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Motivation - Why should We Care about Measurement

Error?

Measurement error is common in empirical applications of RDD:

@ Surveyed 154 RDD papers published in 2005 - 2020 in the leading
journals - 27 feature a running variable measured with error; 23 use a
rounded or coarsened running variable.

@ In addition, many RDD applications use survey data, and hence are
subject to reporting/recall error (Pei and Shen, 2017; Davezies and Le
Barbanchon, 2017; Yu, 2013, Yanagi, 2015).

e E.g. self-reported income used as a running variable.

Dong & Kolesar (UCI & Princeton) RDD _ Measurement Error



Contributions

@ Show that under weak and interpretable conditions, RDD with a
mismeasured running variable is a valid design - it can provide
inference for a well-defined causal object.

@ lllustrate the proposed approach in an empirical application.
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Sharp Design - Notation

@ True running variable X™* is not observed; only observe X = X* — ¢,
where e is the measurement error.

e E.g., X* is birthdate; only observe X, month or year of birth. So
X =|X*| and e = X* — X.

e e can be discrete, continuous, or mixed; e may correspond to a
classical or Berkson measurement error.

e Z=1{X*>0}. Treatment T = Z.

@ Y is observed outcome; Y (t), t = 0,1 are potential outcomes.
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Sharp Design - Assumptions

Assumption C1 1{X > 0} = Z almost surely.

@ X correctly classifies the treatment assignment w. p. 1.

e E.g., C1 holds when X = | X*| e.g., month or year of birth, with an
integer RDD threshold.

@ More generally, C1 requires donut trimming, i.e., removing
observations with X € [—s1, sp) when e has a bounded support

[—s0, 51].
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Sharp Design - Assumptions

Assumption C2 g; (x):= E[Y (t)|X = x], t =0, 1, are continuous at 0.

@ C2is commonly assumed in practice.

e C2is weaker than the smoothness of g;" (x):= E[Y (t) |X* = x],
when a) F,|x (e|x) is smooth in x; and b)
g (X*, e):= E[Y (t)|X*, e] is smooth in e; Note
g (x) = Elgs (X°.¢) IX = x].

e a) and b) hold in the case of rounding error, but fail for heaping error.
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Sharp Design - Assumptions

Assumption C3 E[Y (1) = Y (0) | X* =x,X =0] =
E[Y (1) =Y (0)|X* = x].

@ (C3 requires that once conditional on the true X*, rounding error e
does not affect the ATE at X = 0.

@ C3 holds when e is rounding error, or more generally whenever e is
non-differential, i.e., e L {Y (0), Y (1)} |X*, which is commonly
assumed in the literature.
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Sharp Design - Main Result

Let T*(x):=E[Y (1) — Y(0) | X* = x].

Lemma (2.1)

Suppose that T = Z and conditions C1 and C2 hold. Then the jump in
the conditional mean function g(x):=E[Y | X = x] at 0 identifies the
ATE for units with X = 0,

e VO) | X =T = el lngld: (1)

If, in addition, condition C3 holds, then

T_/ dF.x (e | 0),

where F,|x (e | x) is the conditional distribution of e = X* — X given
X = x.

Dong & Kolesar (UCI & Princeton) RDD_ Measurement Error 8 /21



Sharp Design - Comparison of Causal Parameters

e T":=E[Y(1) — Y(0) | X* = 0] is the ATE for units with X* = 0.

e T:=E[Y(1) — Y(0) | X = 0] is the ATE for units with X =0, or a
weighted average of the ATEs given X* for units at the mismeasured
cell at X = 0.

Example: X* = birthdate, observe X = year of birth.

@ T*: the ATE for individuals born on the cutoff date:

o T: the ATE for individuals born in the cutoff year, or a weighted
average of the ATEs for individuals born on each day within the cutoff
year; the weights depend on the birthdate distribution in the year.
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Sharp Design - Estimation and Inference

@ Measurement error may lead to irregular support of X, e.g.,
discreteness, and loss of point identification.

@ Use bias-aware or "honest" inference (Armstrong and Kolesar, 2018,
2020 and Kolesar and Rothe, 2018):

o Cl with level 1 — a:
Ttev (B(T)/6(1))-6(1),

where B(1) is the bound on the conditional (on X) finite-sample bias
of T, and cv,(t) is the 1 — & quantile of a folded normal distribution
IN(t,1)].

o B(%) is obtained by assuming g has a second derivative bounded in
absolute value by M.

o Valid for any sequence of bandwidths (incl. fixed ones), partial
identification of T, and irregular support of X.
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Fuzzy Design - Assumptions

T (z), z=0,1, are the potential treatments. € denotes the event
T(1)> T(0).

Assumption F1 P (T(1) > T(0)|X =0)=1and P(€|X =0) >0
Assumption F2 E [T (z)|X = x] and E[Y (T (2)) | X =x], z=0,1, are
continuous at 0.
@ F1 imposes monotonicity and non-zero discontinuity in the first stage.

@ F2 imposes smoothness on the conditional means of potential
treatments and reduced-form potential outcomes given X.
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Fuzzy Design - Assumptions

Assumption F3 E[Y (1) = Y (0)|€, X* = x,X = 0] =
E[Y (1) - Y (0)|¢, X* = x] and
Pr (€| X* = x, X =0) = Pr (€| X* = x).

@ F3 requires that once conditional on the true X*, e has no effects on
the compliance probability and the ATE for compliers.

@ F3 holds if e is rounding error or more generally e is differentiable,
e, e L{Y(1),Y(0), T (1), T(0)}|X*.
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Fuzzy Design - Main Result

Let p(x) = E[T|X = x].

Lemma (2.2)

Suppose that conditions C1, F1, and F2 hold. Then

limy 0 g(x) — limypo g(x)
”meO ,D(X) - IimxTO p(X) .

Tr=E[Y (1) = Y (0) | €, X =0] =

If, in addition, condition F3 holds, then Tr = [ T;(e)w(e)dF,x (e | 0),
where T (x):=E[Y (1) — Y(0) | €, X* = x|, and

T pgxe=e)
w(€) = TPER et
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Estimation and Inference - Fuzzy Design

Use the bias-aware AR inference (Noack and Rothe,2022).

@ Analogous to the AR confidence set in the IV literature.

o Can test the hypothesis Hy: Tr = Tf o by checking whether 0 is in
the sharp RDD honest Cl using Y — Tro T as the outcome. The
confidence set for T¢ is constructed by collecting all values of Tr g
that are not rejected.
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Empirical Application

Estimate the impact of preregistration on youth turnout in an election
(Holbein and Hillygus, 2016).

T = an indicator for preregistration or not in 2008.

Y = an indicator for voting in the 2012 election.

Z = whether one was born after Nov. 4, 1990.

X* = proximity to the eligibility cutoff in days (based on birth date).

X = proximity to the eligibility cutoff in months (based on birth month).

Sample: individuals born within six months of the eligibility cutoff;
186,575 observations.
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(a): Proximity in days (b): Proximity in months

0.4 W
T
5 S [
= 0.3 S, o o
o= O b s'..::.';.:.' ‘
%O Y ®
5 2 .
—
0.2+
]
o
2
—
2,0.11
o
o
o

0.0- 000000

-100 0 100 6 -3 0 3 6

Proximity to eligibility
Figure 1: Effect of proximity on preregistering.

Notes: In panel (a), proximity is measured in days, and each point corresponds to an average of 1,000
individuals. In panel (b), proximity is measured in months, and each point corresponds to an average across
all individuals born in a given month.
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Figure 2: Effect of proximity on voting.

Notes: In panel (a), proximity is measured in days, and each point corresponds to an average of 1,000

individuals. In panel (b), proximity is measured in months, and each point corresponds to an average across
all individuals born in a given month.



Table 1: First stage estimates: effect of eligibility on preregistration.

OLS RBC Bias-aware inference
(1) (2) (3) (4) (5)
Panel A: Proximity in days
Estimate 0.384 0.379 0.393 0.396 0.381
SE 0.006 0.005 0.008 0.009 0.005
95% CI (0.373,0.396) (0.370,0.388) (0.378,0.409) (0.377,0.414) (0.371,0.391)
Bandwidth 60 90 43 28 86
Eff. obs. 63,220 94,118 43,538 28,274 89,776
Rescaled M; 1.015 0.061

Panel B: Proximity in months

Estimate 0.365 0.363 0.368 0.365 0.365

SE 0.009 0.006 0.017 0.009 0.009
95% CI (0.348,0.382)  (0.351,0.375) (0.335,0.402) (0.303,0.428) (0.345,0.385)
Bandwidth 2 3 3 2 2

Eff. obs. 64,011 94, 662 94, 662 64,011 64,011

Rescaled M; 0.865 0.092




Table 3: Fuzzy RD estimates of the effect of preregistration on voting.

OLS RBC Bias-aware inference
(1) (2) (3) (4) (5)
Panel A: Proximity in days
Estimate 0.073 0.072 0.076 0.080 0.074
SE 0.021 0.018 0.032 0.031 0.018
95% CI (0.031,0.114)  (0.037,0.106)  (0.013,0.139)  (0.012,0.143)  (0.034,0.122)
Bandwidth 60 90 36 29 83
Eff. obs. 63,220 94,118 35,785 29,285 86, 881
Rescaled M, 1.401 0.099
Rescaled M; 1.015 0.061

Panel B: Proximity in months

Estimate 0.101 0.094 0.113 0.101 0.094

SE 0.035 0.024 0.068 0.035 0.024
95% CI (0.034,0.169) (0.047,0.141) (—0.020,0.246) (—0.268,0.505) (0.023,0.180)
Bandwidth 2 3 3 2 3

Eff. obs. 64,011 94, 662 94,662 64,011 94,662
Rescaled M, 1.818 0.121

Rescaled M; 0.865 0.092



https://doi.org/10.1162/qjec.2010.125.2.591
https://doi.org/10.1093/qje/qjr037

Empirical Application - Summary

1. RDD estimates using date vs. month of birth yield different estimates,
reflecting the impact of the rounding error on the estimand.

. The former captures the ATE of compliers born on the cutoff date,
while the latter captures the ATE of compliers born in the cutoff
month.

. The jump in the preregistration probability is smaller when using birth
month, capturing the lower preregistration probabilities among those
born further away from the eligibility cutoff; this further translates into
a slightly larger fuzzy RDD estimate.

2. Using month of birth generally leads to wider Cls.
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Conclusion

@ Measurement error - especially in the form of coarsening or rounding -
is common in RDD applications.

@ RDD with a mismeasured running variable can provide inference for a
well-defined causal object.

o Care needs to be taken when interpreting the estimand.

@ Inference methods need to account for the potentially irregular
support of the running variable, and possible loss of point
identification - we recommend bias-aware inference.
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