The Fiscal Channel of Quantitative Easing¹

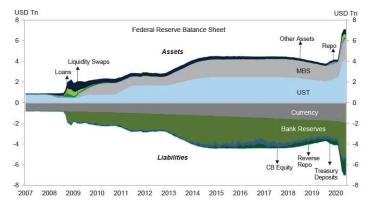
Pau Belda² Eddie Gerba³ Luis E. Rojas²

2. UAB & BSE | 3. BoE & LSE.

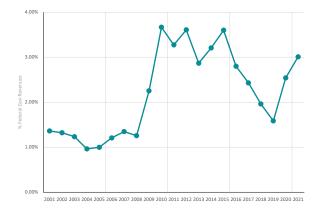
¹DISCLAIMER: The views expressed here don't represent, in any way, those of the Bank of England, PRA, or any of its' committees.

What is QE?

- * Large scale asset purchases financed by interest-paying reserves.
- * Goal: \downarrow long term interest rates $\Rightarrow \uparrow$ (inflation, output).
- * Massive expansion CB's balance sheet.

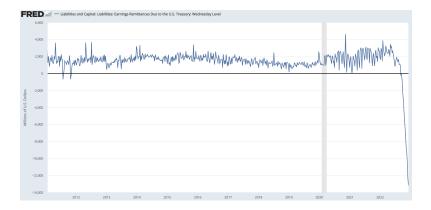


QE affects the Government's budget via CB's transfers



Other fiscal consequences

QE can generate volatile remittances to the Government



Remittances and fiscal policy

We study an economy where a government without commitment strategically decides what to do with the profits/losses of a large CB balance sheet, where:

Remittances and fiscal policy

We study an economy where a government without commitment strategically decides what to do with the profits/losses of a large CB balance sheet, where:

1. Government expenditures are productive and not perfectly substitutable with private expenditures.

Remittances and fiscal policy

We study an economy where a government without commitment strategically decides what to do with the profits/losses of a large CB balance sheet, where:

- 1. Government expenditures are productive and not perfectly substitutable with private expenditures.
 - 2. Transfers from households to the government are costly.

Remittances and fiscal policy

We study an economy where a government without commitment strategically decides what to do with the profits/losses of a large CB balance sheet, where:

- 1. Government expenditures are productive and not perfectly substitutable with private expenditures.
 - 2. Transfers from households to the government are costly.

 \Downarrow

The size of the CB balance sheet performs risk-shifting from private to government expenditures.

Central Bank's power to affect **asset prices** via QE depends on the **associated fiscal policy**. (Wallace, 1981; Leeper & Leith, 2016; Benigno & Nisticò, 2021)

Central Bank's power to affect **asset prices** via QE depends on the **associated fiscal policy**. (Wallace, 1981; Leeper & Leith, 2016; Benigno & Nisticò, 2021)

> Common assumption: **"Unchanged Fiscal Policy**". (Wallace, 1981)

Central Bank's power to affect **asset prices** via QE depends on the **associated fiscal policy**. (Wallace, 1981; Leeper & Leith, 2016; Benigno & Nisticò, 2021)

> Common assumption: "Unchanged Fiscal Policy".

> > a) G does not react.

b) T adjustments \Rightarrow unchanged Deficits.

c) Income distribution is not altered.

Central Bank's power to affect **asset prices** via QE depends on the **associated fiscal policy**. (Wallace, 1981; Leeper & Leith, 2016; Benigno & Nisticò, 2021)

> Common assumption: "Unchanged Fiscal Policy".

> > a) G does not react.

b) T adjustments \Rightarrow unchanged Deficits.

c) Income distribution is not altered.

₩

Key piece of QE's Irrelevance theorems.

How should a **rational Government** react to QE transfers?

"Unchanged fiscal policy" is **not optimal**...

How should a **rational Government** react to QE transfers?

"Unchanged fiscal policy" is not optimal...

1. ...if costly T and productive G.

 \Rightarrow Adjustment via T-G combinations.

How should a **rational Government** react to QE transfers?

"Unchanged fiscal policy" is not optimal...

1. ...if costly T and productive G.

 \Rightarrow Adjustment via T-G combinations.

2. ...if limited asset market participation.

 \Rightarrow Redistribute towards non-investors ($\approx \tau$).

How should a **rational Government** react to QE transfers?

"Unchanged fiscal policy" is not optimal...

1. ...if costly T and productive G.

 \Rightarrow Adjustment via T-G combinations.

2. ...if limited asset market participation.

 \Rightarrow Redistribute towards non-investors ($\approx \tau$).

₩

A rational Government would embark on **real resource reallocation**.

- 1. Existing **policy** actions / proposals linking G to QE: + FAST Act, 2015; NDA Act, 2021.
 - + Green QE; People's QE.

1. Existing **policy** actions / proposals linking G to QE: + FAST Act, 2015; NDA Act, 2021.

+ Green QE; People's QE.

- 2. New uses of QE aimed explicitly at reallocating resources
 - + Green corporate bonds programs (BoE, ECB).
 - + Transmission Policy Instrument (ECB).

 Existing policy actions / proposals linking G to QE: + FAST Act, 2015; NDA Act, 2021.

+ Green QE; People's QE.

- 2. New uses of QE aimed explicitly at reallocating resources
 - + Green corporate bonds programs (BoE, ECB).
 - + Transmission Policy Instrument (ECB).
- 3. Evaluate fiscal effects of raising interest rates/QT.

1.- QE with costly T and productive G

2.- QE with limited participation

The tool

The smallest possible model:

- * A real and stochastic endowment economy.
- * A representative investor.
- * Rational Expectations.
- * Incomplete markets: a risky asset $\{S, P, D\}$; a safe asset $\{B, 1/R, 1\}$.
- * 2 periods t = 0, 1.
- * Economic policy: $\{G, T, B, R, Q\}$.
- * Tax cost function $H: T \rightarrow \mathbb{R}$, with 1 > H' > 0 (Bohn, 1992).
- * Welfare: $U = \mathbb{E}_0\{u(C_0) + \delta[yu(C_1) + (1 y)v(G_1)]\}.$

Investor's problem

Equilibrium and Economic Policy

A **Competitive Equilibrium** is an asset price *P*, allocations $\{C_0, C_1, S, B^i\}$ and policies $\{G_0, G_1, T_0, T_1, B, R, QE\}$ that satisfy:

- 1. Investor's Euler Equations (2).
- 2. Investor's budget constraints (2).
- 3. Consolidated gov budget constraints (2).
- 4. Assets market clearing (2).

▶ Equations

Equilibrium and Economic Policy

A **Competitive Equilibrium** is an asset price *P*, allocations $\{C_0, C_1, S, B^i\}$ and policies $\{G_0, G_1, T_0, T_1, B, R, QE\}$ that satisfy:

- 1. Investor's Euler Equations (2).
- 2. Investor's budget constraints (2).
- 3. Consolidated gov budget constraints (2).
- 4. Assets market clearing (2).

* 12 endogenous variables; 8 equations.

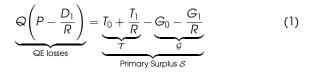
 \Downarrow

Economic policy needs to specify 4 variables out of $\{G_0, G_1, T_0, T_1, B, R, QE\}$.

* Quantitative Easing: $\{QE, B\} = \{Q, QPR\}.$

Unchanged fiscal policy

- * Institutional framework: fiscal support; passive fiscal policy.
- * Intertemporal Gov Budget Constraint:



Unchanged fiscal policy

- * Institutional framework: fiscal support; passive fiscal policy.
- * Intertemporal Gov Budget Constraint:

$$\underbrace{Q\left(P - \frac{D_1}{R}\right)}_{\text{QE losses}} = \underbrace{T_0 + \frac{T_1}{R}}_{\text{Primary Surplus }S} \underbrace{-\frac{G_0 - G_1}{R}}_{\text{Primary Surplus }S}$$
(1)

* Common assumption: lump-sum T; exogenous G.

$$\mathcal{S}(\mathbf{Q},\cdot) = \mathcal{T}(\mathbf{Q},\cdot) \tag{2}$$

* WLOG suppose
$$\{G_0, G_1, T_0, T_1\} = \{0, 0, 0, -\underbrace{\mathbf{Q}(\mathbf{D}_1 - \mathbf{PR})}_{\text{QE gains}}\}$$

Unchanged fiscal policy

- * Institutional framework: fiscal support; passive fiscal policy.
- * Intertemporal Gov Budget Constraint:

$$\underbrace{Q\left(P - \frac{D_1}{R}\right)}_{QE \text{ losses}} = \underbrace{T_0 + \frac{T_1}{R}}_{Primary \text{ Surplus } S} \underbrace{G_0 - \frac{G_1}{R}}_{Primary \text{ Surplus } S}$$
(1)

* Common assumption: lump-sum T; exogenous G.

$$S(\mathbf{Q}, \cdot) = \mathcal{T}(\mathbf{Q}, \cdot)$$
 (2)

* WLOG suppose
$$\{G_0, G_1, T_0, T_1\} = \{0, 0, 0, -\underbrace{\mathbf{Q}(\mathbf{D}_1 - \mathbf{PR})}_{\text{QE gains}}\}$$

Is it the best possible reaction?

* Let $\{T_0, T_1, G_0, G_1\} = \{0, T, 0, G\}$... How should a **government** set (T, G)?

* Let $\{T_0, T_1, G_0, G_1\} = \{0, T, 0, G\}$... How should a **government** set (T, G)?

$$\max_{\{T,G\}} U = [yu(C_1) + (1 - y)v(G)]$$
(3)
s.t. $C_1 = (1 - Q)D_1 + QRP - T - H(T)$
 $G = Q(D_1 - RP) + T$

* Let $\{T_0, T_1, G_0, G_1\} = \{0, T, 0, G\}$... How should a **government** set (T, G)?

$$\max_{\{T,G\}} U = [yu(C_1) + (1 - y)v(G)]$$
(3)
s.t. $C_1 = (1 - Q)D_1 + QRP - T - H(T)$
 $G = Q(D_1 - RP) + T$

* **Optimality** condition:

$$\underbrace{\mathcal{Y}[u'(D_1 - X - T - H)(1 + H'(T))]}_{\text{Tax Mg cost}} = \underbrace{(1 - \mathcal{Y})[v'(T + X)]}_{\text{Tax Mg gain}}$$
(4)

with $\mathbf{X} = Q(D_1 - RP)$ being **QE gains** (CB transfers).

* Let $\{T_0, T_1, G_0, G_1\} = \{0, T, 0, G\}$... How should a **government** set (T, G)?

$$\max_{\{T,G\}} U = [yu(C_1) + (1 - y)v(G)]$$
(3)
s.t. $C_1 = (1 - Q)D_1 + QRP - T - H(T)$
 $G = Q(D_1 - RP) + T$

* **Optimality** condition:

$$\underbrace{y[u'(D_1 - X - T - H)(1 + H'(T))]}_{\text{Tax Mg cost}} = \underbrace{(1 - y)[v'(T + X)]}_{\text{Tax Mg gain}}$$
(4)

with $\mathbf{X} = Q(D_1 - RP)$ being **QE gains** (CB transfers).

 \downarrow X has an income effect as it lower the tax distortions.

QE becomes **effective** with an **optimal** fiscal reaction.

QE becomes **effective** with an **optimal** fiscal reaction.

* Goods market clearing:

$$\{C_0, C_1\} = \{D_0, D_1 - H(T) - g(Q)\}$$

QE becomes **effective** with an **optimal** fiscal reaction.

* Goods market clearing:

$$\{C_0, C_1\} = \{D_0, D_1 - H(T) - g(Q)\}$$

* Stochastic Discount Factor

$$\mathbb{E}_0\left[\delta y \frac{u'(C_1)}{u'(C_0)}\right] = \mathbb{E}_0\left[\delta y \frac{u'[D_1 - H(T) - g(Q)]}{u'(D_0)}\right]$$

(5)

QE becomes **effective** with an **optimal** fiscal reaction.

* Goods market clearing:

$$\{C_0, C_1\} = \{D_0, D_1 - H(T) - g(Q)\}$$

* Stochastic Discount Factor

$$\mathbb{E}_0\left[\delta \gamma \frac{u'(C_1)}{u'(C_0)}\right] = \mathbb{E}_0\left[\delta \gamma \frac{u'[D_1 - H(T) - g(Q)]}{u'(D_0)}\right]$$
(5)

- 1. H' = 0 or $y = 1 \Rightarrow$ Irrelevance.
- 2. H' > 0 and $y < 1 \Rightarrow$ **Relevance**.

Does it matter?

QE becomes **effective** with an **optimal** fiscal reaction.

* Goods market clearing:

$$\{C_0, C_1\} = \{D_0, D_1 - H(T) - g(Q)\}$$

* Stochastic Discount Factor

$$\mathbb{E}_{0}\left[\delta \gamma \frac{u'(C_{1})}{u'(C_{0})}\right] = \mathbb{E}_{0}\left[\delta \gamma \frac{u'[D_{1}-H(T)-g(Q)]}{u'(D_{0})}\right]$$
(5)

Cases:

1. H' = 0 or $y = 1 \Rightarrow$ Irrelevance.

2. H' > 0 and $y < 1 \Rightarrow$ **Relevance**.

Higher Q implies larger consumption volatility ↓ General Asset Price Inflation

Asset demand inelasticity makes QE relevant

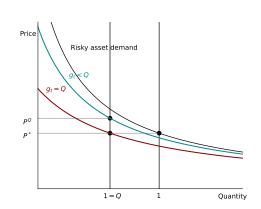
$$g'(Q) = 0 \qquad \Rightarrow \quad \frac{\partial C_0^*}{\partial Q} = 0; \qquad \frac{\partial S^*}{\partial Q} = -1$$
$$g'(Q) > 0 \qquad \Rightarrow \quad \frac{\partial C_0^*}{\partial Q} < 0; \qquad 0 > \frac{\partial S^*}{\partial Q} > -1$$

Some evidence Closed form

Asset demand inelasticity makes QE relevant

$$g'(Q) = 0 \qquad \Rightarrow \quad \frac{\partial C_0^*}{\partial Q} = 0; \qquad \frac{\partial S^*}{\partial Q} = -1$$
$$g'(Q) > 0 \qquad \Rightarrow \quad \frac{\partial C_0^*}{\partial Q} < 0; \qquad 0 > \frac{\partial S^*}{\partial Q} > -1$$

Some evidence Closed form



1.- QE with costly T and productive G

2.- QE with limited participation

Redistribution via QE

- * 2 agents: investor & hand-to-mouth worker.
- * Quantitative Easing: $\{QE, B\} = \{Q, QPR\}$
- * Fiscal Policy: $\{T_0, T_1, G_0, G_1\} = \{0, QPR, 0, QD_1\}.$
- * Period 1 budget constraints:

Investor:
$$C_1 + T_1 = SD_1 + B \Rightarrow C_1 = D_1 - \mathbf{QD}_1$$
 (6)

Worker:
$$C_1^w = W + G_1 \implies C_1^w = W_1 + \mathbf{Q}\mathbf{D}_1$$
 (7)

* Asset price:

$$P^{Q} = \mathbb{E}_{0}\left[\delta \frac{u'((1-Q)D_{1})}{u'(D_{0})}D_{1}\right]$$
(8)

Redistribution via au

- * Quantitative Easing: $\{QE, B\} = \{0, 0\}$
- * Fiscal Policy: $\{T_0, T_1, G_0, G_1\} = \{0, \tau D_1, 0, \tau D_1\}.$
- * Period 1 budget constraints:

Investor:
$$C_1 + \tau D_1 = SD_1 + B \Rightarrow C_1 = D_1 - \tau D_1$$
 (9)

Worker:
$$C_1^w = W + G_1 \implies C_1^w = W_1 + \tau \boldsymbol{D}_1$$
 (10)

* Asset price

$$P^{\tau} = \mathbb{E}_0 \left[\delta \frac{u'((1-\tau)D_1)}{u'(D_0)} (1-\tau)D_1 \right]$$
(11)

* Relative asset price policy-wise:

$$\frac{P^{\tau}}{P^{Q}} = (1-\tau) \frac{\mathbb{E}_{0} \left[\frac{u'((1-\tau)D_{1})}{u'(D_{0})} D_{1} \right]}{\mathbb{E}_{0} \left[\frac{u'((1-Q)D_{1})}{u'(D_{0})} D_{1} \right]} \Rightarrow \frac{P^{\tau}}{P^{Q}} = 1-\tau \text{ for } \tau = Q$$

$$\downarrow$$

QE: Redistribution with higher to asset prices.

What would the optimal redistribution be?

* Fiscal authority problem:

$$\max_{\{I,G,G^W\}} \omega U' + (1-\omega)U^W$$
(12)

s.t. Competitive Equilibrium, given asset prices
$$U' = \mathbb{E}_0 \Big\{ u(C_0) + \delta [yu(C_1) + (1-y)v(G)] \Big\}$$

$$U^W = \mathbb{E}_0 \Big\{ u(C_0^W) + \delta [yu(C_1^W) + (1-y)v(G^W)] \Big\}$$

with

What would the optimal redistribution be?

* Fiscal authority problem:

$$\max_{\{I,G,G^W\}} \omega U^I + (1-\omega)U^W$$
(12)

s.t. Competitive Equilibrium, given asset prices

with

$$U^{l} = \mathbb{E}_{0} \Big\{ u(C_{0}) + \delta \big[yu(C_{1}) + (1 - y)v(G) \big] \Big\}$$
$$U^{W} = \mathbb{E}_{0} \Big\{ u(C_{0}^{W}) + \delta \big[yu(C_{1}^{W}) + (1 - y)v(G^{W}) \big] \Big\}$$

* **Optimality** conditions:

$$\underbrace{\mathcal{Y}\mathbb{E}_{0}[u'(D_{1}-X-T-H)(1+H'(T))]}_{\text{Tax Mg cost}} = \underbrace{(1-\gamma)\mathbb{E}_{0}[v'(G)]}_{\text{Tax Mg gain}}$$
(13)
$$\omega\mathbb{E}_{0}[v'(G)] = (1-\omega)\mathbb{E}_{0}[v'(G^{W})]$$
(14)

An example

* Optimal taxes (from investor):

$$T^* = aD_1 + (b - 1)X + yG^W$$
(15)

* Optimal investor preferred-G:

$$G^* = \overline{\omega}(aD_1 + bX) \tag{16}$$

* Optimal worker preferred-G:

$$G^{W*} = (\overline{1-\omega})(aD_1 + bX) \tag{17}$$

with

$$\bar{x} = \frac{x}{\omega + (1 - y)(1 - \omega)}$$

* Equivalent to a tax on dividends...

$$\tau^* = \frac{(\overline{1-\omega})bX}{D_1} \tag{18}$$

* ... except asset prices are higher under QE

$$\frac{P^{\tau*}}{P^{Q}} = 1 - \tau^* \tag{19}$$

Conclusions

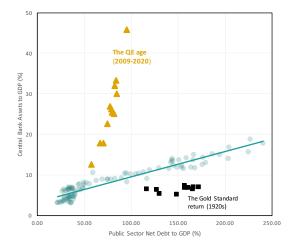
- 1. Important effects of QE on the **fiscal space**.
- 2. How this additional fiscal space is managed is key to determine the overall QE effects.
- 3. Literature: "**unchanged** fiscal policy" but... **not optimal** in relevant environments.
- 4. With optimal fiscal reaction: redistribute real resources.

↓ The **Fiscal Channel**.

- 5. Looking backward: how relevant was it?
- 6. Looking forward: **new uses** of QE exploiting it?

Additional Info

New Monetary Policy



QE influences the fiscal space decisively

Real government's budget constraint:

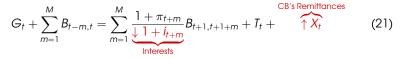
$$G_t + \sum_{m=1}^{M} B_{t-m,t} = \sum_{m=1}^{M} \frac{1 + \pi_{t+m}}{1 + i_{t+m}} B_{t+1,t+1+m} + T_t + X_t$$
(20)

QE influences the fiscal space decisively

Real government's budget constraint:

$$G_t + \sum_{m=1}^{M} B_{t-m,t} = \sum_{m=1}^{M} \frac{1 + \pi_{t+m}}{1 + i_{t+m}} B_{t+1,t+1+m} + T_t + X_t$$
(20)

QE's Direct Effect:

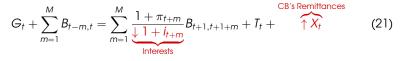


QE influences the fiscal space decisively

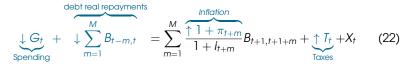
Real government's budget constraint:

$$G_t + \sum_{m=1}^{M} B_{t-m,t} = \sum_{m=1}^{M} \frac{1 + \pi_{t+m}}{1 + I_{t+m}} B_{t+1,t+1+m} + T_t + X_t$$
(20)

QE's Direct Effect:



QE's Indirect Effect:



Investor's program

s.t.

$$\max_{\{C_0, C_1, S, B\}} U = \mathbb{E}_0 \{ u(C_0) + \delta[yu(C_1) + (1 - y)v(G)] \}$$

$$C_0 + PS + \frac{B}{R} + T_0 + H(T_0) = (P + D_0)S_{-1}$$

$$C_1 + T_1 + H(T_1) = D_1S + B$$
• Back

Equilibrium

A **Competitive Equilibrium** is a vector of prices $\{P, R\}$, allocations $\{C_0, C_1, S, B'\}$ and policies $\{G_0, G_1, I_0, I_1, B, Q\}$ such that:

1. Investor's Euler Equations are satisfied:

$$P = \mathbb{E}_0\left[\delta y \frac{u'(C_1)}{u'(C_0)} D_1\right]$$
(24)

$$\frac{1}{R} = \mathbb{E}_0 \left[\delta \gamma \frac{u'(C_1)}{u'(C_0)} \right]$$
(25)

2. Investor's budget constraints:

$$C_0 + PS + \frac{B}{R} + T_0 + H(T_0) = (P + D_0)S_{-1}$$
 (26)

$$C_1 + T_1 + H(T_1) = D_1 S + B$$
(27)

3. Consolidated gov budget constraints

$$G_0 + QP = \frac{B}{R} + T_0 \tag{28}$$

$$G_1 + B = T_1 + QD_1$$
 (29)

4. Assets market clearing:

$$S + Q = 1; \quad B^i = B \tag{30}$$

Exogenous G is not optimal: proof (I)

* Optimality condition:

$$\underbrace{y \mathbb{E}_{0}[u'(D_{1} - X - T - H(T))(1 + H'(T))]}_{\text{Tax Mg cost}} = \underbrace{(1 - y) \mathbb{E}_{0}[v'(T + X)]}_{\text{Tax Mg gain}}$$
(31)

* To simplify, assume H involves no uncertainty. Then, without QE (i.e. X = 0):

$$\frac{(1-y)}{y(1+H'(I))} = \frac{\mathbb{E}_{0}[u'(D_{1}-I-H(I))]}{\mathbb{E}_{0}[v'(I)]}$$
(32)

- * Now, consider X > 0. Call \overline{I} the new tax level. If all the adjustment goes through taxes, $\overline{I} = I X$. That implies $\uparrow C_1$ since $C_1 = D_1 - X - (I - X) - H(I - X)$ and H' > 0.
- * $\uparrow C_1$ implies $\downarrow u'(\cdot)$ by the concavity of u. Then,

$$\frac{(1-\gamma)}{\gamma(1+H'(T))} = \frac{\mathbb{E}_0[u'(D_1-T-H(T-X)]}{\mathbb{E}_0[v'(T)]} \leq \frac{\mathbb{E}_0[u'(D_1-T-H(T))]}{\mathbb{E}_0[v'(T)]} = \frac{(1-\gamma)}{\gamma(1+H'(T))}$$
(33)

which is a contradiction. Hence, $\overline{T} = T - X$ cannot be optimal.

Exogenous G is not optimal: proof (II)

* Consider now all the adjustment going through G. Then, $\overline{I} = I$. By the concavity of u and v

$$\frac{(1-\gamma)}{y(1+H'(T))} = \frac{\mathbb{E}_0[u'(D_1-T-H(T)-X]}{\mathbb{E}_0[v'(T+X)]} \ge \frac{\mathbb{E}_0[u'(D_1-T-H(T))]}{\mathbb{E}_0[v'(T)]} = \frac{(1-\gamma)}{y(1+H'(T))}$$
(34)

which is another contradiction. Then, no tax adjustment cannot be optimal either.

* Hence, the optimal T* must lie somewhere in the middle, that is,

$$-1 < \frac{\partial T^*}{\partial X} < 0 \tag{35}$$

and then,

$$0 < \frac{\partial G^*}{\partial X} < 1 \tag{36}$$

since $\frac{\partial G^*}{\partial X} = 1 + \frac{\partial I^*}{\partial X}$. That completes the proof.

🕨 Back

Exogenous G is not optimal: an example

- * No uncertainty.
- * $u(\cdot) = v(\cdot) = ln(\cdot).$
- * Tax adjustment cost $H(T) = \alpha T$.
- * Then,

$$\boldsymbol{G}^* = \boldsymbol{a} \boldsymbol{D}_1 + \boldsymbol{b} \boldsymbol{X} = \bar{\boldsymbol{g}}(\boldsymbol{Q}) \tag{37}$$
with $\boldsymbol{a} = \frac{1-\boldsymbol{y}}{1+\alpha} > 0$ and $\boldsymbol{b} = 1 - \frac{1+\alpha\boldsymbol{y}}{1+\alpha} > 0.$

* Two tax policies:

Equilibrium taxes

Government:

$$G_0 + QP = \frac{B}{R} + T_0$$
$$0 + QP = QP + T_0 \Rightarrow T_0 = 0$$

$$G_1 + B = T_1 + QD_1$$
$$G(Q) + QPR = T_1 + QD_1 \implies T_1 = G(Q) + Q(RP - D_1)$$

Investor (taxes T_t^* that leave BC unchanged):

$$C_0 + PS + \frac{B}{R} + T_0 = (P + D_0)S_{-1}$$

$$C_0 + P(1 - Q) + QP + T_0 = (P + D_0) \Rightarrow T_0^* = 0$$

$$C_1 + T_1 = D_1S + B$$

$$C_1 + T_1 = D_1(1 - Q) + QPR \Rightarrow T_1^* = Q(PR - D_1)$$

Closed form solutions

* A particular reaction function

$$G_t = G(Q, \cdot) = (Q - g)D_t$$

Closed form solutions

* A particular reaction function

$$G_t = G(Q, \cdot) = (Q - g)D_t$$

* Stock equilibrium price

$$P^* = \delta \mathbb{E}_0 \left[\frac{C_0 + xG_0}{C_1 + xG_1} D_1 \right] = \frac{\delta D_0}{1 - (1 - x)(Q - g)}$$
(38)

since $C_1 + xG_1 = D_1[1 - (1 - x)(Q - g)].$

Closed form solutions

* A particular reaction function

$$G_t = G(Q, \cdot) = (Q - g)D_t$$

* Stock equilibrium price

$$P^* = \delta \mathbb{E}_0 \left[\frac{C_0 + xG_0}{C_1 + xG_1} D_1 \right] = \frac{\delta D_0}{1 - (1 - x)(Q - g)}$$
(38)

since $C_1 + xG_1 = D_1[1 - (1 - x)(Q - g)].$

* Stock demand

$$S^* = \frac{1}{P(1+\delta)} \left(\delta D_0 + [\delta(1-Q) + x(g-Q) - g]P \right)$$
(39)

QE and precautionary savings (I)

- * QE pass-through to taxes is a random variable $g_t \sim \mathcal{N}(Q, q)$.
- * Expected full pass-through (irrelevance), but some fiscal risk.
- * Bond's Euler Equation

$$u'(P_0(1-S_0-Q)+D_0) = \delta R \mathbb{E}_0[u'(D_1(S_0+g_1))]$$
(40)

* With convex marginal utility

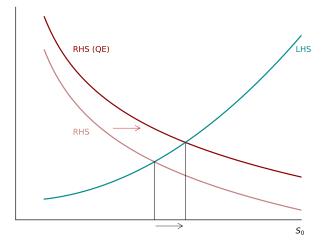
$$\mathbb{E}_{0}[u'(D_{1}(S_{0}+g_{1})] > \underbrace{\mathbb{E}_{0}[u'(D_{1}(S_{0}+\mathbb{E}_{0}(g_{1}))]}_{\text{With QE}} = \underbrace{\mathbb{E}_{0}[u'(D_{1}S_{0})]}_{\text{Without QE}}$$
(41)

* Marginal benefits of savings go up for precautionary motives:

$$\mathsf{QE:} \quad \uparrow \mathbb{E}_0[u'(D_1(S_0+g_1))] \quad \Rightarrow \ \uparrow S_0$$

▶ Back

QE and precautionary savings (II)



Euler Equations and asset pricing

- * 2 readings of the Euler Equation
 - 1. Consumption theory: given interest rates \Rightarrow use EE to determine $\{C_t,C_{t+1}\}$
 - 2. Asset pricing: given a consumption path \Rightarrow use EE to determine P_t .
- * Most QE literature, goes via 1. E.g. Harrison, 2017: Long rate equation

$$\mathbb{E}_t R_{L,t+1}^1 = \hat{R}_t - \tau_t$$

Consumption Euler Equation

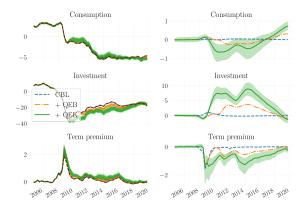
$$\hat{\boldsymbol{c}}_{t} = \mathbb{E}_{t}\hat{\boldsymbol{c}}_{t+1} - \sigma \left[\frac{1}{1+\delta}\hat{\boldsymbol{R}}_{t} + \frac{\delta}{1+\delta}\mathbb{E}_{t}\boldsymbol{R}_{L,t+1}^{1} - \mathbb{E}_{t}\boldsymbol{\pi}_{t+1}\right]$$
(42)

- * QE: $\uparrow \tau_t \Rightarrow \downarrow \mathbb{E}_t R^1_{L,t+1} \Rightarrow \uparrow \hat{c}_t$
- * We take the Asset pricing reading of EEs.
- * Question: $\tau_t = 0 \Rightarrow \mathbb{E}_t R^1_{L,t+1} = \hat{R}_t$. However, without log-lin

$$\mathbb{E}_{t}R_{L,t+1}^{1} = R_{t} - \frac{\mathbb{C}ov_{t}[u'(C_{t+1}), R_{L,t+1}^{1}]}{\mathbb{E}_{t}[u'(C_{t+1})]}$$

QE effects on consumption

* Boehl et al., 2021: \downarrow aggregate consumption = 0.7%.



Back intro Back

2 agents economy

* Investor's problem:

$$\max_{\{C_0, C_1, S_0\}} \mathbb{E}_0[log(C_0) + \delta log(C_1)]$$
(43)

s.t.

$$C_0 + P_0 S_0 = (P_0 + D_0) S_{-1}$$
(44)

$$C_1 = (1 - \tau) D_1 S_0 \tag{45}$$

* Worker's problem

$$\max_{\{C_0^w, C_1^w\}} \mathbb{E}_0[\log(C_0^w) + \delta \log(C_1^w)]$$
(46)

s.t.

$$C_0^w = W_0 \tag{47}$$

$$C_1^w = W_1 + M$$
 (48)

* Government: $M = \tau D_1$

* Market clearing:
$$C_t + C_t^w = D_t + W_t$$
; $S_t = S_{-1} = 1$.

▶ Back