Ling, Wang, & Zhou

Granular Property Shocks and Commercial Real Estate Returns

2023 AREUEA-ASSA, New Orleans

Chongyu Wang

The University of Hong Kong

Motivation

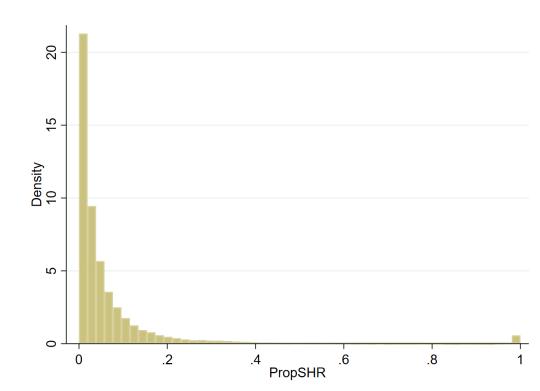
Private and public CRE returns

- Index level: Public → Private Nelling & Gyourko (1998)
- Firm level: Private \rightarrow Public Ling et al. (2021)

Identification challenge

• A causal relationship between returns in these two parallel markets?

Overview


We develop a novel instrumental variable ("granular IV")

• Shocks to large markets may generate non-diversifiable "grains" Gabaix and Koijen (2020, 2021)

Instrumented private market shocks are associated with a rise in quarterly REIT returns

Granularity in CRE Markets, cont.

- A typical U.S. equity REIT invests 53% of its assets in its top-three MSAs
 - The MSA allocations of REITs are highly Skewed
 - Causing comovements in asset values and returns

Data

We combine quarterly data from several sources

(Time period: **2003 – 2018**)

- 1. MSA-level analysis (4,051 obs)
 - i. NCREIF
 - ii. BEA & BLS
- 2. Firm-level analysis (3,423 obs)
 - i. S&P Global Real Estate
 - ii. CRSP-Compustat Merged (CCM) database

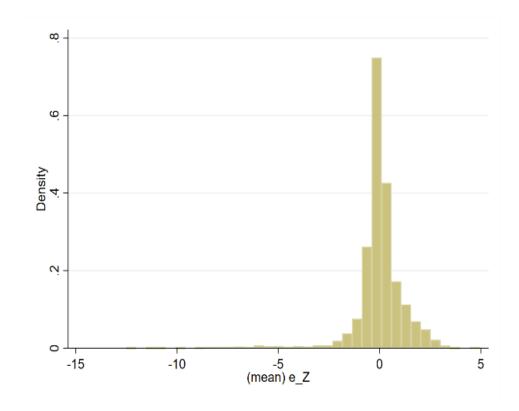
MSA-level shocks (e_{izt})

MSA (z) level

•e_{izt}

$$NCREIF_{zt} = \beta' X_{zt} + \gamma_z + \delta_t + e_{izt}$$

- *NCREIF_{zt}* Aggregate NCREIF NPI
- X_{zt} Time-varying controls (GMP growth, Income growth, etc.)
- $\gamma_z \& \delta_t$ MSA FEs and time (quarterly) FEs

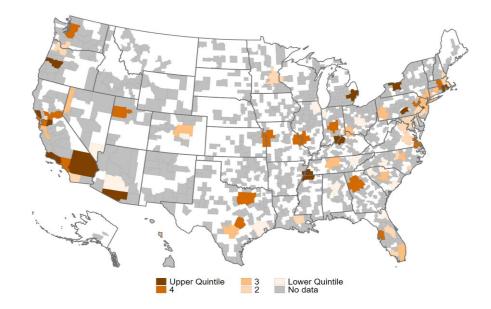

"Idiosyncratic MSA shock"

MSA-level Shocks, cont.

MSA-level shocks, e_{izt}

= Residuals from MSA-level regressions

MSA-level shocks are **highly Skewed!** Large mass in the left tail



MSA-level Shocks, cont.

MSA-level shocks, e_{izt}

= Residuals from MSA-level regressions

Figure 3 highlights the importance of a few, large markets to REITs

Naïve Granular Property Shock (GPS)

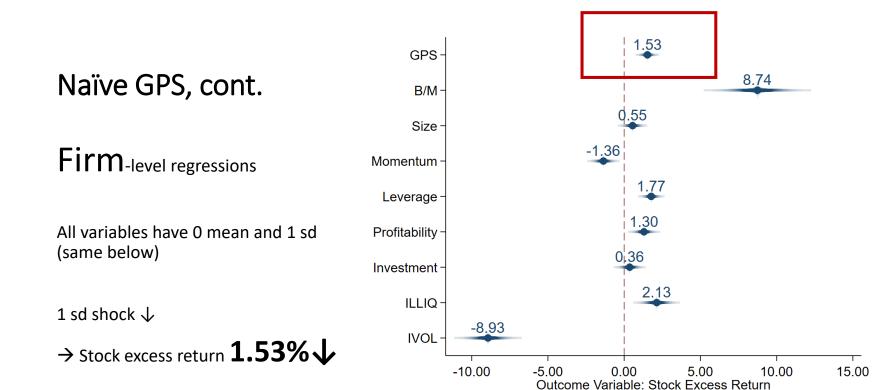
• *t*: Time

Naïve GPS, cont.

- The average of MSA-level shocks (*e_{izt}*)
 - Across all MSAs in which a REIT owns properties
 - Weighted by *PropSHR*, % Properties invested in MSA z (**S**_{izt})

• Naïve GPS =
$$\Sigma_z s_{izt} e_{izt}$$

Naïve GPS, cont.


Firm (i) level

• v_{it}

$R_{it} = \beta Naive \, GPS_{it} + \alpha_i + \gamma_t + \delta'X + \boldsymbol{v_{it}}$

- *R_{it}* Stock return
- *X* Return predictors (Size, B/M, etc.)
- $\alpha_i \otimes \gamma_t$ Firm (or property type) FEs and time (quarterly) FEs

"Idiosyncratic firm shock"

Endogeneity

MSA-level shocks (**e**_{izt}) encompass...

• A component that *COMMOVES* with the idiosyncratic firm shock (*V_{it}*)

• Corr(*Naïve GPS*,
$$v_{it}$$
) = Corr($\Sigma_z s_{izt} e_{izt}, v_{it}$) $\neq 0!$

A component that ONLY contains shocks to property markets (U_{izt})

Endogeneity, cont.

MSA-level shocks (**e**_{*izt*}) equals...

$$e_{izt} = \boldsymbol{\delta_i v_{it}} + u_{izt}$$

- Objective: Purge out *v_{it}*
- How? Estimate **u**_{izt}

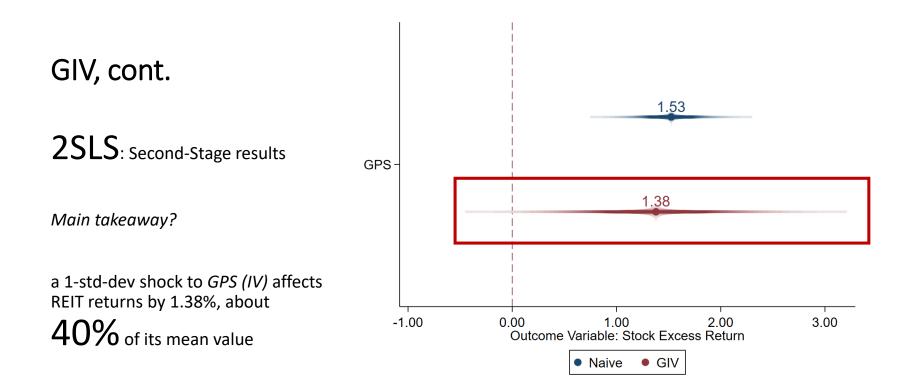
Granular Instrumental Variable (GIV)

With **U**_{izt}, we construct a valid instrument for GPS (Naïve)

- Scenario 1: No granularity, all MSAs have a similar effect on firm returns
 - A REIT will adopt 1/N diversification (portfolio risk = $\sigma/sqrt(N)$)

GIV, cont.

With **U**_{izt}, we construct a valid instrument for GPS (Naïve)

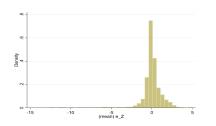

- Scenario 1: No granularity, all MSAs have a similar effect on firm returns
 - A REIT will adopt 1/N diversification (portfolio risk = σ/sqrt(N))
- Scenario 2: Granularity, Rank-Size
 - Possibly 1/Log(N) diversification (portfolio risk = σ/sqrt(Log(N)))

GIV, cont.

Based on those two scenarios, we have

Granular instrument (GIV) =
$$\Sigma_z (s_{izt}) u_{izt} - \Sigma_z (1/N_z) u_{izt}$$

- Naïve GPS = $\Sigma_z S_{izt} e_{izt}$ Corr(GIV, Naïve GPS) $\neq 0$ First stage \checkmark
- $e_{izt} = \delta_i v_{it} + u_{izt}$ Corr(G/V, v_{it}) = 0 Exogeneity \checkmark

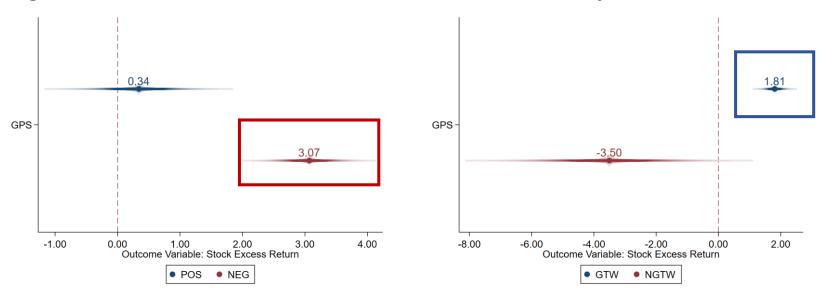


Channels

Negative shocks

• Asymmetric effects of GPS

- MSA-level shocks are highly
 Skewed
 - Large mass in the left tail


Shocks to Gateway Markets

- Shocks to large MSAs are not easily diversifiable.
- They also enjoy greater transparency and market depth.

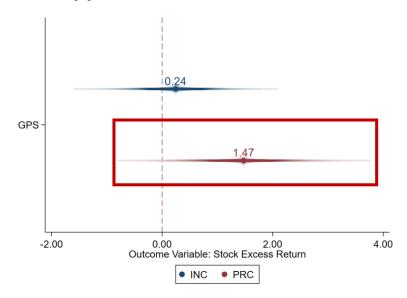
Channels, cont.

Negative shocks

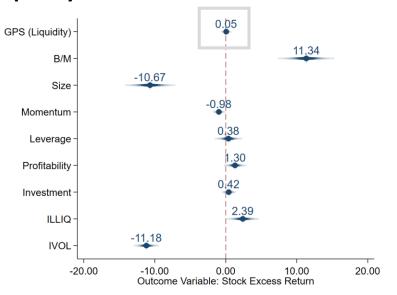
Shocks to Gateway Markets

Channels, cont.

Price appreciation


Liquidity

- CRE returns
- = Inc return + **Prc appreciation**
- Prc appreciation is highly sensitive to unexpected shocks to rents
 - The SD of Prc appreciation is about
 5 times its mean!


- Property and stock market liquidity are correlated.
- Construct GPS and GIV using NCREIF
 property turnovers.

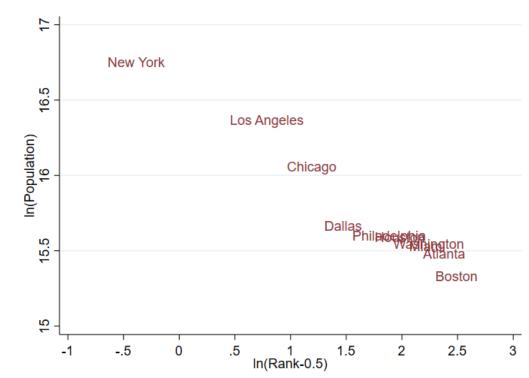
Channels, cont.

Price appreciation

Liquidity? No...

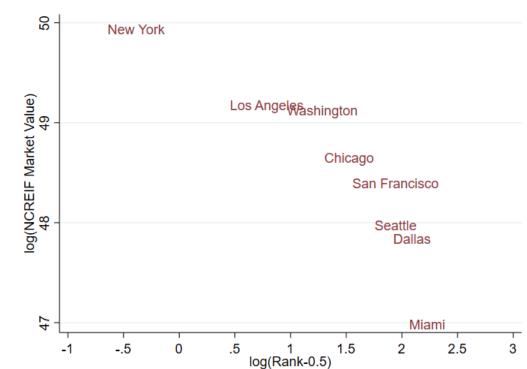
Summary

- A typical U.S. equity REIT invests **53%** of its assets in its top-three MSAs
- A 1-std-dev change in instrumented GPS increase REIT returns by 1.38%, **40%** of its mean value
- Our results are driven by...
 - **Negative** shocks to MSAs
 - Shocks to large ("gateway") markets, and
 - Shocks to price appreciation


THANK YOU

Q&A

Appendices

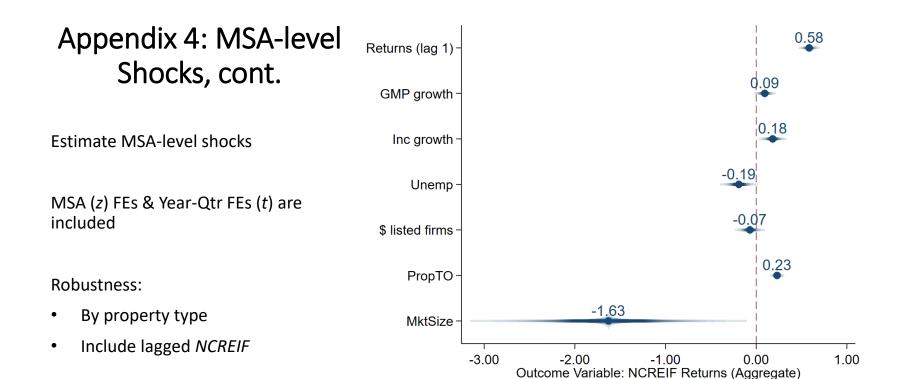

Appendix 1: Granularity in CRE Markets

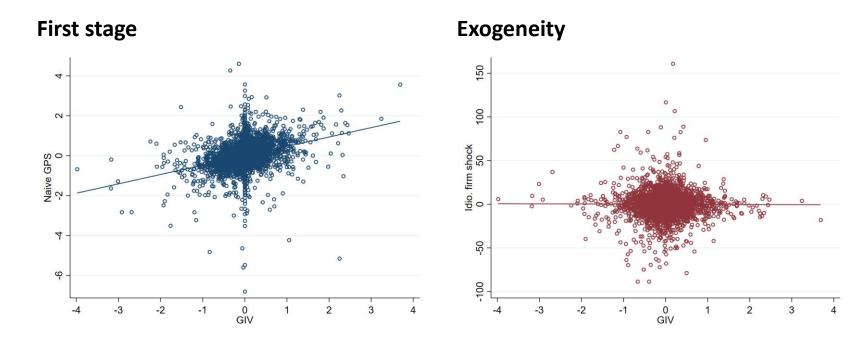
- Concentration of population & diversification benefits
 - Gabaix (1999)

Appendix 2: Granularity in CRE Markets

- Concentration of CRE projects & diversification
 - Dombrowski et al. (2020)

Appendix 3: MSA-level shocks, cont.




• **Z**: MSA

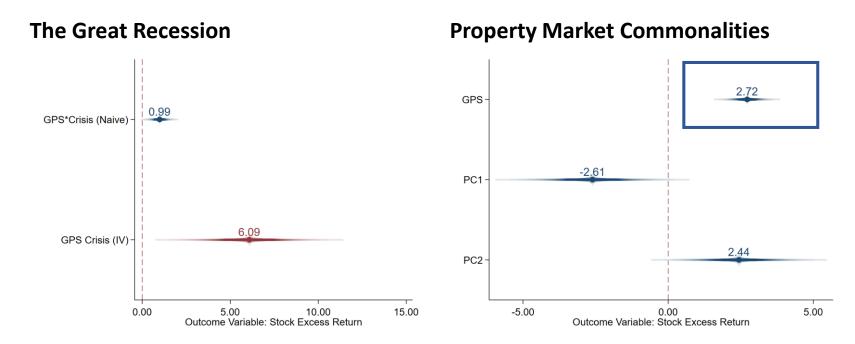
• *t*: Time

Appendix 5: GIV Assumptions

Appendix 6: GIV, cont.

Based on those two scenarios, we have

Granular instrument (
$$GIV$$
) = $\Sigma_z (s_{izt}) u_{izt} - \Sigma_z (1/N_z) u_{izt}$


• Naïve GPS = $\Sigma_z s_{izt} e_{izt}$

• $e_{izt} = \delta_i v_{it} + u_{izt}$

Corr(GIV, Naïve GPS) \neq 0First stageCorr(GIV, v_{it}) = 0Exogeneity

• No CRE granularity: $s_{izt} = 1/N_z \rightarrow GIV = 0$

Appendix 7: Robustness Checks

