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Ample Evidence of Occupations Changing Over Time

And Occupations Differ Across Space

e Through new job titles introduced (Lin, 2071)
e Through changes in tasks within occupation (Atalay et al., 2020)

Yet, no systematic approach to measuring occupational dynamism
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Ample Evidence of Occupations Changing Over Time

And Occupations Differ Across Space

e Through new job titles introduced (Lin, 2071)
e Through changes in tasks within occupation (Atalay et al., 2020)

Yet, no systematic approach to measuring occupational dynamism

Traditional data sources in the United States have limited scope for this question

e O*NET compresses any occupation level variation, and updates only periodically
e Admin data, if it does have occupational information, omits the composition of tasks

m Teller at a bank branch with an ATM might have different responsibilities than a teller at a
bank branch without ATMs (Bessen, 2015)
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Information on Skills and Direction of Change is Hiding in Plain Sight

In the Form of Online Job Postings
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e Rich text data about workers and firms
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Information on Skills and Direction of Change is Hiding in Plain Sight

In the Form of Online Job Postings

Job postings provide
e Rich text data about workers and firms
e |n close to real-time

e Preserving variation

We propose an approach to turn this inherently unstructured data into spatial
representations

e Turning work into vectors — work2vec

e Primarily descriptive work
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How is the Labor Market Changing?

Labor market is a moving target — can we identify the direction and magnitude of change?

Outline:

e Methods: Variational autoencoder (VAE) trained on job postings from 2010-2019

e Results: Factors used to measure how occupations have changed over time

e Results: Factors used to measure how the overall job space has changed over time

* Application: A data-driven alternative to occupation classification
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Many different attributes of jobs are discussed in postings — postings have many
dimensions!
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Many different attributes of jobs are discussed in postings — postings have many
dimensions!

First Step: Turn words into vectors using a Large Language Model (LLM)
e BERT embeddings

e Produces a 512 x 768 dimensional matrix for each posting

Inherently an unsupervised learning problem
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Common Solution: Dimensionality reduction

e Linear factors (e.g. Principal Components Analysis (PCA))
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Common Solution: Dimensionality reduction
e Linear factors (e.g. Principal Components Analysis (PCA))
¢ Nonlinear factors (e.g. t-distributed stochastic neighbor (t-SNE) embeddings)

However, factors derived from these types of models lack regularity

A Variational Autoencoder (VAE) provides factors that are meaningful
¢ “Training the data itself as the label”

m Encoder: encodes the data into low-dimensional space
m Decoder: reconstructs the original data from the latent representation

* Training data expressed in a compact way, grouping similar data together in latent space
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1. Train a VAE with 30 factors

2. Micro-level: Compare movements in these factors to understand which occupations are
changing most over time

m Use Euclidean distance to look at differences between 2010 and 2019
3. Macro-level: Measure the volume of the “jobspace” over time

m Bootstrap samples of postings to measure the volume of the convex hull
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Occupation Level Results

Figure: Lowest Diversity Occupations in 2019
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Occupation Level Results

Figure: Lowest Diversity Occupations in 2019 Figure: Highest Diversity Occupations in 2019
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Occupation Level Results

Figure: Occupations Changing the Least
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Figure: Occupations Changing the Most
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How Do Changes Over Time Relate to Other Measures?

Change in Factors Between 20170 and 2019 as the Outcome
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How Do Changes Over Time Relate to Other Measures?

Change in Factors Between 20170 and 2019 as the Outcome

Change within Occupation

(b) Routine Cognitive

(c) Routine Manual
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Occupations changing the most were ones measured as most suitable for machine
learning and having larger shares of routine manual tasks
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Aggregate Labor Market

e Each posting has 30 factors

e Convex hull: smallest convex set that contains it
* Volume of the convex hull: spatial representation of the “jobspace”

m Challenge: Computationally very challenging
m Solution: Bootstrapping samples of postings
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Aggregate Labor Market Results

Recombination of Existing Roles:
points moving around within the existing
“jobspace”

Expansion of the “Jobspace”:
points that are outside of the existing
“jobspace”

Analogous classifications for patents in
Cheng et al. (2022) — also conceptually
motivated by Autor (2019)
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Aggregate Labor Market Results

Recombination of Existing Roles:

Distribution of Jobspace Volumes by Year
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Aggregate Labor Market Results

e The volumes of the jObSpaCG are Distribution of Jobspace Volumes by Year
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Application: Hierarchical Clustering/Aggregation

The Standard Occupation Classification
(SOC) system in the U.S. is used to
segment the labor market

But an alternative segmentation might
be more consistent with work performed
on the job (Turrell et al,, 2022)

Can we use the VAE factors to generate
a parallel SOC system?
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Conclusion

* New methods to characterize within occupation change and aggregate labor market
change over time using the text of job postings

e Routine manual occupations and those suitable for machine learning are changing most
m Important to take into account within-occupation change when measuring the effect of

technology on labor demand

e

e We are seeing a recombination of work, along with an expansion of the “jobspace”

m From 2015 to 2019, we saw the “jobspace” expanding at a rate of 4-5% per year
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Thank You!

Any feedback is appreciated

sarah.bana@gmail.com
erik.brynjolfsson@gmail.com
rockdi@wharton.upenn.edu
sebastian.steffen@bc.edu
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