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Motivation - Why should We Care about Measurement
Error?

Measurement error is common in empirical applications of RDD:

Surveyed 154 RDD papers published in 2005 - 2020 in the leading
journals - 27 feature a running variable measured with error; 23 use a
rounded or coarsened running variable.

In addition, many RDD applications use survey data, and hence are
subject to reporting/recall error (Pei and Shen, 2017; Davezies and Le
Barbanchon, 2017; Yu, 2013, Yanagi, 2015).

E.g. self-reported income used as a running variable.

Dong & Kolesár (UCI & Princeton) RDD_Measurement Error 2 / 21



Contributions

Show that under weak and interpretable conditions, RDD with a
mismeasured running variable is a valid design - it can provide
inference for a well-defined causal object.

Illustrate the proposed approach in an empirical application.
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Sharp Design - Notation

True running variable X ∗ is not observed; only observe X = X ∗ − e,
where e is the measurement error.

E.g., X ∗ is birthdate; only observe X , month or year of birth. So
X = bX ∗c and e = X ∗ − X .
e can be discrete, continuous, or mixed; e may correspond to a
classical or Berkson measurement error.

Z = 1 {X ∗ ≥ 0}. Treatment T = Z .

Y is observed outcome; Y (t), t = 0, 1 are potential outcomes.
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Sharp Design - Assumptions

Assumption C1 1 {X ≥ 0} = Z almost surely.

X correctly classifies the treatment assignment w. p. 1.

E.g., C1 holds when X = bX ∗c e.g., month or year of birth, with an
integer RDD threshold.

More generally, C1 requires donut trimming, i.e., removing
observations with X ∈ [−s1, s0) when e has a bounded support
[−s0, s1].
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Sharp Design - Assumptions

Assumption C2 gt (x):= E [Y (t) |X = x ], t = 0, 1, are continuous at 0.

C2 is commonly assumed in practice.

C2 is weaker than the smoothness of g ∗t (x):= E [Y (t) |X ∗ = x ],
when a) Fe |X (e|x) is smooth in x ; and b)
g ∗t (X

∗, e):= E [Y (t) |X ∗, e] is smooth in e; Note
gt (x) = E [g ∗t (X

∗, e) |X = x ].

a) and b) hold in the case of rounding error, but fail for heaping error.
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Sharp Design - Assumptions

Assumption C3 E [Y (1)− Y (0) |X ∗ = x ,X = 0] =
E [Y (1)− Y (0) |X ∗ = x ].

C3 requires that once conditional on the true X ∗, rounding error e
does not affect the ATE at X = 0.

C3 holds when e is rounding error, or more generally whenever e is
non-differential, i.e., e ⊥ {Y (0) ,Y (1)} |X ∗, which is commonly
assumed in the literature.
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Sharp Design - Main Result

Let τ∗(x):=E [Y (1)− Y (0) | X ∗ = x ].

Lemma (2.1)
Suppose that T = Z and conditions C1 and C2 hold. Then the jump in
the conditional mean function g(x):=E [Y | X = x ] at 0 identifies the
ATE for units with X = 0,

τ:=E [Y (1)− Y (0) | X = 0] = lim
x↓0
g(x)− lim

x↑0
g(x). (1)

If, in addition, condition C3 holds, then

τ =
∫

τ∗(e)dFe |X (e | 0),

where Fe |X (e | x) is the conditional distribution of e = X ∗ − X given
X = x.
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Sharp Design - Comparison of Causal Parameters

τ∗:=E [Y (1)− Y (0) | X ∗ = 0] is the ATE for units with X ∗ = 0.

τ:=E [Y (1)− Y (0) | X = 0] is the ATE for units with X = 0, or a
weighted average of the ATEs given X ∗ for units at the mismeasured
cell at X = 0.

Example: X ∗ = birthdate, observe X = year of birth.

τ∗: the ATE for individuals born on the cutoff date;

τ: the ATE for individuals born in the cutoff year, or a weighted
average of the ATEs for individuals born on each day within the cutoff
year; the weights depend on the birthdate distribution in the year.
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Sharp Design - Estimation and Inference

Measurement error may lead to irregular support of X , e.g.,
discreteness, and loss of point identification.

Use bias-aware or "honest" inference (Armstrong and Kolesár, 2018,
2020 and Kolesár and Rothe, 2018):

CI with level 1− α:

τ̂ ± cvα (B(τ̂)/σ̂(τ̂)) · σ̂(τ̂),

where B(τ̂) is the bound on the conditional (on X) finite-sample bias
of τ̂, and cvα(t) is the 1− α quantile of a folded normal distribution
|N (t, 1) |.
B(τ̂) is obtained by assuming g has a second derivative bounded in
absolute value by M.

Valid for any sequence of bandwidths (incl. fixed ones), partial
identification of τ, and irregular support of X .
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Fuzzy Design - Assumptions

T (z), z = 0, 1, are the potential treatments. C denotes the event
T (1) > T (0).

Assumption F1 P (T (1) ≥ T (0)|X = 0) = 1 and P (C|X = 0) > 0

Assumption F2 E [T (z) |X = x ] and E [Y (T (z)) |X = x ], z = 0, 1, are
continuous at 0.

F1 imposes monotonicity and non-zero discontinuity in the first stage.

F2 imposes smoothness on the conditional means of potential
treatments and reduced-form potential outcomes given X .
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Fuzzy Design - Assumptions

Assumption F3 E [Y (1)− Y (0) |C,X ∗ = x ,X = 0] =
E [Y (1)− Y (0) |C,X ∗ = x ] and
Pr (C|X ∗ = x ,X = 0) = Pr (C|X ∗ = x).

F3 requires that once conditional on the true X ∗, e has no effects on
the compliance probability and the ATE for compliers.

F3 holds if e is rounding error or more generally e is differentiable,
i.e., e ⊥ {Y (1) ,Y (0) ,T (1) ,T (0)} |X ∗.
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Fuzzy Design - Main Result

Let p (x) = E [T |X = x ].

Lemma (2.2)
Suppose that conditions C1, F1, and F2 hold. Then

τF :=E [Y (1)− Y (0) | C,X = 0] =
limx↓0 g(x)− limx↑0 g(x)
limx↓0 p(x)− limx↑0 p(x)

.

If, in addition, condition F3 holds, then τF =
∫

τ∗F (e)ω(e)dFe |X (e | 0),
where τ∗F (x):=E [Y (1)− Y (0) | C,X ∗ = x ], and
ω(e) = P (C|X ∗=e)∫

P (C|X ∗=e)dFe |X (e |0)
.
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Estimation and Inference - Fuzzy Design

Use the bias-aware AR inference (Noack and Rothe,2022).

Analogous to the AR confidence set in the IV literature.

Can test the hypothesis H0 : τF = τF ,0 by checking whether 0 is in
the sharp RDD honest CI using Y − τF ,0T as the outcome. The
confidence set for τF is constructed by collecting all values of τF ,0
that are not rejected.
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Empirical Application

Estimate the impact of preregistration on youth turnout in an election
(Holbein and Hillygus, 2016).

T = an indicator for preregistration or not in 2008.

Y = an indicator for voting in the 2012 election.

Z = whether one was born after Nov. 4, 1990.

X ∗ = proximity to the eligibility cutoff in days (based on birth date).

X = proximity to the eligibility cutoff in months (based on birth month).

Sample: individuals born within six months of the eligibility cutoff;
186,575 observations.
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(a): Proximity in days (b): Proximity in months
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Figure 1: Effect of proximity on preregistering.

Notes: In panel (a), proximity is measured in days, and each point corresponds to an average of 1,000
individuals. In panel (b), proximity is measured in months, and each point corresponds to an average across
all individuals born in a given month.

by month of birth alone (see Remark 2). We show that, consistent with the discussion in

Remarks 1 and 4, (i) using proximity in days vs months yields different estimates, reflecting

the impact of the rounding error on the estimand, and (ii) using month of birth generally

leads to wider CIs.

We first visualize the two versions of the RD design. In each case, the sample size is

186,575, consisting of individuals born within 6 months of the eligibility cutoff. Figure 1

presents the first stage, plotting preregistration rate against proximity in days (panel (a))

or in months (panel (b)). For ineligible individuals, the preregistration rate is essentially

0, while for eligible individuals, the preregistration rate is downward slopping: those born

further away from the cutoff preregister with lower probability. There is a clear jump in the

registration rate at the eligibility threshold in either panel.

Figure 2 shows the reduced form, plotting the proportion who voted in the 2012 election

against proximity to eligibility. In both panels, there is a small jump in the voting probability

at the cutoff.

We use five specifications to compute the fuzzy RD estimator in eq. (7), the sharp RD

estimators of the first stage and reduced form effects, and the associated confidence intervals.

For ease of comparison across specifications, all specifications use a uniform kernel and local

linear regression (q = 1). The first specification follows Holbein and Hillygus (2016), and

uses bandwidth set to h = 60 days (or h = 2 months), and the confidence intervals to not
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Figure 2: Effect of proximity on voting.

Notes: In panel (a), proximity is measured in days, and each point corresponds to an average of 1,000
individuals. In panel (b), proximity is measured in months, and each point corresponds to an average across
all individuals born in a given month.

account for the potential bias of the estimator. The second specification differs only in that

it uses a slightly larger bandwidth, h = 90 days (or h = 3 months).21 The third specification

uses the robust bias correction (RBC) method of Calonico et al. (2014). For proximity in

days, we use the default “MSE optimal” bandwidth provided by their software package; for

proximity in months we use h = 3.22

The last two methods implement the bias-aware approach. We use confidence intervals

given in eq. (4) for the first stage and reduced form effects; for inference on the fuzzy RD

estimand, we use the Noack and Rothe (2021) construction. Implementing these methods

requires a choice of smoothness bounds for the first stage (Mt) and the reduced form (My).

The fourth specification uses a rule of thumb (ROT) proposed by Armstrong and Kolesár

(2020), which fits a global quartic regression on either side of the cutoff, and computes the

largest (in absolute value) second derivative of the fitted line. The fifth specification uses

the ROT of Imbens and Wager (2019), which uses a global quadratic regression instead, and,

additionally, multiplies the largest second derivative of the fitted line by some moderate fac-

21These specifications can be interpreted as imposing a parametric linear functional form inside the esti-
mation window. Alternatively, one can justify them by an “undersmoothing” argument: the specifications
implicitly assume that the constants My and Mt are small enough so that the bias is negligible at these
bandwidth choices.

22The formal arguments justifying this method and the default bandwidth selector require the running
variable to be continuous, which is technically not the case in either design. When proximity is measured in
months, this causes issues implementation issues with the default “MSE optimal” bandwidth calculations.
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Table 1: First stage estimates: effect of eligibility on preregistration.

OLS RBC Bias-aware inference

(1) (2) (3) (4) (5)

Panel A: Proximity in days

Estimate 0.384 0.379 0.393 0.396 0.381

SE 0.006 0.005 0.008 0.009 0.005

95% CI (0.373, 0.396) (0.370, 0.388) (0.378, 0.409) (0.377, 0.414) (0.371, 0.391)

Bandwidth 60 90 43 28 86

Eff. obs. 63, 220 94, 118 43, 538 28, 274 89, 776

Rescaled Mt 1.015 0.061

Panel B: Proximity in months

Estimate 0.365 0.363 0.368 0.365 0.365

SE 0.009 0.006 0.017 0.009 0.009

95% CI (0.348, 0.382) (0.351, 0.375) (0.335, 0.402) (0.303, 0.428) (0.345, 0.385)

Bandwidth 2 3 3 2 2

Eff. obs. 64, 011 94, 662 94, 662 64, 011 64, 011

Rescaled Mt 0.865 0.092

Notes: Column (1) uses local linear regression with bandwidth equal to 60 days (panel A) or 2 months
(panel B), without any bias corrections. Column (2) is analogous, but uses bandwidth equal to 90 days or 3
months. Column (3) uses the RBC procedure, with the default “MSE optimal” bandwidth in panel A, and
bandwidth equal to 3 months in panel B. Columns (4) and (5) report bias-aware confidence intervals, with
bandwidth chosen to minimize the worst-case MSE. Column (4) uses the ROT of Armstrong and Kolesár
(2020) to choose the smoothness constant Mt, while column (5) uses the ROT of Imbens and Wager (2019).
Eff. obs refers to the number of observations inside the estimation window. The smoothness constants are
reported after rescaling the running variable to have support [−1, 1].

Table 3 presents the fuzzy RD estimates of the effect of preregistration on voting. When

eligibility is measured in months, the smaller first stage estimates in panel B of Table 1

translate to larger estimates of the effect of preregistration on voting, around 10%, compared

to 7–8% when eligibility is measured in days. When eligibility is measured in months, the

fuzzy RD estimand, τF , is the ATE for compliers born in November 1990, and thus averages

over individuals born further away from the cutoff than the estimand τ ∗F when eligibility

is measured in months, which corresponds to the ATE for compliers born on November

4, 1990. If the treatment effect for compliers born x days from the eligibility threshold,

τ ∗F (x) = E[Y (1)−Y (0) | C, X∗ = x], is increasing in x, then τF will be larger than τ ∗F , which

is consistent with the results in Table 3. However, the bias-aware confidence intervals are

fairly wide, and also consistent with τ ∗F (x) being constant. As discussed in Remark 1, the
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Table 3: Fuzzy RD estimates of the effect of preregistration on voting.

OLS RBC Bias-aware inference

(1) (2) (3) (4) (5)

Panel A: Proximity in days

Estimate 0.073 0.072 0.076 0.080 0.074

SE 0.021 0.018 0.032 0.031 0.018

95% CI (0.031, 0.114) (0.037, 0.106) (0.013, 0.139) (0.012, 0.143) (0.034, 0.122)

Bandwidth 60 90 36 29 83

Eff. obs. 63, 220 94, 118 35, 785 29, 285 86, 881

Rescaled My 1.401 0.099

Rescaled Mt 1.015 0.061

Panel B: Proximity in months

Estimate 0.101 0.094 0.113 0.101 0.094

SE 0.035 0.024 0.068 0.035 0.024

95% CI (0.034, 0.169) (0.047, 0.141) (−0.020, 0.246) (−0.268, 0.505) (0.023, 0.180)

Bandwidth 2 3 3 2 3

Eff. obs. 64, 011 94, 662 94, 662 64, 011 94, 662

Rescaled My 1.818 0.121

Rescaled Mt 0.865 0.092

Notes: See Table 1.

illustrate this point in an empirical application.
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Empirical Application - Summary

1. RDD estimates using date vs. month of birth yield different estimates,
reflecting the impact of the rounding error on the estimand.

. The former captures the ATE of compliers born on the cutoff date,
while the latter captures the ATE of compliers born in the cutoff
month.

. The jump in the preregistration probability is smaller when using birth
month, capturing the lower preregistration probabilities among those
born further away from the eligibility cutoff; this further translates into
a slightly larger fuzzy RDD estimate.

2. Using month of birth generally leads to wider CIs.
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Conclusion

Measurement error - especially in the form of coarsening or rounding -
is common in RDD applications.

RDD with a mismeasured running variable can provide inference for a
well-defined causal object.

Care needs to be taken when interpreting the estimand.

Inference methods need to account for the potentially irregular
support of the running variable, and possible loss of point
identification - we recommend bias-aware inference.
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