A New Claims-Based Unemployment Dataset: Application to Postwar Recoveries Across U.S. States

Andrew Fieldhouse
Mays Business School
Texas A&M University

Sean Howard
Wood Mackenzie

Christoffer Koch
International Monetary Fund

David Munro
Middlebury College

January 6, 2023
ASSA 2023 Annual Meeting

The views expressed in this paper are the views of the authors only and do not necessarily reflect the views of the Federal Reserve Bank of Dallas, the Federal Reserve System, or the International Monetary Fund, its Executive Board, or its Management.
Motivation

Macroeconomists are increasingly leveraging panel datasets and regional heterogeneity to identify economic relationships

- Nakamura and Steinsson (2014); Chodorow-Reich (2019); Hazell, Nakamura and Steinsson (2022); Glandon et al (2022)
Motivation

Macroeconomists are increasingly leveraging panel datasets and regional heterogeneity to identify economic relationships

- Nakamura and Steinsson (2014); Chodorow-Reich (2019); Hazell, Nakamura and Steinsson (2022); Glandon et al (2022)

Recent papers have also emphasized that business cycle analysis should focus on the unemployment rate

- Romer and Romer (2019); Hall and Kudlyak (2020)
Motivation

Macroeconomists are increasingly leveraging panel datasets and regional heterogeneity to identify economic relationships

- Nakamura and Steinsson (2014); Chodorow-Reich (2019); Hazell, Nakamura and Steinsson (2022); Glandon et al (2022)

Recent papers have also emphasized that business cycle analysis should focus on the unemployment rate

- Romer and Romer (2019); Hall and Kudlyak (2020)

Regrettably, official state-level unemployment data only begin in 1976, a significant impediment to historical state-level analyses
Contributions

We digitize monthly state-level unemployment claims data back to 1947 from a series of primary sources.
Contributions

We digitize monthly state-level unemployment claims data back to 1947 from a series of primary sources.

Using this data, we construct claims-based unemployment rates, which are highly correlated with official measures:

- Monthly data Jan 1947-May 2022, for all 50 states, DC, US
- Nearly three additional decades of monthly state-level data
Contributions

We digitize monthly state-level unemployment claims data back to 1947 from a series of primary sources.

Using this data, we construct claims-based unemployment rates, which are highly correlated with official measures:

- Monthly data Jan 1947-May 2022, for all 50 states, DC, US
- Nearly three additional decades of monthly state-level data

With this new dataset we explore various features of post-war U.S. recessions at the national and state level:

- Backdated data span the first six post-war U.S. recessions
- Faster national labor market recoveries in the 1940s, 50s were associated with greater dispersion of recovery rates across states
- States with larger manufacturing sectors tend to see faster recoveries
Data Digitization and Construction
Digitization Overview

We digitize monthly state-level data on Initial Claims (IC) and Continued Claims (CC) from various government reports:

Digitization Overview

We digitize monthly state-level data on Initial Claims (IC) and Continued Claims (CC) from various government reports:

We tracked down these primary sources/scanned tables from HathiTrust, Google Books, Interlibrary Loan requests, and scans from the Department of Labor’s internal library.

Digitized data on monthly unemployment claims is available online from the Department of Labor’s website for 1971+.

In total, we digitized just over 36,000 monthly observations.
Digitization Overview

We digitize monthly state-level data on Initial Claims (IC) and Continued Claims (CC) from various government reports:

We tracked down these primary sources/scanned tables from HathiTrust, Google Books, Interlibrary Loan requests, and scans from the Department of Labor’s internal library

Digitized data on monthly unemployment claims is available online from the Department of Labor’s website for 1971+
Digitization Overview

We digitize monthly state-level data on Initial Claims (IC) and Continued Claims (CC) from various government reports:

We tracked down these primary sources/scanned tables from HathiTrust, Google Books, Interlibrary Loan requests, and scans from the Department of Labor’s internal library.

Digitized data on monthly unemployment claims is available online from the Department of Labor’s website for 1971+

In total, we digitized just over 36,000 monthly observations.
Claims-based Unemployment Rates
Measuring Unemployment Rates

Unemployment rate is computed as: \(UR = \frac{U}{E+U} \)
Measuring Unemployment Rates

Unemployment rate is computed as: \(UR = \frac{U}{E+U} \)

Official national \(UR \) estimated from CPS (\(\sim 60k \) households)
Measuring Unemployment Rates

Unemployment rate is computed as: \(UR = \frac{U}{E+U} \)

Official national \(UR \) estimated from CPS (\(\sim 60k \) households)

At the state level, official \(UR \) (1976+) is not a measured object, but a statistical construct

- Constructed from CPS, unemployment claims, other employment surveys, statistical filtering
Measuring Unemployment Rates

Unemployment rate is computed as: \(UR = \frac{U}{E+U} \)

Official national \(UR \) estimated from CPS (~ 60k households)

At the state level, official \(UR \) (1976+) is not a measured object, but a statistical construct

- Constructed from CPS, unemployment claims, other employment surveys, statistical filtering

Our claims data is an alternative – conceptually similar yet different – measure of \(U \)

- Use initial, continued claims as a measure of unemployed workers
Claims-Based Unemployment Rates

Our claims-based unemployment rate for state i in month t is computed as

$$UR_{i,t}^{Claims} = \frac{IC_{i,t} + CC_{i,t}}{NP_{i,t} + IC_{i,t} + CC_{i,t}}$$

(1)

- Where are $IC + CC$ is our proxy for U

- We use nonfarm payroll (NP) employment as our measure of E (only measure of state-level employment to 1940s)
Claims-Based Unemployment Rate Example: Ohio
Correlation for overlapping sample: 0.82
Correlation for overlapping sample: 0.82

Practical benefit:

- Our data series provides roughly three decades of additional data
- Data spans six additional national recessions (1948-49 – 1973-75)
Correlation for overlapping sample: 0.82

Practical benefit:

- Our data series provides roughly three decades of additional data
- Data spans six additional national recessions (1948-49 – 1973-75)

Level difference to be expected:

- Narrower pool of benefit-eligible workers, benefit exhaustion
- Shouldn’t matter for business cycle analysis so long as series are highly correlated, identify similar inflection points
Claims-Based Unemployment Rates: National

Unemployment Rate

- Official Unemployment Rate
- Claims-Based Unemployment Rate
- NBER Recession

[Graph showing the unemployment rate over time, with data points from 1950 to 2020, indicating periods of recession as shaded areas.]
State Business Cycles
Business Cycle Properties of the Data

Using this data we investigate various features of post-war recessions at both national and state level
Business Cycle Properties of the Data

Using this data we investigate various features of post-war recessions at both national and state level.

Lots of recent attention paid to the pace of economic recoveries, esp. unemployment recoveries.

- Dupraz, Nakamura, Steinsson (2019), Hall and Kudlyak (2022)
Business Cycle Properties of the Data

Using this data we investigate various features of post-war recessions at both national and state level.

Lots of recent attention paid to the pace of economic recoveries, esp. unemployment recoveries:
- Dupraz, Nakamura, Steinsson (2019), Hall and Kudlyak (2022)

Using our data we first examine the timing and pace of national recoveries as litmus test:
- Our claims-based unemployment rate picks up consistent business cycle features as BLS national unemployment rate
Business Cycle Properties of the Data

Using this data we investigate various features of post-war recessions at both national and state level

Lots of recent attention paid to the pace of economic recoveries, esp. unemployment recoveries

- Dupraz, Nakamura, Steinsson (2019), Hall and Kudlyak (2022)

Using our data we first examine the timing and pace of national recoveries as litmus test

- Our claims-based unemployment rate picks up consistent business cycle features as BLS national unemployment rate

After we have some confidence in our claims-based unemployment rates, we explore state-level recoveries
Recovery Rates and Recession Dating

Following Hall and Kudlyak (2022) we compute the pace of recovery as mean decline in log unemployment over recovery:

\[
\text{Recovery Pace} = -12 \cdot (\log UR_0 - \log UR_T)/T
\]
Recovery Rates and Recession Dating

Following Hall and Kudlyak (2022) we compute the pace of recovery as mean decline in log unemployment over recovery:

\[
\text{Recovery Pace} = -12 \cdot \frac{(\log UR_0 - \log UR_T)}{T}
\]

We first need to date business cycles first to determine start of recovery (0) and end of recovery (T) for each expansion.
Recovery Rates and Recession Dating

Following Hall and Kudlyak (2022) we compute the pace of recovery as mean decline in log unemployment over recovery:

\[\text{Recovery Pace} = -12 \cdot (\log UR_0 - \log UR_T)/T \]

We first need to date business cycles first to determine start of recovery (0) and end of recovery (T) for each expansion.

We adopt the relatively simple, unemployment-based recession dating algorithm proposed in Dupraz, Nakamura, and Steinsson (2019) (DNS, henceforth):

- Generates a close match to NBER dates, Hall and Kudlyak (2022) chronology of unemployment-based recession dates.
Table 1: Business Cycle Peaks and Troughs

<table>
<thead>
<tr>
<th>NBER Peak</th>
<th>NBER Trough</th>
<th>Claims-based UR Peak</th>
<th>Claims-based UR Trough</th>
<th>Official UR Peak</th>
<th>Official UR Trough</th>
</tr>
</thead>
</table>

Notes: Recession dates for CBUR and UR are generated by applying the DNS algorithm on these two series. For the UR, we use the DNS parameter of 1.5. For CBUR we choose a parameter of 1.0, which is able to capture the NBER recession events.
Recovery Pace: National Recoveries

Recovery Cycle

- Claims-Based Unemployment Rate
- Official Unemployment Rate

CBUR Recession Dates
Recovery Pace: State-level Recoveries
Recovery Pace: National Rate vs. State-level Dispersion
State Recovery Rate Takeaways

Recession dates and the pace of recoveries at the national level using our claims-based unemployment rates line-up quite well with analogous results using the official unemployment rate.
State Recovery Rate Takeaways

Recession dates and the pace of recoveries at the national level using our claims-based unemployment rates line-up quite well with analogous results using the official unemployment rate.

State-level analysis reveals some interesting heterogeneity.
State Recovery Rate Takeaways

Recession dates and the pace of recoveries at the national level using our claims-based unemployment rates line-up quite well with analogous results using the official unemployment rate.

State-level analysis reveals some interesting heterogeneity.

Of course, with state-level data you can begin to think about what other factors correlate with features of the business cycle.
Recession dates and the pace of recoveries at the national level using our claims-based unemployment rates line-up quite well with analogous results using the official unemployment rate.

State-level analysis reveals some interesting heterogeneity.

Of course, with state-level data you can begin to think about what other factors correlate with features of the business cycle.

One thing that jumped out to us: the pace of recoveries is strongly correlated with the size of states’ manufacturing sector.
Recovery Pace by State Manufacturing Share

1949, '54, '58 Recoveries

\[y = 0.0331 + 0.7465x \]

1961-2009 Recoveries

\[y = 0.0901 + 0.3873x \]
Concluding Thoughts
Conclusion

- We digitize state-level unemployment claims data back to 1947 to expand our historical record of unemployment
Conclusion

- We digitize state-level unemployment claims data back to 1947 to expand our historical record of unemployment.

- With this historical claims data we construct claims-based unemployment rates: highly correlated with official unemployment rates, similar business cycle features.
Conclusion

- We digitize state-level unemployment claims data back to 1947 to expand our historical record of unemployment.
- With this historical claims data we construct claims-based unemployment rates: highly correlated with official unemployment rates, similar business cycle features.
- Our claims-based unemployment series doubles the number of post-war recessions that can be studied at state level.
Conclusion

- We digitize state-level unemployment claims data back to 1947 to expand our historical record of unemployment.

- With this historical claims data we construct claims-based unemployment rates: highly correlated w/ official unemployment rates, similar business cycle features.

- Our claims-based unemployment series doubles the number of post-war recessions that can be studied at state level.

- As a first pass, we use this data to study the timing and pace of post-war economic recoveries for U.S. states.
Conclusion

- We digitize state-level unemployment claims data back to 1947 to expand our historical record of unemployment.

- With this historical claims data we construct claims-based unemployment rates: highly correlated with official unemployment rates, similar business cycle features.

- Our claims-based unemployment series doubles the number of post-war recessions that can be studied at state level.

- As a first pass, we use this data to study the timing and pace of post-war economic recoveries for U.S. states.

- The data could be used for a whole host of other questions, and we’re excited about follow-up work.
Appendix Slides
Recession Dating: State-level Recessions vs. NBER
Digitization and Data Quality

Overall, legibility of the scans we tracked down was quite good
Digitization and Data Quality

Overall, legibility of the scans we tracked down was quite good when we encountered legibility issues we

- Obtained secondary images
- Used national aggregates to detect inconsistencies
- Used percentage change from previous month or annual changes to detect errors
- All digitizations had multiple sets of eyes review them
Digitization and Data Quality

Overall, legibility of the scans we tracked down was quite good.

When we encountered legibility issues we

- Obtained secondary images
- Used national aggregates to detect inconsistencies
- Used percentage change from previous month or annual changes to detect errors
- All digitizations had multiple sets of eyes review them

Very few sum-check errors, digitization merged quite well.
Digitization and Data Quality

Overall, legibility of the scans we tracked down was quite good

When we encountered legibility issues we

- Obtained secondary images
- Used national aggregates to detect inconsistencies
- Used percentage change from previous month or annual changes to detect errors
- All digitizations had multiple sets of eyes review them

Very few sum-check errors, digitization merged quite well

We seasonally adjust the digitized, existing data (Win X-13)
Outliers

We seasonally adjust the digitized data (Census Win X-13)

This process also identified ~200 outliers from roughly 91,000 observations, roughly evenly distributed between our newly digitized data and the existing DOL data.
Outliers

We seasonally adjust the digitized data (Census Win X-13)

This process also identified ~200 outliers from roughly 91,000 observations, roughly evenly distributed between our newly digitized data and the existing DOL data.

Each outlier was manually checked to evaluate if it was a legitimate change in claims or a “fat thumb” coding error.

- Example of legitimate outlier: surge in LA post-Katrina.
- Example of “fat thumb” error: In MO June 1974 CC surged 4700% from 147,351 to 7,132,843 then back to 145,365: Population of MO was less than 5 million.
Outliers

We seasonally adjust the digitized data (Census Win X-13)

This process also identified ~200 outliers from roughly 91,000 observations, roughly evenly distributed between our newly digitized data and the existing DOL data

Each outlier was manually checked to evaluate if it was a legitimate change in claims or a “fat thumb” coding error

- Example of legitimate outlier: surge in LA post-Katrina

- Example of “fat thumb” error: In MO June 1974 CC surged 4700% from 147,351 to 7,132,843 then back to 145,365: Population of MO was less than 5 million

We used our best judgement in fixing the “fat thumb” errors
The digitized monthly IC, CC data reflect all claims filed with the state unemployment office in that month.
Claims-Based Unemployment Rates: Data Frequency

The digitized monthly IC, CC data reflect all claims filed with the state unemployment office in that month.

Double counting concern: An individual can show up as both an initial claimant and a continued claimant and/or show up repeatedly as a continued claimant in a given month.
The digitized monthly IC, CC data reflect all claims filed with the state unemployment office in that month.

Double counting concern: An individual can show up as both an initial claimant and a continued claimant and/or show up repeatedly as a continued claimant in a given month.

To avoid such double-counting of individuals, we convert monthly claims to average weekly claims for $IC_{i,t}, CC_{i,t}$.
Claims-Based Unemployment Rates: Data Frequency

The digitized monthly IC, CC data reflect all claims filed with the state unemployment office in that month.

Double counting concern: An individual can show up as both an initial claimant and a continued claimant and/or show up repeatedly as a continued claimant in a given month.

To avoid such double-counting of individuals, we convert monthly claims to average weekly claims for $IC_{i,t}, CC_{i,t}$:

- Conceptually approach similar to the BLS’s reference week used in sampling labor force activity, DOL’s insured unemployment.
- Monthly data are weighted by the split number of five-day workweeks in the month (weights as the sum or workdays in each given month, ignoring holidays, divided by five).
Claims-Based Unemployment Rates: Total Employment

[Graph showing unemployment rates over time with labels for NBER Recession, Claims-Based UR, Claims-Based UR-Emp, and Official UR.]
State-level Max Duration
Long-Term Unemployment Share
Comparison with the Insured Unemployment Rate

Our claims-based unemployment rates lie conceptually between BLS’s UR and DOL’s Insured unemployment rate (IUR)

$$IUR = \frac{\text{Average Weekly } CC}{\text{Lagged Covered Employment}}$$
Comparison with the Insured Unemployment Rate

Our claims-based unemployment rates lie conceptually between BLS’s UR and DOL’s Insured unemployment rate (IUR)

\[IUR = \frac{\text{Average Weekly } CC}{\text{Lagged Covered Employment}} \]

- \(IUR \) also omits workers based on benefit eligibility, exhaustion, doesn’t take a stance on search requirements.
Comparison with the Insured Unemployment Rate

Our claims-based unemployment rates lie conceptually between BLS’s \(UR \) and DOL’s Insured unemployment rate (\(IUR \))

\[
IUR = \frac{\text{Average Weekly } CC}{\text{Lagged Covered Employment}}
\]

- \(IUR \) also omits workers based on benefit eligibility, exhaustion, doesn’t take a stance on search requirements
- \(IUR, CBUR \) are highly correlated, close in levels
Comparison with the Insured Unemployment Rate

Our claims-based unemployment rates lie conceptually between BLS’s \(UR \) and DOL’s Insured unemployment rate (\(IUR \))

\[
IUR = \frac{\text{Average Weekly } CC}{\text{Lagged Covered Employment}}
\]

- \(IUR \) also omits workers based on benefit eligibility, exhaustion, doesn’t take a stance on search requirements
- \(IUR, CBUR \) are highly correlated, close in levels
- But monthly \(IUR \) is only available for 1986+ at state level, 1971+ at national level
Fitted Model: Intuition and Performance

Fitting exercise captures simple intuition: a state’s official unemployment rate is likely higher than national rate when they have a higher claims-based unemployment rate than national
Fitted Model: Intuition and Performance

Fitting exercise captures simple intuition: a state’s official unemployment rate is likely higher than national rate when they have a higher claims-based unemployment rate than national

Also anchors estimates around the national unemployment rate, remove level differences, smooth series
Fitted Model: Intuition and Performance

Fitting exercise captures simple intuition: a state’s official unemployment rate is likely higher than national rate when they have a higher claims-based unemployment rate than national.

Also anchors estimates around the national unemployment rate, remove level differences, smooth series.

These simple regressions fit official state-level URs very well:

- Avg. $R^2 = 0.83$
- Avg. correlation coefficient = 0.91, $\in (0.81 - 0.97)$
Recession Dating: DNS Algorithm

Gist: identifying local minima and maxima of the unemployment rate, ignoring low frequency variation in the unemployment rate

- Let u_t be a candidate for a cycle peak (cp)
- If $u_{t+h} > u_{cp}$ in all subsequent months until $u_{t+h+1} > u_{cp} + X$, confirm cp
- If $u_{t+h} < u_{cp}$, new candidate for cp
- After identifying a cp, proceed analogously to identify the next cycle trough (ct)...

Setting $X = 1.5$ identifies unemployment-based peak/troughs similar to those identified by NBER.
Unemployment Rate-CBUR Cross Correlations

Cross-correlogram

Cross-correlations of UR and CBUR (Post-1970)

Lag

Back
Recovery Pace: National Recoveries w/ CBUR Dates

![Graph showing recovery pace with CBUR dates for claims-based and official unemployment rates.](image-url)
Unemployment by Census Regions

Census Region I: CT, ME, MA, NH, RI, VT, NJ, NY, PA.
Census Region II: IN, IL, MI, OH, WI, IA, KS, MN, MO, NE, ND, SD.
Census Region III: DE, DC, FL, GA, MD, NC, SC, VA, WV, AL, KY, MS, TN, AR, LA, OK, TX.
Census Region IV: AZ, CO, ID, NM, MT, UT, NV, WY, AK, CA, HI, OR, WA.