Variables

Descriptive Analysis

Productivity by Climate Disaster Occurrence by Firm Size 2006-2020

Source: Author's calculations based on Enterprise Survey and EM-DAT data.

Results: GSEM Estimation of the R&D Spending Equation Dependent Variable: **R&D**

Specification	(1)		(2)		(3)	
Climate disaster						
Occurrence	<mark>-0.040</mark>	(0.222)				
Compound disasters			<mark>0.055</mark>	(0.181)		
Affected population					<mark>0.078</mark>	(6.931)
Labor	0.291***	(0.037)	0.299***	(0.036)	0.298***	(0.039)
Age	-0.027	(0.053)	-0.041	(0.053)	-0.022	(0.057)
Market share						
Monopolistic competition	0.325**	(0.141)	0.372***	(0.140)	0.303**	(0.148)
Oligopoly	0.353***	(0.092)	0.395***	(0.091)	0.299***	(0.098)
Monopoly	-0.208	(0.330)	-0.223	(0.327)	-0.264	(0.357)
Diversification	0.005**	(0.002)	0.005**	(0.002)	0.005**	(0.002)
Demand pull						
Export orientation	0.009***	(0.003)	0.008***	(0.003)	0.011***	(0.003)
International competition	-0.319	(1.148)	-0.328	(1.149)	-0.583	(1.151)
Technology push						
Foreign technology	0.535***	(0.109)	0.564***	(0.109)	0.580***	(0.114)
ICT						
Adoption=1	0.581***	(0.118)	0.592***	(0.116)	0.557***	(0.124)
Adoption=2	0.996***	(0.123)	1.007***	(0.120)	0.989***	(0.128)
Credit						
Public support	0.009*	(0.005)	0.008	(0.005)	0.010*	(0.006)
Access to finance	0.598***	(0.096)	0.587***	(0.095)	0.675***	(0.099)
Latent variable (L)	1.000	(Constr'd)	1.000	(Constr'd)	1.000	(Constr'd)
Constant	-3.274***	(0.654)	-2.802***	(0.275)	-4.669***	(0.630)
Industry dummies	Yes		No		Yes	
Country dummies	Yes		Yes		Yes	
Observations	9,061		9,061		8,625	

Results: GSEM Estimation of the Innovation Output Equation Dependent Variable: Innovation Output

Specification	(1)		(2)		(3)	
Climate disaster				-		
Occurrence	<mark>-0.311***</mark>	(0.027)				
Compound disasters			<mark>-0.347***</mark>	(0.022)		
Affected population					<mark>-9.290***</mark>	(0.827)
R&D spending	0.642***	(0.039)	0.646***	(0.039)	0.618***	(0.040)
Labor	0.010	(0.007)	0.007	(0.007)	0.006	(0.007)
Age	0.012	(0.010)	0.017*	(0.009)	0.010	(0.010)
Demand pull		. ,		. ,		. ,
Export orientation	-0.000	(0.000)	-0.000	(0.000)	0.000	(0.001)
International competition	-0.039	(0.039)	-0.035	(0.038)	-0.042	(0.040)
Technology push		, , , , , , , , , , , , , , , , , , ,				
Foreign technology	0.168***	(0.024)	0.168***	(0.024)	0.179***	(0.024)
ICT		, , , , , , , , , , , , , , , , , , ,				
Adoption=1	0.143***	(0.022)	0.140***	(0.022)	0.145***	(0.023)
Adoption=2	0.231***	(0.022)	0.225***	(0.022)	0.237***	(0.023)
Latent variable (L)	-0.092*	(0.050)	-0.091*	(0.050)	-0.137***	(0.052)
Constant	0.818***	(0.079)	0.766***	(0.049)	0.293***	(0.076)
Industry dummies	Yes	```	No		Yes	. ,
Country dummies	Yes		Yes		Yes	
Observations	9,061		9,061		8,625	

Results: GSEM Estimation of the Productivity Equation Dependent Variable: Value Added Per Worker

Specification	(1)		(2)		(3)	
Climate disaster						
Occurrence	<mark>-0.156*</mark>	(0.085)				
Compound disasters			<mark>-0.175***</mark>	(0.064)		
Affected population					<mark>-4.414*</mark>	(2.591)
Innovation output	0.072**	(0.034)	0.076**	(0.035)	0.084**	(0.038)
Labor	0.093***	(0.017)	0.081***	(0.017)	0.081***	(0.017)
Labor quality	0.001	(0.001)	-0.000	(0.001)	0.000	(0.001)
Age	0.018	(0.025)	0.017	(0.024)	0.015	(0.024)
Capital intensity	0.318***	(0.013)	0.329***	(0.012)	0.318***	(0.013)
Energy intensity	-0.157***	(0.014)	-0.154***	(0.013)	-0.158***	(0.014)
Latent variable (L)	0.217***	(0.063)	0.224***	(0.064)	0.234***	(0.061)
Constant	7.195***	(0.268)	7.254***	(0.197)	7.156***	(0.253)
Industry dummies	Yes		No		Yes	
Country dummies	Yes		Yes		Yes	
Observations	9,061		9,061		8,625	

Results: GSEM Estimation of the Productivity Equation Dependent Variable: Sales Per Worker

Specification	(1)		(2)		(3)	
Climate disaster						
Occurrence	<mark>-0.259***</mark>	(0.082)				
Compound disasters			<mark>-0.227***</mark>	(0.063)		
Affected population					<mark>-7.580***</mark>	(2.527)
Innovation output	0.098***	(0.033)	0.104***	(0.033)	0.110***	(0.036)
Labor	0.107***	(0.016)	0.095***	(0.016)	0.096***	(0.016)
Labor quality	-0.000	(0.001)	-0.001	(0.001)	-0.000	(0.001)
Age	0.010	(0.024)	0.014	(0.024)	0.007	(0.024)
Capital intensity	0.322***	(0.013)	0.337***	(0.013)	0.321***	(0.013)
Energy intensity	-0.184***	(0.012)	-0.182***	(0.012)	-0.185***	(0.012)
Latent variable (L)	0.206***	(0.060)	0.210***	(0.061)	0.225***	(0.058)
Constant	7.769***	(0.275)	7.779***	(0.197)	7.669***	(0.261)
Industry dummies	Yes		No		Yes	
Country dummies	Yes		Yes		Yes	
Observations	9,061		9,061		8,625	

Conclusions

- The occurrence and severity of climate disasters decrease the firm's likelihood of introducing process and product innovations and firm's productivity in Africa.
 - A climate disaster decreases firm productivity by about 16%.
 - A compound disaster decreases firm productivity by about 18%.
- The probability of engaging in R&D for a firm increases with its market share (but not to the extent of a monopoly), diversification, with the demand pull and technology push factors, and access to credit.
- The firm innovation output increases with its R&D spending and with the technology push factors, either directly or indirectly through their effects on R&D.
- Firm productivity increases with a higher innovation output, even when controlling with the skill composition of labor and for physical capital intensity. Energy inefficiency decreases firm productivity.

Thank you.

For correspondence: <u>amira.elshal@feps.edu.eg</u>