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Our 2 Stata Programs
ssc install pzms

https://econpapers.repec.org/software/bocbocode/s459073.htm

-pzms- implements our approach. Very easy to use. Only required 
option is the maximum bandwidth

pzms_sim uses simulations based on the data from any application, to 
examine likely performance of our approach, compared to alternative 
approaches https://sites.google.com/site/nrkettlewell/research
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https://sites.google.com/site/nrkettlewell/research


Outline

• Key Issues and our Contribution

• Motivating application – 2 policy changes affecting Learner 
drivers in NSW

• Theory – show our approach is asymptotically optimal, under 
restrictive conditions

• Simulations – our approach performs favourably compared to 
other procedures using stylised and realistic DGPs
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RDD Model Selection

• RDD regarded as a leading quasi-experimental research design

• However, it involves numerous researcher choices e.g. bandwidth, 

polynomial, kernel, controls etc.

• How to select among the multitudes of potential estimators?

• Imbens and Kalyanaraman (IK) (2012) and Calonico et al. (CCT) (2014) propose 

algorithms for BW selection that minimise AMSE of the boundary estimator

• Pei et al (2021) make a similar suggestion for polynomial order.
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Issues with Model Selection Algorithms

• Existing approaches deal with one choice and hold others constant.

• CCT focussed on inference, not on estimation

• IK/CCT can do poorly in simulations with realistic DGPs (Card et al, 2017).

• While IK/CCT are popular for BW selection, there is no consensus and 

researchers tend to rely on robustness testing. This may be overly punitive 

to particular DGPs.
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Illustration of our proposal
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Outline
• Key Issues and our Contribution

• Motivating application – 2 policy changes affecting 
Learner drivers in NSW

• Theory – show our approach is asymptotically optimal, under 
restrictive conditions

• Simulations – our approach performs favourably compared to 
other procedures using stylised and realistic DGPs
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Motivating Example – 2 Policy Changes 
affecting Learner Drivers in NSW
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These policy changes were intended to reduce 
(subsequent) crashes 
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Motivating Example (cont.)  These policy changes 
increased the number of Mandatory Supervised Driving 
Hours, from zero to 50, and then to 120 hours
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Motivating Example (cont.)
• Mandatory Supervised Driving Hours (MSDH) for Learner Drivers in NSW

• On 1 July 2000, MSDH increased from 0 to 50 hours.

• Because of the age requirement for a learner's permit (16 years), people born just 
before 1 July 1984 could avoid the policy. Those born after 1 July 1984 could not.

• A similar increase occurred on 1 July 2007 from 50 to 120 hours.

• This created discontinuities(?) in the probability of treatment by date of birth (DOB).

• Did these policy changes affect crash rates??
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50

First-stage relationship between DOB (centred around 1 
July 1984 and ‘Treatment’ (i.e. 50+ hours versus 0+)
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First-stage relationship between DOB (centred around 1 
July 1991 and ‘Treatment’ (i.e. 120+ hours versus 50+)



Outline
• Key Issues and our Contribution

• Motivating Application – estimating effects of 2 policy changes 
affecting Learner Drivers in NSW

• Theory – show our approach is asymptotically 
optimal, under restrictive conditions

• Simulations – our approach performs favourably compared to 
other procedures using stylised and realistic DGPs
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Proof of Asymptotic Optimality (Overview)

• Our approach is ‘asymptotically optimal’ if the best treatment effect estimator also 
has the lowest mean squared placebo estimates, when the placebo zone is large.

• This is the case if the MSE at each placebo threshold equals the MSE at the 
treatment threshold.

• We show this, assuming the global DGP’s CEF has a zero fourth-derivative, under 
homoskedasticity, and uniformly distributed x.

• We focus on sharp RDD, with local linear estimators. The results also translate to 
higher-order polynomials.
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Proof of Asymptotic Optimality (Outline)

1. We show that bias of linear RDD estimators is proportional to the 3rd derivative of the DGP’s CEF.

2. This bias is constant across the support of the running variable, assuming the 4th derivative is zero. 
Therefore the bias of placebo estimators equals the bias of the treatment effect estimator

3. The variance of placebo estimators also equals the variance of the treatment effect estimator, 
assuming homoskedasticity and a uniform distribution

4. For each estimator, the observed mean of squared estimates across the placebo zone approaches 
the (unobservable) MSE of the treatment effect estimator as the placebo zone becomes large

5. Therefore the approach is ‘asymptotically optimal’
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Outline
• Key Issues and our Contribution

• Motivating Application – 2 policy changes affecting Learner Drivers in 
NSW

• Theory – show our approach is asymptotically optimal, under 
restrictive conditions

• Simulations – our approach performs favourably 
compared to other procedures using stylised and realistic 
DGPs
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Monte Carlo Simulations
• Great in theory, but does our approach work well with:

• Finite placebo zones?

• DGPs with non-zero fourth derivatives?

• DGPs with non-constant density

• Realistic DGPs, such as those in prominent well-known RDD studies?

• Our simulation approach closely follows related simulation work

• Use 1000 reps. In each rep, we
i) trial many candidate estimators (linear and quadratic models with a wide range of BWs) through the 

placebo zone and pick the best performer on RMSE

ii) Apply that model to estimate the actual treatment effect

• Compare RMSE (across reps) of our approach to those chosen by the CCT and IK algorithms
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Stylised DGPs (first draw of 1000 reps)
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Stylised DGPs (first draw of 1000 reps)
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Monte Carlo Simulations (cont.)
• Realistic DGPs

• Mimic well-known applications: Head Start (Ludwig & Miller, 2007), political 
incumbency (Lee, 2008), and Minimum Legal Drinking Age (MLDA)

• Fit f(x), 5th order polynomial to original data, allowing a discontinuity and kink

• Fit Beta-distribution to summarise distribution of running variable.

• In each iteration, sample size is set equal to the original sample.

• Randomly draw values of the running variable from the beta distribution.

• Set y = f(x) + e, where e is normally distributed with zero mean and variance 
equal to the variance of the residuals from the regression in 1st step.
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Realistic DGPs (first draw of 1000 reps)
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Monte Carlo Results (4)
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Monte Carlo Results (4)
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Monte Carlo Results Summary

• Our approach always beats CCT and IK using DGPs based on real 

data

• Our approach beats CCT in most of the stylized simulations as well, 

including those with highly unstable DGPs (Sine and Cosine)

• Performance against IK more mixed (we usually win with simpler DGPs (linear, 

quadratic), particularly with more error variance, but usually lose with 

sine/cosine. However, RMSEs and selected BWs similar.
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Outline
• Key Issues and our Contribution

• Motivating application – 2 policy changes affecting 
Learner drivers in NSW

• Theory – show our approach is asymptotically optimal, under 
restrictive conditions

• Simulations – our approach performs favourably compared to 
other procedures using stylised and realistic DGPs
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Candidate models for our application
1. Conventional (fully-interacted) linear RDD.
2. RDD with a linear fit on the right side of the threshold, and a quadratic on the left.
3. Conventional (fully-interacted) quadratic RDD.
4. Conventional (fully-interacted) linear RPJKD.
5. Quadratic RPJKD, in which quadratic term is not interacted with the threshold indicator.
6. RPJKD model with a linear fit on the right side of the threshold, and a quadratic on the left. 
7. Fully-interacted quadratic RPJKD.
8. Conventional (fully-interacted) linear RKD.
9. Quadratic RKD, in which the quadratic term is not interacted with the threshold indicator.
10. RKD with a linear fit on the right side of the threshold, and a quadratic on the left. 
11. Fully-interacted quadratic RKD.
12. Month-of-birth cohort IV, with linear DOB control
13. Month-of-birth cohort IV, with quadratic DOB control
14. Month-of-birth cohort IV, with cubic DOB control
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Summary of Model Performance in 
Placebo Zone
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Key Estimates
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Conclusions
• We propose a new approach for model selection in RDD and related designs using 

placebo zone data

• Can compare across and within model types, on any number of dimensions. Also 
offers a new approach for inference

• We recommend its use whenever the DGP is `stable' across the range of the running 
variable, and the placebo zone is not small

Policy conclusions

• Going from 0  50 MSDH reduced MVAs. Relatively large effect sizes (21% 
reduction in 1st year). No effect after 1-2 years (evidence against habit formation).

• No effect from further increase to 120 MSDH.
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Our 2 Stata Programs
ssc install pzms

https://econpapers.repec.org/software/bocbocode/s459073.htm

-pzms- implements our approach. Very easy to use. Only required 
option is the maximum bandwidth

pzms_sim uses simulations based on the data from any application, to 
examine likely performance of our approach, compared to alternative 
approaches https://sites.google.com/site/nrkettlewell/research
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Data
• Administrative records on licence history of drivers in NSW linked with 

records on crashes between 1996 and 2016. Only crashes where at 
least one car is towed away and/or someone was injured are 
recorded.

• Because of important discontinuous policy changes we only consider 
BWs of up to 365 days for our baseline analysis.

• In main analysis N = 154,524 drivers born within 1 year of 1 July 1984 
(2000 reform), N = 160,301 within 1 year of 1 July 1991 (2007 reform).
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What are Researchers Doing?
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Our Approach

• Estimate many placebo treatment effects for each candidate estimator by moving 
the placebo threshold across the placebo zone where we know the treatment effect 
= 0.

• Choose the estimator with lowest root mean squared error (RMSE) of treatment 
effect estimates across all candidate models. Can also assess bias and coverage.

• Can compare models on any dimension and of different model types.

• Extendable to nonlinear models (e.g. logit)

• Combine with randomization inference similar to Ganong & Jager (2018)
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Decisions to make

• Which empirical technique should we use (for estimation)?

• Which order of polynomial should we use?

• What bandwidth should we use?

• Should we use a different approach on each side of the 

threshold?
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Monte Carlo Simulations (cont.)

• Stylised DGPs

• Sample size = 500 observations (following IK, CCT and others)

• x is uniformly distributed across the range (-100, 400)

• Outcome variable y = 0:3(x>0) + f(x) + e,

• where 0.3 is the discontinuity at x = 0, and 𝜎𝜎2 = 0.12 (representing `large' 

error variance), or 0.32 (`small' error variance)

• f(x) is either: Linear, Quadratic, Sine, or Cosine
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Proof of Asymptotic Optimality (1)

Let 𝜏𝜏 be the true treatment effect. The MSE of any estimator is

𝑀𝑀𝑀𝑀𝑀𝑀 �̂�𝜏 = 𝑀𝑀(�̂�𝜏 − 𝜏𝜏)2= 𝑉𝑉𝑉𝑉𝑉𝑉 �̂�𝜏 + 𝐵𝐵𝐵𝐵𝑉𝑉𝐵𝐵 �̂�𝜏 2 (1)

Consider local linear RD estimators with bandwidth 𝑏𝑏. Assume 𝑛𝑛𝑏𝑏 observations within this 
bandwidth, on each side of the threshold.

�̂�𝜏𝑏𝑏 = �𝛼𝛼2𝑏𝑏 − �𝛼𝛼1𝑏𝑏, where �𝛼𝛼2𝑏𝑏 and �𝛼𝛼1𝑏𝑏 are estimated using independent linear regressions on 
each side of the threshold (𝑥𝑥 = 0)

𝑦𝑦 = 𝛼𝛼1 + 𝛽𝛽1𝑥𝑥 + 𝜀𝜀, −𝑏𝑏 < 𝑥𝑥 < 0 (2a)

𝑦𝑦 = 𝛼𝛼2 + 𝛽𝛽2𝑥𝑥 + 𝜀𝜀, 0 < 𝑥𝑥 < 𝑏𝑏 (2b)

𝑀𝑀𝑀𝑀𝑀𝑀 �̂�𝜏𝑏𝑏 = 𝑀𝑀( �𝛼𝛼2𝑏𝑏 − �𝛼𝛼1𝑏𝑏 − 𝜏𝜏)2 = 𝑉𝑉𝑉𝑉𝑉𝑉 �𝛼𝛼1𝑏𝑏 + 𝑉𝑉𝑉𝑉𝑉𝑉 �𝛼𝛼2𝑏𝑏 + 𝐵𝐵𝐵𝐵𝑉𝑉𝐵𝐵 �̂�𝜏𝑏𝑏 2 (3)
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Proof of Asymptotic Optimality (2)

Consider a true DGP that is cubic: 𝑦𝑦 = 𝛼𝛼 + 𝜏𝜏𝜏𝜏(𝑥𝑥 > 0) + 𝜃𝜃1𝑥𝑥 + 𝜃𝜃2𝑥𝑥2 + 𝜃𝜃3𝑥𝑥3 + 𝜀𝜀, (4)

𝜃𝜃2𝑥𝑥2 and 𝜃𝜃3𝑥𝑥3 are omitted variables from (2a) and (2b), 𝛼𝛼1= 𝛼𝛼 and 𝛼𝛼2= 𝛼𝛼 + 𝜏𝜏. Using conventional OVB 

formulas:

𝑀𝑀( �𝛼𝛼1𝑏𝑏) = 𝛼𝛼 + �̂�𝛿𝐿𝐿1 + �̂�𝛿𝐿𝐿2 (5)

Where �̂�𝛿𝐿𝐿1is the estimated constant in the regression of 𝜃𝜃2𝑥𝑥2 on 𝑥𝑥: 𝜃𝜃2𝑥𝑥2 = 𝛿𝛿1 + 𝜋𝜋1𝑥𝑥 + 𝜖𝜖1, −𝑏𝑏 < 𝑥𝑥 < 0 (6A)

And �̂�𝛿𝐿𝐿2 is the estimated constant in the regression of 𝜃𝜃3𝑥𝑥3 on 𝑥𝑥, 𝜃𝜃3𝑥𝑥3 = 𝛿𝛿2 + 𝜋𝜋2𝑥𝑥 + 𝜖𝜖2, −𝑏𝑏 < 𝑥𝑥 < 0 (6B)

Similarly for 𝑀𝑀( �𝛼𝛼2𝑏𝑏) using data on the RHS:

𝑀𝑀( �𝛼𝛼2𝑏𝑏) = (𝛼𝛼 + 𝜏𝜏) + �̂�𝛿𝑅𝑅1 + �̂�𝛿𝑅𝑅2 (5B)
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Proof of Asymptotic Optimality (3)

The expected value of the RD estimate is hence:

𝑀𝑀 �̂�𝜏𝑏𝑏 = 𝑀𝑀( �𝛼𝛼2𝑏𝑏) − 𝑀𝑀( �𝛼𝛼1𝑏𝑏) = 𝛼𝛼 + 𝜏𝜏 + �̂�𝛿𝑅𝑅1 + �̂�𝛿𝑅𝑅2 − (𝛼𝛼 + �̂�𝛿𝐿𝐿1 + �̂�𝛿𝐿𝐿2) (7)

However, �̂�𝛿𝑅𝑅1 = �̂�𝛿𝐿𝐿1 and �̂�𝛿𝑅𝑅2 = −�̂�𝛿𝐿𝐿2, and so:

𝑀𝑀 �̂�𝜏 = 𝜏𝜏 + 2�̂�𝛿𝐿𝐿2

(to see this, replace 𝑥𝑥 with −𝑥𝑥 in (6A) and (6B), noting the assumed uniform distribution of 𝑥𝑥. (6A) becomes 
𝜃𝜃2𝑥𝑥2 = 𝛿𝛿1 − 𝜋𝜋1𝑥𝑥 + 𝜖𝜖1. This regression yields exactly the same estimate of 𝛿𝛿1. (6B) becomes −𝜃𝜃3𝑥𝑥3 = 𝛿𝛿2 −

𝜋𝜋2𝑥𝑥 + 𝜖𝜖2. This regression yields an estimated constant exactly equal to −�̂�𝛿𝐿𝐿2.)

(6B) implies that �̂�𝛿𝐿𝐿2 is proportional to 𝜃𝜃3, and unrelated to any other parameters of the cubic DGP. The bias 
of �̂�𝜏𝑏𝑏 is hence proportional to the third derivative of the DGP CEF.
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Proof of Asymptotic Optimality (4)

The discontinuity estimates at any placebo threshold at 𝑥𝑥 = 𝑘𝑘, have the same bias, assuming the 
same global DGP, for any 𝑘𝑘 > 𝑏𝑏

The linear RD estimate with bandwidth 𝑏𝑏 at a placebo discontinuity at 𝑥𝑥 = 𝑘𝑘 is �̂�𝜏𝑘𝑘𝑏𝑏 = �𝛼𝛼𝑘𝑘2𝑏𝑏 − �𝛼𝛼𝑘𝑘1𝑏𝑏 , 
where �𝛼𝛼𝑘𝑘1𝑏𝑏 and �𝛼𝛼𝑘𝑘2𝑏𝑏 are the estimates from these regressions:
𝑦𝑦 = 𝛼𝛼𝑘𝑘1 + 𝛽𝛽1 𝑥𝑥 − 𝑘𝑘 + 𝜀𝜀, 𝑘𝑘 − 𝑏𝑏 < 𝑥𝑥 < 𝑘𝑘 and 𝑦𝑦 = 𝛼𝛼𝑘𝑘2 + 𝛽𝛽2 𝑥𝑥 − 𝑘𝑘 + 𝜀𝜀, 𝑘𝑘 < 𝑥𝑥 < (𝑘𝑘 + 𝑏𝑏)

Substituting  𝑥𝑥𝑘𝑘 = 𝑥𝑥 − 𝑘𝑘, these regressions are equivalent to
𝑦𝑦 = 𝛼𝛼𝑘𝑘1 + 𝛽𝛽1𝑥𝑥𝑘𝑘 + 𝜀𝜀, −𝑏𝑏 < 𝑥𝑥𝑘𝑘 < 0 (9a),    and 
𝑦𝑦 = 𝛼𝛼𝑘𝑘2 + 𝛽𝛽2𝑥𝑥𝑘𝑘 + 𝜀𝜀, 0 < 𝑥𝑥𝑘𝑘 < 𝑏𝑏 (9b)

The DGP can be expressed as 𝑦𝑦 = 𝛼𝛼 + 𝜃𝜃1(𝑥𝑥𝑘𝑘 + 𝑘𝑘) + 𝜃𝜃2(𝑥𝑥𝑘𝑘 + 𝑘𝑘)2+𝜃𝜃3(𝑥𝑥𝑘𝑘 + 𝑘𝑘)3+𝜀𝜀(10) 
if 𝑘𝑘 > 𝑏𝑏, and similarly if 𝑘𝑘 < −𝑏𝑏
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Proof of Asymptotic Optimality (5)

Equivalently, 𝑦𝑦 = 𝜋𝜋0 + 𝜋𝜋1𝑥𝑥𝑘𝑘 + 𝜋𝜋2𝑥𝑥𝑘𝑘2 + 𝜃𝜃3𝑥𝑥𝑘𝑘3, (11)

Where 𝜋𝜋0 = 𝛼𝛼 + 𝑘𝑘𝜃𝜃1 + 𝑘𝑘2𝜃𝜃2 + 𝑘𝑘3𝜃𝜃3,  𝜋𝜋1 = 𝜃𝜃1 + 2𝑘𝑘𝜃𝜃2 + 3𝑘𝑘2𝜃𝜃3,  𝜋𝜋2 = 𝜃𝜃2 + 3𝑘𝑘𝜃𝜃3

(9a), (9b) and (11) are equivalent to equations (2a), (2b) and (4), respectively, 
with 𝜏𝜏 = 0 and the threshold at 𝑥𝑥𝑘𝑘 = 0. As shown, the bias of the RDD 
estimate is proportional only to the third derivative of the true DGP’s CEF. The 
third derivative (6𝜃𝜃3) is the same in (11) as in (4), and so 𝐵𝐵𝐵𝐵𝑉𝑉𝐵𝐵 �̂�𝜏𝑘𝑘𝑏𝑏 =

𝐵𝐵𝐵𝐵𝑉𝑉𝐵𝐵 �̂�𝜏𝑏𝑏 , for |𝑘𝑘| > 𝑏𝑏. 

It is trivial to show that 𝑉𝑉𝑉𝑉𝑉𝑉 �̂�𝜏𝑘𝑘𝑏𝑏 = 𝑉𝑉𝑉𝑉𝑉𝑉 �̂�𝜏𝑏𝑏 . Therefore 𝑀𝑀𝑀𝑀𝑀𝑀 �̂�𝜏𝑘𝑘𝑏𝑏 = 𝑀𝑀𝑀𝑀𝑀𝑀 �̂�𝜏𝑏𝑏 .
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Proof of Asymptotic Optimality (6)

For any given estimator, as the placebo zone gets large, the mean of the squared 
placebo estimates approaches the MSE of the treatment effect estimator:

Since 𝜏𝜏𝑘𝑘𝑏𝑏 = 0, lim
𝑚𝑚→∞

1
𝑚𝑚
∑𝑘𝑘=𝑏𝑏+1𝑏𝑏+𝑚𝑚 �̂�𝜏𝑘𝑘𝑏𝑏

2 = 𝑀𝑀𝑀𝑀𝑀𝑀 �̂�𝜏𝑏𝑏

If the DGP has a non-zero fourth derivative, our approach is no longer asymptotically 
optimal. To see this, assume a fourth-order polynomial DGP and follow the same steps. 
The equivalent of equation (11) would have a different coefficient of 𝑥𝑥𝑘𝑘3 for each 𝑘𝑘. 
Therefore the bias of placebo estimates would be different at each placebo threshold.
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Monte Carlo Results (1)
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Monte Carlo Results (2)
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Monte Carlo Results (3)
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Our procedure
• There are total of 14 x 331 = 4,634 candidate models – i.e. 14 models with BW 

ranging from 35 to 365 days.

• We estimate the placebo treatment effect (which we know to be zero and constant 
across entities) using each candidate model. We repeat this for all 1826 placebo 
treatment thresholds, and assess the performance of each candidate model.

• Key stat is the Root Mean Squared Error (RMSE) of the estimated treatment 
effect = square root of the sum of the 1826 estimates

• Other stats are Coverage Rate (% of estimated CIs which include the true effect)
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Extensions

• Allow asymmetric bandwidths (to the left and right of the 

threshold) – these actually do better!

• Impose treatment effect heterogeneity into the placebo zone

• Random perturbation of the real data for ‘treated’ observations

• Marginal Treatment Effect which is linear in ‘resistance’

88



Outcome data in our placebo zone
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Placebo treatments
Within this zone, we create 
placebo treatments in a way 
which mimics the true 
treatment selection process. 
For example, in the first 
placebo, persons are deemed 
treated if they obtained their 
license on or after 1 July 
2001. The first stage 
relationship is shown.
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Timing of Treatment Effect
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Seriousness and Heterogeneity
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Other Applications

• We use our method to re-evaluate evidence on Head Start 

(Ludwig & Miller, 2007) and minimum legal drinking age (Lindo et 

al, 2016).

• In both cases, our method selects much larger BWs than the 

original studies.

• However, the conclusions of those studies are unchanged.
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