Joining the Gig Workforce: A (Potentially) One-Way Trip with An Expensive Return Ticket

Kristina Sargent Jue (Jessie) Wang

Middlebury College RAND Corporation

January, 2023

Motivation

How does the gig sector affect workers and the labor market?

- Growing alternative work arrangement (e.g. Bracha and Burke, 2016)
- Worker outcomes are different from traditional sector (e.g. Jackson et al., 2017)
- Cyclicality with aggregate conditions in the labor market (e.g. Katz and Krueger, 2017)

Urgency: COVID accelerated the growth of gig sector, informal work arrangements more generally

Literature

Our framework draws from theoretical work on search and match and empirical work on work arrangement and transitions:

- Search and match with heterogeneous agents and more than one sector: Wolcott (2021); Okolo (2021); Bosch and Maloney (2010); Albrecht and Vroman (2002), ...
- Gig sector, informal sector, alternative work arrangement: Katz and Krueger (2017); Bracha and Burke (2016); CIPD (2017); Gash (2008), ...

Goals

Search and match model with:

- heterogeneous sectors, jobs, and workers
- endogenous sector choice
- frictions between sectors

Outcomes of interest:

- employment by sector
- wage heterogeneity
- gig choices, impacts on conventional sector
- impact on long-run measures, welfare

Model Environment

- Two sectors: conventional, gig
- Firms in conventional sector:
 - post jobs (endogenous)
 - cannot target specific workers
- Gig sector divides work and revenue equally among all gig workers
- Four types of workers
 - Never-gig (1): only work conventional jobs
 - Maybe-gig (2): work both conventional jobs and/or gig work under certain conditions
 - Always-gig (1): always work in gig only, when available

Model Environment 2

Matches in conventional sector are one firm, one worker

- On the job search for all gig workers without a conventional sector job
- Firms cannot discriminate but do negotiate different wages once matched, based on productivity and gig employment status
- Workers can work conventional job only, gig job only, or both conventional and gig jobs
- Workers of different employment statuses have different options
- How do workers choose and what are the implications of their choices?

Firms and Wages

Firms in the conventional sector follows the standard search and match model.

Jobs are filled by worker with gig-conventional employment status $i \in G, CG, C$:

$$J_{i,t} = y_{i,t} - k - w_{i,t} + \beta [(1 - \delta_C) \frac{e_C}{e_{C,t+1} + e_{CG,t+1}} (J_{i,t+1} - V_{i,t+1}) + (1 - \delta_{CG}) \frac{e_{CG}}{e_{C,t+1} + e_{CG,t+1}} (J_{i,t+1} - V_{i,t+1})]$$

Wages are a fraction of the match productivity, γ

$$w_{i,t} = \gamma y_i$$

The Gig Sector

Wage depends on gig sector size, number of workers, surplus sharing:

$$w_G = \bar{G}/(e_G + e_{CG})$$

Cost of working in gig:

- Lower probability of matching in conventional sector
- Loss of unemployment benefit/leisure value

Workers

Worker Types

- determined by productivity draw
- cutoffs endogenous, depend on other parameters
- on the job search in conventional sector when doing gig-only work
- add gig work to conventional job when the combination yields higher value
 - wage in gig sector is endogenous, decreases as no. of workers increases
 - trade-offs of added income, but costly (matching, wage penalties)
- choose gig work over unemployment benefits when higher expected value
- types not perfectly correlated to employment status- matching frictions, exogenous job destruction
 - workers only have agency at transition points

Worker Types

Type 1 workers: standard search agents U ≥ N_G, N_C ≥ N_{C,G}

► Type 2 workers: "sometimes gig v1" ► $U < N_G, N_C \ge N_{C,G}$, or $N_C \ge N_{C,G} > N_G > U$

▶ Type 3 workers: "sometimes gig v2"
▶ U ≥ N_G, N_C < N_{C,G}, or N_{C,G} > N_C > U ≥ N_G

Steady State

- Wages: $w_C, w_{CG}, w_G, \bar{w}_C, \bar{w}_{CG}$
- Employment: e_C, e_{CG}, e_G
- Unemployment: u
- Market tightness: θ
- Vacancies: v
- Distribution of Worker Types: 1-4
- Match probability: α_e , α_w

What Can We Learn?

We are especially interested in:

- Employment outcomes across sectors
- Relative wage in the gig sector
- Difference in conventional sector due to addition of gig
- Distribution of worker types

Quantitative exercises:

- Insurance vs supplement channels (today)
- What happens if gig sector (\overline{G}) keeps growing?
- Welfare implications

Parameterization: Benchmark Model

Parameter	Definition	Value					
β	Discounting	0.9967					
δ_{C}	Separation rate, conventional-only	0.0262					
k	Posting cost	0.3					
ϕ	Matching efficiency	0.18					
Ь	Unemployment benefit	0.5					
	Wage as ratio of productivity	0.8					
Model-specific parameters, at benchmark							
g	Gig size (fraction)	0.15					
δ_{CG}	Separation rate, conventional and gig	0.04					
$ au_{m}$	Matching friction	0.8					
$ au_{w}$	Wage penalty	0.5					

Preliminary Results: Benchmark Steady State

Outcome			
Type 1 worker			
Type 2 worker	0%		
Type 3 worker			
Type 4 worker			
Conventional-only employment rate, e _C			
Gig-only employment rate, <i>e</i> G			
Conventional and gig employment rate, e_{CG}			
Unemployment rate, <i>u</i>			

Preliminary Results: Comparative Statics

Outcome	Benchmark	τ_m		$ au_{w}$		Ь		g	
		0	1	0	1	0	1	0	1
Type 1 worker	55%	100%	55%	67%	0%	45%	49%	100%	2%
Type 2 worker	0%	0%	0%	8%	0%	16%	0%	0%	0%
Type 3 worker	6%	0%	0%	0%	29%	0%	21%	0%	0%
Type 4 worker	39%	0%	45%	25%	71%	39%	30%	0%	98%
e _C	0.55	0.00	0.54	0.69	0.23	0.51	0.58	0.97	0.04
e _G	0.03	1.00	0.01	0.00	0.01	0.03	0.01	0.00	0.02
e _{CG}	0.42	0.00	0.45	0.30	0.76	0.47	0.41	0.02	0.94
u	0	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.00

Worker Types Space: Insurance Channel

Figure: Interaction of *b* and τ_m

Worker Types Space: Supplement Channel

Figure: Interaction of τ_w and g

Conclusion

• Gig is fundamentally different from the conventional sector:

- hiring process
- nature of work
- wage process
- While gig provides options, it may come with costs
- Labor policy should take into account the role of gig work in potential to help and hurt workers

Next steps: welfare evaluation, policy experiments

Thank you!

Kristina Sargent kristinas@middlebury.edu

> Jessie Wang jwang@rand.org

Workers

When unemployed:

 $U_{i,t} = b_{i,t} + \beta[\alpha_{t+1}N_{c,t+1} + (1 - \alpha_{t+1})max(U_{i,t+1}, N_{G,t+1})]$ When employed:

$$N_{i,c,t} = w_{i,t} + \beta[(1 - \delta_{\mathcal{C}})max(N_{i,c,t+1}, N_{i,cg,t+1}) + \delta_{\mathcal{C}}U_{i,t+1}]$$

 $N_{i,cg,t} = \tau_w w_{i,t} + w_{i,g,t} + \beta [(1 - \delta_{CG}) max(N_{i,cg,t+1}, N_{i,c,t+1}) + \delta_{CG} N_{G,t+1}]$

$$N_{i,G,t} = w_{i,G,t} + \beta [\alpha_{t+1} \tau N_{i,cg,t+1} + (1 - \alpha_{t+1} \tau) N_{i,G,t+1}]$$