Buy, Invent, or Both?

Felipe Cortes ¹ Tiantian Gu ² Toni M. Whited ³

¹Northeastern University

²Northeastern University

³University of Michigan and NBER

AFA 2023

Cortes, Gu and Whited 1/25

- Introduction
- 2 Mode
- Oata & Estimation
- Main Results
- Conclusion

Cortes, Gu and Whited 2/25

How do firms decide to either invent or buy innovation?

- Firms innovate to obtain technologies that enhance productivity and boost firm value
- ► To do so, firms either develop technology in-house or acquire it via M&As
- ▶ A nuanced question due to mutiple reasons behind technology acquisitions
 - reason one: achieve synergies by combining complementary assets
 - reason two: terminate or preempt the innovation from rival firms

Cortes, Gu and Whited 3/25

Empirical Challenges

- Unobservables. Many variables are hard to measure.
 - R&D costs
 - acquisition costs
 - technological synergies etc.

▶ **Identification.** Corporate decisions are endogenous and exogenous variation is rare.

- A Structural Approach: Estimate a Dynamic Model
 - two types of investments: physical (grow capital) & R&D (boost productivity)
 - two acquisition motives: synergies or anti-competitive reasons
 - two sources of uncertainty: risky profit shocks & risky R&D outcomes

Cortes, Gu and Whited 4/25

Main Results

Organic Growth or Outsource?

- the key determinant is the firm's profit shock volatility
- higher volatility leads to more acquisitions and less R&D

Synerges or Anti-Competitive?

- the key determinant is profitability of the firm's physical investment
- less profitable firms acquire competitors while more profitable ones look for synergies

Acquisitions do NOT crowd out in-house R&D

► The Acquisition Market is important

- Shutting down synergy acquisition reduces R&D and total patents by 7.28% and 4.72%
- ▶ Shutting down competition acquisition reduces R&D and total patents by 7.22% and 5.90%

Cortes, Gu and Whited 5/25

Literature on Technology Acquisitions

- Synergies
 - asset complementarity: Rhodes-Kropf and Robinson (2008), Bena and Li (2014)
 - innovative targets and increased R&D spending: Sevilir and Tian (2012), Phillips and Zhdanov (2013)
- Anti-Competition
 - current targets & future entrants: Cunningham, Ederer, and Ma (2021), Segal and Whinston (2007), Kamepalli, Rajan, and Zingales (2020), Fulghieri and Sevilir (2009)
 - ▶ inefficiencies that harm innovation: Seru (2014), Federico, Langus, and Valletti (2017), Cabral (2018)
 - market consolidation that creates synergies: Blundell, Griffith, and Van Reenen (1999), Aghion, Bloom, Blundell, Griffith, and Howitt (2005), Letina, Schmutzler, and Seibel (2020)
- ► Innovation Post Acquisition
 - Li and Wang (2020), Li, Qiu, and Wang (2019), Zhao (2009), Sevilir and Tian (2012). Li (2017)

Cortes, Gu and Whited 6/25

- Introduction
- 2 Model
- Oata & Estimation
- Main Results
- Conclusion

Cortes, Gu and Whited 7/25

A Dynamic Model of Innovation & Acquisition

- Discrete time, infinite horizon, partial equilibrium model
- ightharpoonup A typical firm i (as a potential acquirer) in high-tech industries
- At the beginning each period t, the firm observes
 - ightharpoonup a realization of the profit shock (z_{it})
 - its endowment of capital (k_{it}) & technology (h_{it})
- Given these factors, the firm decides simultaneously
 - ightharpoonup physical investment (I_{it})
 - ightharpoonup R&D (w_{it})
 - ightharpoonup acquistition for synergies (m_s) or anti-competitive reasons (m_c)

Cortes, Gu and Whited 8/25

Two Types of Acquisitions

Stand-alone Firm

$$\Pi(k_t, h_t, z_t) = (1 - \tau_c) e^{z_t} h_t^{\phi} (1 - m_c) k_t^{\alpha}$$

Synergy Acquisitions

$$\Pi(k_t, h_t, z_t) = (1 - \tau_c)e^{z_t}h_t^{\phi + m_s}(1 - m_c)k_t^{\alpha}$$

Competition Acquisitions

$$\Pi(k_t, h_t, z_t) = (1 - \tau_c)e^{z_t}h_t^{\phi}k_t^{\alpha}$$

Cortes, Gu and Whited 9/25

Optimization

External Financing

$$-e(.) = Financing \ Gap_t = C(w_t) + [k_{t+1} - (1 - \delta)k_t] + \Psi(k_t, k_{t+1}) + D * k_t * \mathbb{1}_{m_t = 1} + P_t \mathbb{1}_{m_t = 1} - \Pi(k_t, h_t, z_t) - \delta k_t \tau_c$$

The cost of external finance is

$$\Phi(e(.)) = \frac{1}{2} \phi_{e<0} \lambda_1 e(.)^2$$

The Bellman equation is

$$\begin{split} V(k_t, h_t, z_t) &= \max_{I_t, w_t, m_t} \{e(k_t, h_t, z_t, k_{t+1}, h_{t+1}, m_t) \\ &+ \Phi(e(k_t, h_t, z_t, k_{t+1}, h_{t+1}, m_t)) \\ &+ \frac{1}{1+r} \int V(k_{t+1}, h_{t+1}, z_{t+1}) dF(z_{t+1}) \} \end{split}$$

Cortes, Gu and Whited 10/25

- Introduction
- 2 Model
- 3 Data & Estimation
- Main Results
- Conclusion

Cortes, Gu and Whited 11/25

Data Sources

▶ Sample: over 1977-2019 with 738 deals & 7491 obs

► Financial and Stock Price Info: CRSP/COMPUSTAT/CapitalIQ

► Merger Deals: SDC Platinum

Patents and Citations: USPTO patent assignment files (by Google Patents)

Abnormal Returns for Each Deal: WRDS-Eventus

Cortes, Gu and Whited 12/25

Estimation Moments

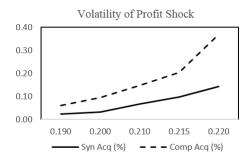
	Simulated Moments	Real Moments	t-stats
Serial Corr of Inc	0.8017	0.8061	-0.0076
Var of Innov to Inc	0.0105	0.0043	0.4349
Avg External Fin	0.3290	0.3382	-0.0483
Var External Fin	0.0272	0.0366	-0.1149
Avg Investment	0.0575	0.0543	0.1136
Var Investment	0.0011	0.0008	0.1775
LLH of Syn Acq	0.0660	0.0608	0.2147
LLH of Comp Acq	0.1470	0.1412	0.1213
Stock of Patents	9.2125	9.3006	-0.0051
R&D Investment	0.0830	0.0855	-0.0430
Var of R&D Inv	0.0021	0.0033	-0.1675

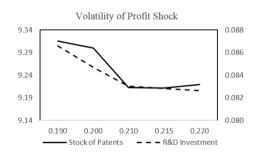
Cortes, Gu and Whited 13/25

Structural Parameter Estimates

α	$ ho_z$	σ_z	$\lambda(10^7)$	c_w	D	m_s	m_c
0.990 (0.003)	0.940	0.210	0.001	0.011	0.009	0.002773	0.028750
	(0.030)	(0.031)	(0.001)	(0.003)	(0.004)	(0.000587)	(0.011812)

Cortes, Gu and Whited 14/25

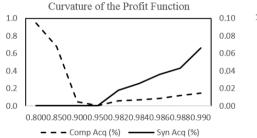

- Introduction
- 2 Model
- Oata & Estimation
- Main Results
- Conclusion

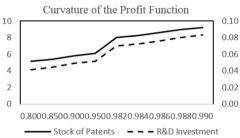

Cortes, Gu and Whited 15/25

Organic Growth or Outsource Innovation?

Cortes, Gu and Whited 16/25

Panel C: Volatility of Profit Shock




Cortes, Gu and Whited 17/25

Synergies or Market Control?

Cortes, Gu and Whited 18/25

Panel B: Curvature of the Profit Function

Cortes, Gu and Whited 19/25

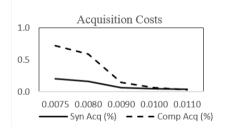
How Important is the Acquisition Market?

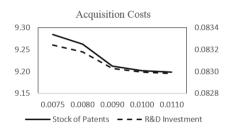
Cortes, Gu and Whited 20/25

Panel A: The Acquisition Market

	No Synergy Acquisitions			No Competition Acquisitions		
	Before	After	Changes	Before	After	Changes
Stock of Patents	10.7266	10.2198	-4.73%	10.1243	9.5270	-5.90%
R&D	0.1003	0.0930	-7.28%	0.0898	0.0860	-7.22%
Tobin's ${\it Q}$	8.4283*	7.3720*	-12.53%	6.6990*	5.3430*	-20.24%

Panel B: Internal R&D


	No Peer Competition			No R&D		
	Before	After	Changes	Before	After	Changes
Stock of Patents (Tobin's Q)	9.2125	9.4107	2.15%	4.4288*	3.8534*	-14.93%
Synergy Acquisitions	0.0660	0.1855	180.92%	0.0660	0.0120	-81.81%
R&D ($Comp$ Acquisitions)	0.0830	0.0853	2.72%	0.1470	0.0736	-49.93%


Cortes, Gu and Whited 21/25

Does Acquisition Crowd Out In-House R&D?

Cortes, Gu and Whited 22/25

Panel A: Acquisition Costs

Cortes, Gu and Whited 23/25

- Introduction
- 2 Model
- Data & Estimation
- Main Results
- 6 Conclusion

Cortes, Gu and Whited 24/25

Why Acquire Technology Instead of Developing It In-House?

- We study two main motives behind technology-driven acquisitions: synergies and competition.
- We argue that the key determinant for the choice of organic growth vs acquisition is the firm's profit shock volatility.
 - ▶ Higher volatility leads to more acquisitions and less in-house R&D.
- ▶ In addition, profitability from the product market influences the types of benefits the firm achieves from acquisitions.
 - ▶ It is possible for a poorly-performing firm to acquire its competitors but only the good performers search for synergies from the market.
- ► Acquisition provides acquiring firms stronger incentives for in-house R&D as acquired innovation magnifies the benefits of R&D.

Cortes, Gu and Whited 25/25

- Aghion, P., N. Bloom, R. Blundell, R. Griffith, and P. Howitt (2005). Competition and innovation: An inverted-u relationship. *Quarterly Journal of Economics* 120(2), 701–728.
- Bena, J. and K. Li (2014). Corporate innovations and mergers and acquisitions. *Journal of Finance 69*(5), 1923–1960.

 Blundell, R., R. Griffith, and J. Van Reenen (1999). Market share, market value and innovation in a panel of british manufacturing firms.
- Review of Economic Studies 66(3), 529–554.

 Cabral, L. (2018). Standing on the shoulders of dwarfs: Dominant firms and innovation incentives. CEPR Discussion Paper No. DP13115.
- Cunningham, C., F. Ederer, and S. Ma (2021). Killer acquisitions. *Journal of Political Economy* 129(3), 649–702.
- Federico, G., G. Langus, and T. Valletti (2017). A simple model of mergers and innovation. Economics Letters 157, 136-140.
- Fulghieri, P. and M. Sevilir (2009). Organization and financing of innovation, and the choice between corporate and independent venture capital. *Journal of Financial and Quantitative Analysis* 44(6), 1291–1321.
- Kamepalli, S. K., R. Rajan, and L. Zingales (2020). Kill zone. NBER Working Paper 27146.
- Letina, I., A. Schmutzler, and R. Seibel (2020). Start-up acquisitions and innovation strategies. Universitaet Bern, Departement Volkswirtschaft.
- Li, K. (2017). Mergers and acquisitions and corporate innovation. ADBI Working Paper Series.
- Li, K., J. Qiu, and J. Wang (2019). Technology conglomeration, strategic alliances, and corporate innovation. *Management Science* 65(11), 5065–5090.
- Science 65(11), 5065–5090.

 Li, K. and J. Wang (2020). How do mergers and acquisitions foster corporate innovation? Inventor-level evidence. University of British
- Columbia.

 Phillips, G. M. and A. Zhdanov (2013). R&d and the incentives from merger and acquisition activity. *Review of Financial Studies 26*(1), 34–78.
- Rhodes-Kropf, M. and D. T. Robinson (2008). The market for mergers and the boundaries of the firm. *Journal of Finance 63*(3), 1169–1211.
- Segal, I. and M. D. Whinston (2007). Antitrust in innovative industries. *American Economic Review 97*(5), 1703–1730.
- regal, 1. and wh. D. vyninston (2007). Antitrust in innovative industries. American Economic Review 97(3), 1703–1730.
- Seru, A. (2014). Firm boundaries matter: Evidence from conglomerates and R&D activity. *Journal of Financial Economics* 111(2), 381–405. Sevilir. M. and X. Tian (2012). Acquiring innovation. Indiana University.
- Zhao, X. (2009). Technological innovation and acquisitions. *Management Science* 55(7), 1170–1183. Cortes, Gu and Whited