Development via Administrative Redistricting

Ricardo Dahis¹ Christiane Szerman²

¹PUC-Rio

²Princeton University

ASSA 2023

Motivation

- ► Classic tension in fiscal federalism: large administrative units may not serve all its constituent parts equally well, but the parts worse off may not have the scale or resources to self-finance a secession.
- A country may decide to *subsidize voluntary splits* with federal transfers to weaken that trade-off.
 - But doing so introduces a new trade-off: new units receive concentrated benefits at the diffused expense of the rest of the country.
- ▶ To what extent such a policy is beneficial is an open empirical question.

This Paper

Study *one side* of this trade-off: **How do administrative splits impact local development in the areas seceding?**

- ► Identification: restrict attention to areas applying to split, then compare trajectories between those that split and *almost* split.
- Setting: Brazil.
 - By law, municipalities have:
 - 1. Administrative, fiscal and political decision-making power
 - 2. Standardized horizontal structure.
 - Rapid growth in number of units during 8-year window of time.
- Rich contextual information and data to explore mechanisms.

Preview of Results

1. Document that splits are **initiated by small, rural, and remote** districts.

2. Splits cause:

- Reallocation of federal transfers. (5.5 p.p.)
- Growth of local public sector and economic activity.
 - Concentrated in services.
- Supply-driven improvements in education and public services (3-7%).
- Luminosity growth exclusively driven by new units.

3. Interpretation

- Effects driven by forces beyond extra revenues.
- Adjustments to administrative remoteness and local preferences.
- 4. Net effects: positive (suggestive back-of-the-envelopes)

Contribution

- Decentralization and Size of Nations: Oates [1972, 1999], Bolton and Roland [1997], Alesina and Spolaore [1997, 2003], Bardhan [2002], Faguet [2004], Treisman [2007], Gadenne and Singhal [2014], Mookherjee [2015]
 - ▶ **Design of subnational borders:** Coate and Knight [2007], Weese [2015], Boffa et al. [2016], Gendźwiłł et al. [2020], Grossman and Lewis [2014], Grossman et al. [2017]
 - ⊳ We study splits, distinguish "initiator" and "abandoned", have an identification strategy and test mechanisms.
- ► Effects of Fiscal Spending: Litschig and Morrison [2013], Gadenne [2017], Lima and Silveira Neto [2018], Corbi et al. [2019]
 - > Autonomy modulates the effects of fiscal transfers.

Outline

Background

Empirics Setup Main Results

Interpretation

Net effects

Conclusion

Outline

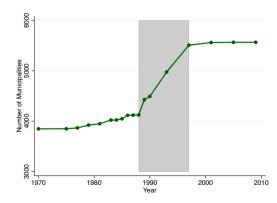
Background

Empirics
Setup
Main Results

Interpretation

Net effects

Conclusion


Background

- ▶ Three tiers of government: federal (Lo), states (L1) and municipalities (L2).
 - Municipality > district.
 - Attributions: education up to 9th grade, basic health, sanitation, security.
 - Revenues from: local taxation, federal transfers (and matching grants).
- ▶ New Constitution in 1988: facilitated and essentially subsidized splits.
 - 1. Low requirements: state legislation, \approx 5k people, unilateral referendum vote.
 - 2. Formalized a federal transfers scheme (FPM).
 - Guarantees a revenue floor to municipalities.
 - Step-wise population formula.
 - Zero-sum within state.
 - ightharpoonup New municipality \Longrightarrow others in state lose a bit.

Background

- Effectively led to a large increase in number of municipalities.
 - ► ↑ 23%, in two waves: 1992 and 1996.
- In 1996, Congress votes almost unanimously and passes amendment halting splits.
 - Impression of inefficiency and patronage.

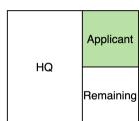
Figure: Number of Municipalities

Outline

Background

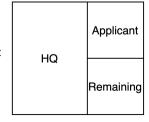
Empirics Setup Main Results

Interpretation


Net effects

Conclusion

Identification


- Control group: the almost split.
 - Rejected and unapproved requests.
 - Part left open because of 1996
 Amendment timing. Dates
- Two types of difference-in-differences (DD):
 - Municipality level: split vs. almost split.
 - District level:
 - Three types of districts: applicants, headquarters, remaining.
 - Split vs. almost split.

Municipalities

Almost Split

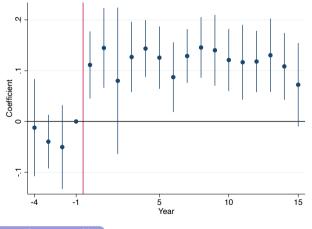
Split

Applicants Are Worse-Off

		In Estimation Sample					Rest			
	Applicant		Remaining		Headquarters		Periphery		Headquarters	
	Mean (1)	SD (2)	Mean (3)	SD (4)	Mean (5)	SD (6)	Mean (7)	SD (8)	Mean (9)	SD (10)
Population (ooo's)	5.8	14.1	3.1	5.4	31.6	63.5	3.6	13.1	17.9	48.9
Area (000's km2)	.6	1.8	٠3	.6	1	3.3	٠3	.9	.6	1.5
% Urban Population	38.9	26.6	27.7	24.6	67.9	22.4	32.4	24.8	61.9	22.6
% Male	51.8	1.3	52.3	1.8	50.3	1.2	52.3	1.9	51	1.3
% Literacy	65.8	11.6	64.9	12.3	70.2	9.6	64.3	11.2	68.9	8.6
% Piped Water	44.9	33	46.3	32	54.1	35.8	47.8	31.7	53	35.6
% Sanitation	60.2	35.1	64.8	31.7	62	36.5	63.2	32.7	60.6	36.5
% Trash Removal	9.9	18.4	7.3	16.3	34.4	28.6	7.1	16.2	29	26.7
Avg. Luminosity	1.9	6.2	1.3	5.2	3.1	6.5	1.9	8.1	2.5	7.3
	N = 560		N = 331		N = 390		N = 916		N = 1783	

Municipality Level | Balance in Levels

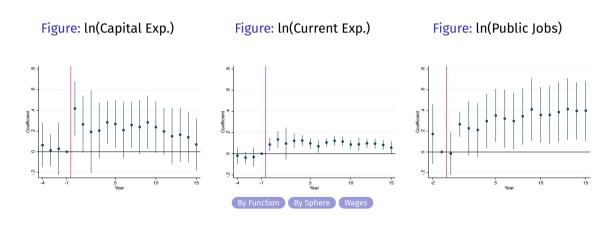
Specification: Difference-in-Differences

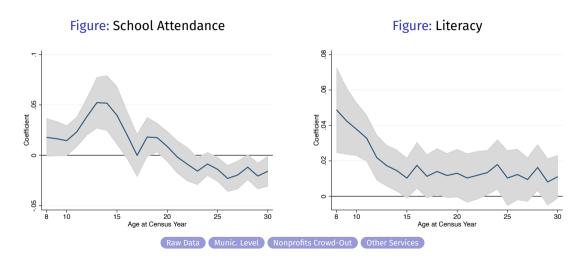

At the municipality level, estimate a difference-in-differences (DD):

$$y_{mt} = \alpha_m + \alpha_{s(m)t} + X_m^{1991} \alpha_t + \sum_{\tau = -\underline{\tau}}^{\overline{\tau}} \beta_{\tau} Split_m \mathbf{1}[t - E_{w(m)} = \tau] + \gamma Post_{w(m)} + \varepsilon_{mt}$$

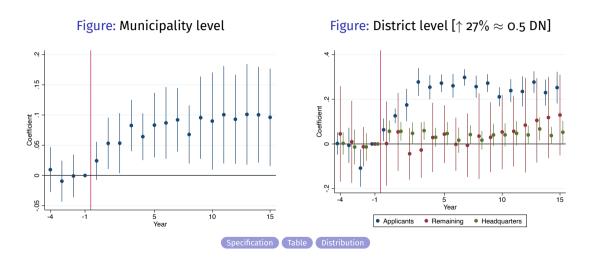
- \triangleright y_{mt} outcome for municipality m and year t.
- $ightharpoonup \alpha_m$ and $\alpha_{s(m)t}$: district and state-year fixed effects.
- $ightharpoonup X_m^{1991}\alpha_t$: baseline characteristics \times year FE.
 - e.g. population, area, number of districts, demographics, distance to capital, revenues.
- \triangleright $E_{w(m)}$: wave w of split request for municipality m.
- \triangleright ε_{mt} clustered at the state-split wave level.

Reallocation of Transfers


- Reallocation of federal transfers from rest of state to new municipalities. (5.5p.p.)
- ln(Revenues) grows \approx 12%.
 - ln(Federal Transfers p.c.) grows \approx 30%.


Change in FPM Composition

A new government is set up


▶ Investment spikes. Bureaucracy grows by \approx 40%.

Effects on Education Provision

Proxying Economic Activity: In(Nighttime Luminosity)

Outline

Background

Empirics
Setup
Main Results

Interpretation

Net effects

Conclusion

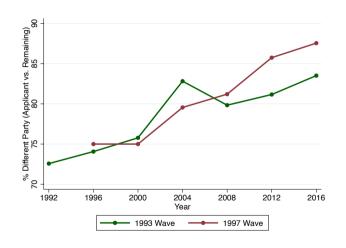
Conceptual Framework

- Simple conceptual framework in paper [Bolton and Roland, 1997, Dur and Staal, 2008].
 - Public good provision under redistricting.
 - Full information, one period.
- Municipality composed of two districts, A and B. Town hall resides in A.
- District A chooses levels of public goods for both districts.
- District B considers splitting off into new municipality.

Conceptual Framework

Effects of splits larger if

- Preference heterogeneity [Oates, 1972, Alesina and Spolaore, 1997]
- Neglect and elite capture [Bardhan and Mookherjee, 2000]
- Costs of administrative remoteness [Bardhan, 2002, Asher et al., 2018]
- 4. Fiscal transfers


- Findings point to effect beyond revenue shock.
 - Mix between 1, 2, and 3.
 - Political fragmentation ex-post.

Heterogeneity: luminosity in districts

	(1)	(2)	(3)	(4)
Post x Split	0.25***	0.20***	1.03***	-0.23
	(0.02)	(0.03)	(0.34)	(0.47)
ln(Expenditures)		0.08**	0.07**	0.08**
		(0.03)	(0.03)	(0.03)
Post x Split x ln(Population 1991)			-0.01	0.06
			(0.06)	(0.05)
Post x Split x ln(Area)			-0.09***	-0.23***
			(0.03)	(0.06)
Post x Split x % Urban 1991			-o.48**	-O.47**
			(0.22)	(0.20)
Post x Split x ln(Dist. Parent Townhall)				0.24
				(0.18)
Post x Split x ln(Dist. State Capital)				0.12**
				(0.05)

Political Fragmentation Ex-Post

- Plot % electing different parties over time.
- Comparing headquarters and new municipality, after split.

Outline

Background

Setup Main Results

Interpretation

Net effects

Conclusion

Net Effects

- Outstanding question: were subsidized splits worth it, on net?
- Propose two back-of-the-envelope exercises:
 - 1. At state level, exploit variation in amount of transfers reallocated to new municipalities and estimate effects on non-split.
 - 2. Weighted benefit-cost analysis.

1. Variation in the Extent of Reallocation of Federal Transfers

	Public Jobs (1)	Private Jobs (2)	Establishments (3)	Luminosity (4)
Change in Federal Transfers	-5.86 (5.83)	-9.73 (6.08)	-4.00** (1.66)	1.23 (1.00)
Observations	25	25	25	25
R-squared	0.38	0.48	0.71	0.54
Region FE	✓	✓	✓	✓
Split Wave	1997	1997	1997	1997
Mean	226.7	366.4	189.8	117.4
SD	403.9	442.5	133.7	59.62

2. Weighted Benefit-Cost Analysis

Back of the envelope accounting: weighted benefits and costs.

$$\Delta V = \Delta V_A + \Delta V_B + \Delta V_2$$

$$= \Delta T_A \times \underbrace{R_A}_{\approx 0} \times \underbrace{\alpha_A}_{\approx 22.2\%} + \underbrace{\Delta T}_{\approx 5.5p.p.} \underbrace{\left(\underbrace{R_B}_{\approx 77\% = 24\%/35\%} \times \underbrace{\alpha_B}_{\approx 4.3\%} - R_2 \times \underbrace{\alpha_2}_{\approx 73.4\%}\right)}_{\approx 73.4\%}$$

where α is % population, and R is return.

- Notation: headquarters (A), new (B), non-split (2).
- ▶ Aggregate $\Delta V \ge 0 \iff R_2 \le 4.5\%$ (i.e. low return on transfers in the rest of the country)
 - From auxiliary exercise on returns with FPM discontinuities [Litschig and Morrison, 2013, Corbi et al., 2019], it seems likely.

Outline

Background

Empirics
Setup
Main Results

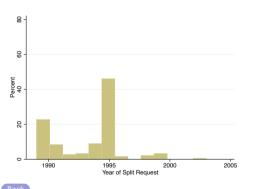
Interpretation

Net effects

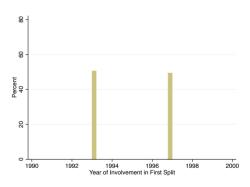
Conclusion

Conclusion

- We provide an empirical account of the medium-term economic effects of a large administrative redistricting event in Brazil.
- Results shine a broadly positive light on this type of decentralization reform.
 - No clear evidence of binding scale effects.
 - Net effects potentially positive.
- ▶ Maybe Congress should reconsider the 1996 decision to stop splits.


rdahis@econ.puc-rio.br

Thank you.


Ricardo Dahis

Dates of Requests and Splits - Sample States

Figure: Year of Request for Almost Split-Applicants

Figure: Year of Split for Split-Applicants

Resolução - ALESP nº 762, de 29/07/1994

Ementa Solicita ao TRE a realização de plebiscito referente à emancipação do Distrito de Jumirim, pertencente ao Município de Tietê.

Projeto/Autoria PR 15/1993 - Comissão de Assuntos Municipais

Promulgação Executivo

Publicação Diário Oficial - Executivo, 30/07/1994, p.73

Texto Original

(*) Os textos contidos nesta base de dados têm caráter meramente informativo. Somente os publicados no Diário Oficial estão

aptos à produção de efeitos legais.

Situação Atual Sem revogação expressa

Temas Desenvolvimento Urbano e Divisão Territorial
Poder Legislativo e Tribunal de Contas

Palavras-Chave PLEBISCITO / EMANCIPAÇÃO / DISTRITO / JURUMIM / TIETÊ

Detalhes da Proposição

Proposição: PL 250 1995

Proponente: Comissão de Constituição e Justiça » Situação: Sancionado(a) em 12/07/1995

» Tramitação: PROTOCOLO - envio em 07/06/1995

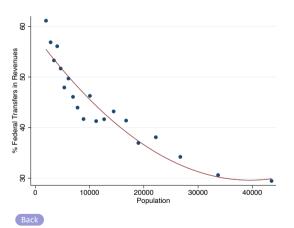
Legislação Tipo: Lei Número do processo: 20729.01.00/95-0

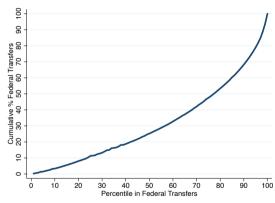
Assunto: PLEBISCITO VESPASIANO CORREA EMANCIPAÇÃO

Assunto: PLEBISCITO VESPASIANO CORREA EMANCIPACAO

Ementa: AUTORIZA A REALIZAÇÃO DE CONSULTA PLEBISCITARIA PARA EMANCIPAÇÃO DA LOCALIDADE DE VESPASIANO CORREA, PERTENCENTE AO MUNCIPIO DE MUCUM.

Votação:


Proposição Referida:


» Texto

» Justificativa

Federal Transfers Allocation

Setup

- Two districts, A and B, form one municipality.
- **Population** in A and B are α_A and α_B , respectively.
- Municipality revenues
 - Local taxation τy .
 - Federal transfers $T(\cdot)$ as function of population (fixed and formulaic).
- District A is headquarters and chooses levels of public good provision g.
 - ▶ Weighs each district with Pareto weights 1λ and λ .

Public Goods Provision

► When united, district A solves

$$\max_{g_A,g_B,\tau} (1-\lambda)\alpha_A U_A + \lambda \alpha_B U_B \quad \text{s.t.} \quad g_A + g_B \le \tau y + T(\alpha_A + \alpha_B)$$
 (1)

where
$$y \equiv \alpha_A y_A + \alpha_B y_B$$
 and $U_i(g, y) = \theta_i \ln(g) + (1 - \tau)y$.

- District B considers splitting off into a new municipality.
- ► If split, district B solves

$$\max_{g_B,\tau} \alpha_B U_B \quad \text{s.t.} \quad g_B \le \tau \alpha_B y_B + T(\alpha_B)$$
 (2)

Splitting

Proposition 1

District B is more likely to split with:

- 1. **(Neglect)** More neglect to its welfare by the headquarters (lower λ);
- 2. **(Fiscal Incentives)** Smaller population size (lower α_B) if there are
 - (A1) a high comparative gain in transfers if split; and
 - (A2) a high comparative tax base.

Math

Welfare After a Split

- **Second** municipality of size α_2 , not involved in splits.
- ▶ Changes in indirect utilities after a split: $\Delta V_i = V_i(T_i^S) V_i(T_i^U)$.
- ► Aggregate effect of split: $\Delta V_A + \Delta V_B + \Delta V_2$

Proposition 2

If district B is relatively small and neglected by district A, and if municipality 2 is relatively large, then

- 1. ΔV_A is small;
- 2. ΔV_B is positive;
- 3. ΔV_2 is negative.

Math

Back

A Simple Conceptual Framework

Proposition 1

District B is more likely to split with:

- 1. **(Neglect)** More neglect to its welfare by the headquarters (lower λ);
- 2. **(Fiscal Incentives)** Smaller population size (lower α_B) if there are
 - (A1) a high comparative gain in transfers if split $\left(\frac{T(\alpha_A+\alpha_B)}{y}\leq \frac{T(\alpha_B)}{\alpha_B y_B}\right)$; and
 - (A2) a high comparative tax base $\left(\frac{\theta_B}{y_B} \le \frac{\theta_A}{y_A}\right)$.

Welfare

- ► Second type of municipality of size α_2 .
- ▶ Changes in indirect utilities after a split: $\Delta V_i = V_i(T_i^S) V_i(T_i^U)$.
- ▶ Aggregate effect of split: $\Delta V_A + \Delta V_B + \Delta V_2$.

Proposition 2

If district B is relatively small $\left(\frac{\alpha_B}{\alpha_A}\to 0\right)$ and neglected by district A $(\lambda\to 0)$, and if municipality 2 is relatively large $\left(\frac{\alpha_2}{\alpha_A+\alpha_B}\to\infty\right)$, then

- 1. ΔV_A is small;
- 2. ΔV_B is positive and large;
- 3. ΔV_2 is negative and small.

Selection into Splitting - Municipality Level, Baseline

	Contains Applicant		Re	st
	Mean	SD	Mean	SD
	(1)	(2)	(3)	(4)
Number of Districts	3	1.8	1.6	1
Population (ooo's)	40.5	71.8	21.7	75.3
Area (000's km2)	2.5	10.3	.9	2.7
% Urban	58.5	23.8	59.2	22.8
Years of Education	8.8	1.4	8.8	1.4
% Literacy 11-14	91.6	8.9	92.3	8
% Literacy 25+	74.7	12.9	74.2	10.6
Preschool Attnd.	13.1	9.7	17.4	14
Middleschool Attnd.	88.1	10.7	89.7	11.5
% Piped Water	71.2	24.2	74.9	21.8
% Trash Collection	63.5	27.3	67.3	29.4
% Electricity	81.3	20	83.8	18.9
% Sewage	96.1	7.7	96.8	8
HHI Race	64.3	13.9	62.2	14.9
HHI Religion	75.8	12.2	79.3	12
% Federal Transfers	37.2	17	43.6	18.5
	N	= 448	N = 1	925

Back

Balance in Levels

	Applicants	Remair	ing
	Applicants	Headquarters	Periphery
	(1)	(2)	(3)
In(Population)	0.068**	-0.014	-0.030
in(Population)	(0.034)	(0.038)	(0.040)
% Urban Population	0.001	-0.002	0.001
% Orban Population	(0.001)	(0.002)	(0.001)
% Male	-0.026*	-0.045	-0.013
% Mate	(0.014)	(0.029)	(0.017)
0/ Literage		(0.029) -0.004	0.002
% Literacy	-0.003		
o/ Pi 1 W-+	(0.003)	(0.005)	(0.003)
% Piped Water	0.002	0.006*	0.001
	(0.001)	(0.003)	(0.002)
% Sanitation	0.004***	-0.002	0.000
	(0.002)	(0.003)	(0.002)
% Trash Removal	-0.001	0.000	-0.002
	(0.001)	(0.002)	(0.002)
ln(Avg. Luminosity)	-0.014**	-0.015	-0.011
	(0.007)	(0.019)	(0.009)
ln(Area)	0.097***	0.042	0.026
	(0.028)	(0.040)	(0.037)
In(Distance to Parent Townhall)	0.072	-0.023	0.071
	(0.045)	(0.030)	(0.068)
In(Distance to State Capital)	0.043	0.005	0.101**
	(0.032)	(0.041)	(0.046)
Observations	560	389	326

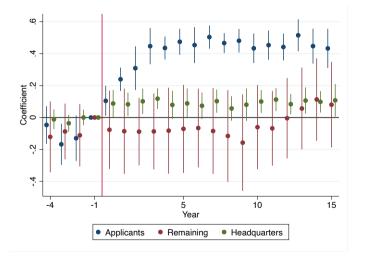
Back

Specification: Difference-in-Differences

Estimate difference-in-differences (DD):

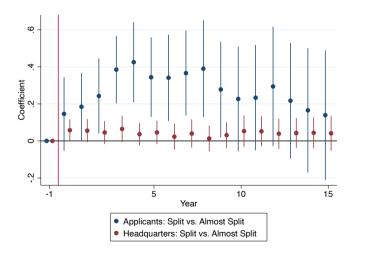
$$\mathbf{y}_{dt} = \alpha_d + \alpha_{\mathsf{s}(d)t} + \sum_{\tau = -\tau}^{\overline{\tau}} \beta_{\tau} \mathbf{1}[t - \mathbf{E}_{m(d)} = \tau] + \mathbf{X}_d^{\mathsf{1991}} \alpha_t + \varepsilon_{dt}$$

- v_{dt} outcome for district d and year t.
- $ightharpoonup \alpha_d$ and $\alpha_{s(d)t}$: district and state-year fixed effects.
- ► $E_{m(d)}$: term-year of split request for municipality m. ► $X_d^{1991}\alpha_t$: all baseline char. × year FE.
- Separately for applicants, headquarters, and remaining.



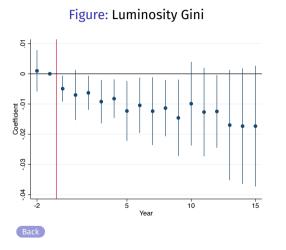
Results: In(Luminosity)

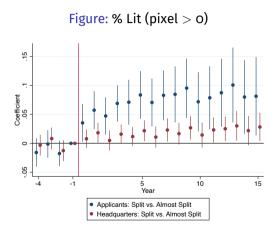
	Applicants			Remaining			
	(1)	(2)	(3)	(4)	(5)	(6)	
Post x Split	1.07*** (0.04)	0.34*** (0.05)	0.24*** (0.05)	o.58*** (o.o3)	0.04 (0.03)	0.02 (0.02)	
Observations R-squared	9,760 0.91	9,760 0.95	9,760 0.96	7,072 0.96	7,072 0.98	7,072 0.99	
State-Year FE	-	√ √	√ √	-	√ √	√ √	
Controls-Time FE	-	-	\checkmark	-	-	\checkmark	
Mean Pre-Split	-0.99	-0.99	-0.99	-0.0045	-0.0045	-0.0045	
SD Pre-Split	2.11	2.11	2.11	1.73	1.73	1.73	


Back

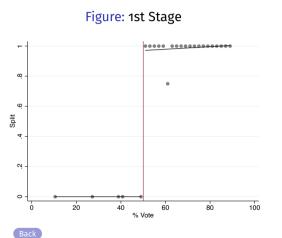
Results: ln(Luminosity) - District level (unbalanced)

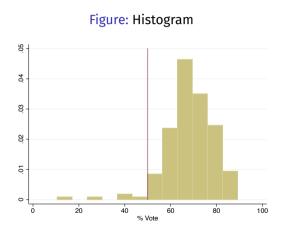
Results: ln(Luminosity) - District level


Robustness Table


	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	Baseline	No Controls	ln(Luminosity)	Only 97 Wave	More FEs	Cluster at State
Post x Split	0.33*** (0.07)	0.34*** (0.05)	0.33*** (0.10)	0.34** (0.13)	o.23*** (o.o7)	0.33*** (0.08)
Observations	10,122	10,122	9,616	4,920	10,122	10,122
R-squared	0.97	0.96	0.96	0.97	0.98	0.97
State-Year FE	✓	✓	✓	✓	-	✓
Controls-Time FE	✓	-	✓	✓	✓	✓
Microregion-Year FE	-	-	-	-	✓	-
Mean Pre-Split	-0.760	-0.760	-1.020	-0.690	-0.760	-0.760
SD Pre-Split	1.520	1.520	2.090	1.510	1.520	1.520

Notes: Robust standard errors in parentheses. Regressions include district and state-year fixed effects.




Luminosity - Distribution Over Space

Regression Discontinuity - Details

Regression Discontinuity - Covariates

Table: Discontinuity Test on Covariates

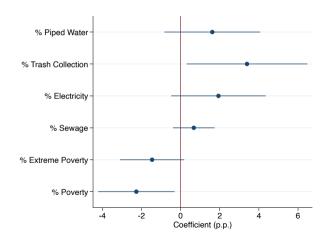
VARIABLES	(1) ln(Population)	(2) ln(Area)	(3) ln(Luminosity)	(4) ln(Dist. Parent Town Hall)
Referendum Vote \geq 50%	-0.38 (0.33)	0.62 (0.68)	-1.34 (0.91)	0.18 (0.41)
Observations	114	114	114	114
R-squared	0.40	0.11	0.27	0.11
Mean	3.090	5.623	-1.126	3.090
SD	0.674	1.125	1.654	0.674

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Fuzzy Difference-in-Discontinuities

	(1)	(2)	(3)	(4)
VARIABLES	First Stage	Reduced Form	Second Stage	DD
Referendum Vote \geq 50%	0.96*** (0.08)			
Post x Referendum Vote \geq 50%		0.04		
Post x Split		(0.03)	o.o7*** (o.o3)	0.17*** (0.02)
Observations	114	2,202	2,202	2,422
R-squared	0.76	0.98	0.98	0.98
District FE	-	\checkmark	✓	\checkmark
Controls-Year FE	-	\checkmark	✓	\checkmark
Mean	0.921	-0.540	-0.540	-0.601
SD	0.271	1.920	1.920	1.943

Public Services

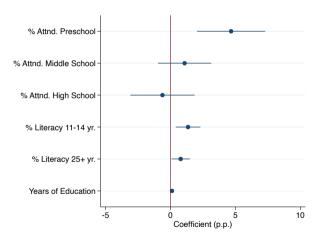

Analogous DD at the municipality level.

$$y_{mt} = \alpha_m + \alpha_{s(m)t} + X_m^{1991} \alpha_t + \beta Post_{mt} + \varepsilon_{mt}$$

 Results stronger where attribution is easier (trash collection).

Back

Figure: Households in groups:



Validation with Aggregate Data

Complement with simple DD at municipality-level.

$$\mathbf{y}_{mt} = \alpha_m + \alpha_{\mathsf{s}(m)t} + \mathbf{X}_m^{\mathsf{1991}} \alpha_t \\ + \beta \mathsf{Post}_{mt} + \varepsilon_{mt}$$

Back

% Federal Transfers Composition [5.5p.p. \equiv 4.6 billion (BRL 2019)]

Figure: Federal Transfers: Composition

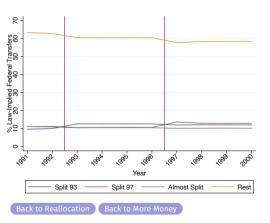
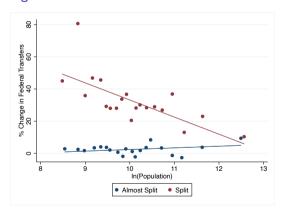
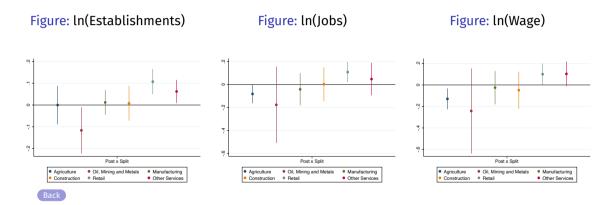
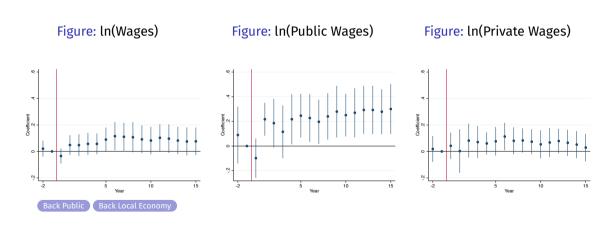




Figure: % Gains in FPM from $\tau = -1$ to $\tau = 0$



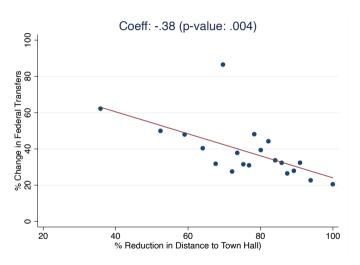
Structural Transformation (Municipality level)

Wages

► Some wage growth, driven by municipal public sector.

Horse-Race Between Splitting and Federal Transfers

	ln(Publ	ic Jobs)	ln(Establishments)		ln(Private Jobs)		ln(Luminosity)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Post x Split	0.25*** (0.08)	0.23*** (0.08)	0.05** (0.02)	0.04* (0.02)	-0.03 (0.06)	-0.03 (0.06)	o.o6** (o.o3)	o.o6** (o.o3)
ln(Revenues p.c.)	(0.00)	0.15*** (0.04)	(0.02)	0.03	(0.00)	0.04 (0.04)	(0.03)	0.03*
Observations	7,033	6,922	7,086	6,970	7,086	6,970	7,583	7,464
R-squared	0.87	0.87	0.99	0.99	0.98	0.98	0.99	0.99
State-Year FE	✓	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓
Controls-Time FE	✓	✓	✓	✓	✓	\checkmark	✓	✓
Mean Pre-Split	5.98	5.99	5.40	5.40	7.17	7.16	-0.08	-0.08
SD Pre-Split	1.35	1.35	1.5	1.5	2.02	2.04	1.65	1.65


Effects of Federal Transfers - Regression Discontinuity

- Leverage 1st discontinuity in allocation mechanism of federal transfers.
- Estimate a fuzzy RD design.

VARIABLES	(1) Transfers (mm)	(2) ln(Public Jobs)	(3) ln(Establishments)	(4) ln(Private Jobs)	(5) ln(Luminosity)
RD_Estimate	0.13*** (0.03)	0.06 (0.10)	-0.04 (0.11)	-0.15 (0.15)	-0.00 (0.16)
Observations	1,741	1,964	2,044	2,042	2,357
State-Year FE	√ ·	√	_,-,-,-, ✓	_,~,_	_,55 <i>i</i>
Optimal Bandwidth %	5.300	4.900	6.200	3.500	3.800

Change in Federal Transfers x Distance to Town Hall

Post x Split	0.24***	0.64	-0.43	0.30
Post x Split x ln(Pop. 1991)	(0.05)	(0.48) -0.03 (0.06)	(0.65) 0.02 (0.07)	(0.89) -0.06 (0.07)
Post x Split x ln(Area)		0.04 (0.05)	-0.12 (0.09)	-0.10 (0.09)
Post x Split x % Urban 1991		-0.01** (0.00)	-0.01** (0.00)	-0.00 (0.00)
Post x Split x ln(Dist. Parent Townhall)		(0.00)	0.27* (0.14)	0.29** (0.14)
Post x Split x ln(Dist. State Capital)			0.14* (0.07)	0.00
Post x Split x % Literacy 1991			(0.07)	-0.01 (0.01)
Post x Split x % Piped Water 1991				0.01) 0.01* (0.01)
Post x Split x % Sanitation 1991				0.01) 0.01 (0.01)
Post x Split x % Trash Collection 1991				-0.01** (0.00)
Observations	9,760	9,760	9,760	9,760

Migration - Municipality level

- Our findings could partly explained by net positive migration.
- ► Test: Census 2000 asks where person was 5 years before.
- Cross-section comparison between split vs. almost split.
 No strong evidence of migration.

Table: % From Different Municipality 5 Years Prior

	(4)	(2)
VARIABLES	(1)	(2)
Split	1.00* (0.59)	0.75 (0.59)
Observations	220	220
R-squared	0.33	0.45
State FE	-	\checkmark
Controls	Yes	Yes
Mean	9.800	9.800
SD	4.400	4.400

Mechanism: Preference Heterogeneity

$$y_{dt} = \alpha_d + \alpha_{s(d)t} + X_d^{1991}\alpha_t + \sum_{q=1}^{5} \beta_q Post_{w(d)} V_d^q + \gamma Post_{w(d)} + \lambda \ln(T)_{m(d)t} + \varepsilon_{dt}, \quad (3)$$

▶ Coefficients of interest: β_q

Mechanism: Local Preferences

	(1)	(2)	(3)
VARIABLES			
Post	0.17*** (0.05)	-0.28 (0.53)	
Post x % In Favor	(0.03)	0.00	
Post x % In Favor Q1			0.09 (0.10)
Post x % In Favor Q2			0.09
Post x % In Favor Q3			0.15** (0.07)
Post x % In Favor Q4			0.19** (0.08)
Post x % In Favor Q5			0.30*** (0.08)
Observations	2,069	2,069	2,069
R-squared	0.98	0.98	0.98
District FE	✓	\checkmark	\checkmark
State-Time FE	✓	\checkmark	\checkmark
Baseline Chars. x Time FE	✓	✓	✓

- Alberto F. Alesina and Enrico Spolaore. On the Number and Size of Nations. Quarterly Journal of Economics, 112(4):1027–1056, 1997.
- Alberto F. Alesina and Enrico Spolaore. *The Size of Nations*. MIT Press, 1st edition, 2003.
- Sam Asher, Karan Nagpal, and Paul Novosad. The Cost of Distance: Geography and Governance in Rural India. 2018.
- Pranab Bardhan. Decentralization of Governance and Development. *Journal of Economic Perspectives*, 16(4):185–205, 2002. ISSN 08953309. URL http://www.jstor.org/stable/3216920.
- Pranab Bardhan and Dilip Mookherjee. Capture and Governance at Local and National Levels. *American Economic Review*, 90(2):135–139, 2000.
- Federico Boffa, Amedeo Piolatto, and Giacomo A. M. Ponzetto. Political Centralization and Government Accountability. *Quarterly Journal of Economics*, 131(1):381–422, 2016.
- Patrick Bolton and Gerard Roland. The Breakup of Nations: A Political Economy Analysis. *Quarterly Journal of Economics*, 112(4):1057–1090, 1997.

- François E. J. De Bremaeker. Os Novos Municípios: Surgimento, Problemas e Soluções. *Revista de Administração Municipal*, 206, 1993.
- Stephen Coate and Brian Knight. Socially Optimal Districting: A Theoretical and Empirical Exploration. *Quarterly Journal of Economics*, 122(4):1409–1471, 2007.
- Raphael Corbi, Elias Papaioannou, and Paolo Surico. Regional Transfer Multipliers. *Review of Economic Studies*, 86:1901–1934, 2019.
- Esther Duflo. Schooling and Labor Market Consequences of School Construction in Indonesia: Evidence from an Unusual Policy Experiment. *American Economic Review*, 91(4):795–813, 2001.
- Robert Dur and Klaas Staal. Local public good provision, municipal consolidation, and national transfers. *Regional Science and Urban Economics*, 38(2):160–173, 2008. ISSN 01660462. doi: 10.1016/j.regsciurbeco.2008.01.005.
- Jean-Paul Faguet. Does decentralization increase government responsiveness to local needs? Evidence from Bolivia. *Journal of Public Economics*, 88:867–893, 2004. ISSN 00472727. doi: 10.1016/S0047-2727(02)00185-8.
- Lucie Gadenne. Tax Me, but Spend Wisely? Sources of Public Finance and Government Accountability. *American Economic Journal: Applied Economics*, 9 (1):274–314, 2017. ISSN 19457790. doi: 10.1257/app.20150509.

- Lucie Gadenne and Monica Singhal. Decentralization in Developing Economies. *Annual Review of Economics*, 6(1):581–604, 2014. doi: 10.1146/annurev-economics-080213-040833. URL http://dx.doi.org/10.1146/annurev-economics-080213-040833.
- Adam Gendźwiłł, Anna Kurniewicz, and Paweł Swianiewicz. The impact of municipal territorial reforms on the economic performance of local governments. A systematic review of quasi-experimental studies. *Space and Polity*, pages 1–20, 2020. ISSN 14701235. doi: 10.1080/13562576.2020.1747420. URL https://doi.org/10.1080/13562576.2020.1747420.
- Guy Grossman and Janet I. Lewis. Administrative Unit Proliferation. *American Political Science Review*, 108(01):196–217, 2014.
- Guy Grossman, Jan H Pierskalla, and Emma Boswell Dean. Government Fragmentation and Public Goods Provision. *Journal of Politics*, 79(3), 2017. ISSN 14682508. doi: 10.1086/690305.
- Ricardo Carvalho de Andrade Lima and Raul da Mota Silveira Neto. Secession of municipalities and economies of scale: Evidence from Brazil. *Journal of Regional Science*, 58(1):159–180, 2018. ISSN 14679787. doi: 10.1111/jors.12348.

- Stepan Litschig and Kevin M. Morrison. The impact of intergovernmental transfers on education outcomes and poverty reduction. *American Economic Journal: Applied Economics*, 5(4):206–240, 2013. ISSN 19457782. doi: 10.1257/app.5.4.206.
- Dilip Mookherjee. Political Decentralization. *Annual Review of Economics*, 7(1): 231–249, 2015. doi: 10.1146/annurev-economics-080614-115527. URL http://www.annualreviews.org/doi/abs/10.1146/annurev-economics-080614-115527.
- Wallace E. Oates. Fiscal Federalism. Edward Elgar Publishing, 1972.
- Wallace E. Oates. An Essay on Fiscal Federalism. *Journal of Economic Literature*, 37(September):1120–1149, 1999.
- Charles M. Tiebout. A Pure Theory of Local Expenditures. *Journal of Political Economy*. 64(5):416–424, 1956.
- Daniel Treisman. The Architecture of Government: Rethinking Political Decentralization. Cambridge University Press, 1st edition, 2007.
- Eric Weese. Political mergers as coalition formation: An analysis of the Heisei municipal amalgamations. *Quantitative Economics*, 6(2):257–307, 2015. ISSN

17597323. doi: 10.3982/QE442. URL http://doi.wiley.com/10.3982/QE442.