Risk Compensation after COVID-19 Vaccination

Jisoo Hwang¹ Seung-sik Hwang¹ Hyuncheol Bryant Kim² Jungmin Lee¹ **Junseok Lee**^{*3}

¹Seoul National University

²Hong Kong University of Science and Technology

³University of California, Berkeley

January 8, 2023 AEA Annual Meetings

- Vaccine take-up is essential to address the COVID-19 pandemic.
- But, some concerns about its risk compensation effect.
 - vaccination $\uparrow \Rightarrow$ infection risk $\downarrow \Rightarrow$ social distancing \downarrow ?
 - A medical study shows 3.2-fold increase in exposure would halve vaccination benefit.
- Our Question: Does COVID-19 vaccination reduce social distancing behaviors?
 - Exploit RD design based on birth date cutoff of vaccine rollout in South Korea
 - Use comprehensive data: survey data and credit card data
- Our Finding: No evidence of risk compensation effect

2. Institutional Background and Data

3. Empirical Strategy

4. Results4.1 LATE4.2 Selection Heterogen4.2 External Validity

4.3 External Validity

COVID-19 vaccine rollout in South Korea

- During 2021, due to vaccine shortage, the govt prioritized immunizing old people.
- Eligibility dates were determined by date of birth.

Year of birth	1st dose	2nd dose	
-1946	Apr 1	Apr 22	
1947-1956	May 27	Aug 12	
1957-1961	June 7	Aug 23	
1962-1966	July 26	Sept 6	
1967-1971	Aug 16	Sept 27	
1971-	Aug 26	Oct 7	

COVID-19 vaccine rollout in South Korea

- During 2021, due to vaccine shortage, the govt prioritized immunizing old people.
- Eligibility dates were determined by date of birth.

Year of birth	1st dose	2nd dose	
-1946	Apr 1	Apr 22	
1947-1956	May 27	Aug 12	
1957-1961	June 7	Aug 23	
1962-1966	July 26	Sept 6	
1967-1971	Aug 16	Sept 27	
1971-	Aug 26	Oct 7	

- Our main cutoff: 1961 cohort vs 1962 cohort

Source: Korea Disease Control and Prevention Agency

Source: Korea Disease Control and Prevention Agency

Data

- 1. Survey data
 - Conduct survey for 3,018 individuals of cohort 1961–1962
 - Collect vaccine status, social distancing behaviors, individual characteristics, and perception of vaccine
 - Outcome Variable: mean of indicators for the 10 types of self-reported social activities
- 2. Credit card data
 - Shinhan Card: a credit card company with the largest market share (21.5%)
 - Record credit card usage by category (e.g., restaurant, travel, offline retail)
 - Outcome Variable: daily number of offline transactions

2. Institutional Background and Data

3. Empirical Strategy

- 4. Results4.1 LATE4.2 Selection Heteroge
- 4.3 External Validity

Empirical Strategy

- Fuzzy RD model using the cutoff of date of birth (DOB_i)

$$\begin{array}{ll} (\text{First Stage}) & D_i = \beta_{\text{FS}} \cdot \mathbb{I} \ (\text{DOB}_i \geq \tau) + f \ (\text{DOB}_i) + \varepsilon_i \\ (\text{Intention-To-Treat}) & Y_i = \beta_{\text{ITT}} \cdot \mathbb{I} \ (\text{DOB}_i \geq \tau) + f \ (\text{DOB}_i) + \varepsilon_i \end{array}$$

with

- D_i: indicator of vaccine take-up
- Y_i: outcome variable of social activities
- τ : eligibility cutoff (Dec 31, 1961)
- Then we can identify LATE from $\beta_{\text{LATE}} = \beta_{\text{ITT}} / \beta_{\text{FS}}$.
 - Interpretation of $\beta_{LATE} \Rightarrow$ risk compensation effect of vaccine compliers

(1)

- 2. Institutional Background and Data
- 3. Empirical Strategy

4. Results4.1 LATE4.2 Selection Heteroge4.3 External Validity

First Stage Effect

Survey Data

- A huge increase in vaccine take-up among those in the eligible group
 - $\beta_{FS} = 0.634$ (Std. Err. 0.029)
- In other words, 63.4% of those at the cutoff are vaccine compliers.

LATE Survey Data

- No increase in social activities among those in the eligible group

- $\beta_{ITT} = 0.012 \, (\text{Std. Err. } 0.010)$

- Thus, no evidence of risk compensation effect among vaccine compliers
 - $\beta_{\text{LATE}} = 0.012/0.634 = 0.019$ (Std. Err. 0.016)
- Precisely estimated zero
 - 95% confidence interval can rule out even modest effect (at most 5% point ↑)

LATE Survey Data

- No evidence of risk compensation effect in any social activities

Intention-to-Treat Effect

1st Dose (July 1–July 25)

Credit Card Data

2nd Dose (Aug 26-Sept 4) 0.60 0.60 **Daily offline transactions Daily offline transactions** 0 55 0.55 0.50 0.50 0.45 0.45 0.40 0.40 90 180 270 360 360 on 90 180 270 360 Birth date relative to December 31 1961 Birth date relative to December 31 1961

- No increase in offline transactions among those in the eligible group (if any, negative)
- We can infer no evidence of risk compensation effect.

- 2. Institutional Background and Data
- 3. Empirical Strategy

4. Results4.1 LATE4.2 Selection Heterogeneity4.3 External Validity

Compliance Groups

Identification: Graphical Intuitioin

- Previous no risk compensation effect is only for vaccine compliers ($P_{C} = 64\%$).
- But their effect could differ from other compliance groups if they have heterogeneous characteristics.

Compliance Groups

Identification: Graphical Intuitioin

- Previous no risk compensation effect is only for vaccine compliers ($P_{C} = 64\%$).
- But their effect could differ from other compliance groups if they have heterogeneous characteristics.
- Definition of other compliance groups:
 - Never-takers: $DOB_i \ge \tau$ but $D_i = 0$
 - Always-takers: $DOB_i < \tau$ but $D_i = 1$

Identification: Graphical Intuition

Identification: Graphical Intuition

- Restricting non-takers sample $(D_i = 0)$

Identification: Graphical Intuition

- Restricting non-takers sample $(D_i = 0)$
- $\mathbb{E}[X \mid \text{Ineligible Non-takers}]$ equals to

$$\frac{P_{\mathsf{C}}}{P_{\mathsf{C}} + P_{\mathsf{N}}} \mathbb{E}\left[X \mid \mathsf{C}\right] + \frac{P_{\mathsf{N}}}{P_{\mathsf{C}} + P_{\mathsf{N}}} \mathbb{E}\left[X \mid \mathsf{N}\right]$$

Identification: Graphical Intuition

- Restricting non-takers sample $(D_i = 0)$
- $\mathbb{E}[X \mid \text{Ineligible Non-takers}]$ equals to

$$\frac{P_{\mathsf{C}}}{P_{\mathsf{C}} + P_{\mathsf{N}}} \mathbb{E}\left[X \mid \mathsf{C}\right] + \frac{P_{\mathsf{N}}}{P_{\mathsf{C}} + P_{\mathsf{N}}} \mathbb{E}\left[X \mid \mathsf{N}\right]$$

- Identification of selection heterogeneity between N and C near the cutoff:

$$\mathbb{E}\left[X \mid \mathsf{N}\right] - \mathbb{E}\left[X \mid \mathsf{C}\right] = \frac{P_{\mathsf{C}} + P_{\mathsf{N}}}{P_{\mathsf{C}}} \cdot \beta_{D_{i}=0}$$

- Similiarly, if restricting $D_i = 1$,

$$\mathbb{E}\left[X \mid \mathsf{A}\right] - \mathbb{E}\left[X \mid \mathsf{C}\right] = -\frac{P_{\mathsf{C}} + P_{\mathsf{A}}}{P_{\mathsf{C}}} \cdot \beta_{D_{i}=1}$$

Estimation Result

	(1)	(2)
	Always-takers	Never-takers
Variable	 Compliers 	 Compliers
Male	-0.031	-0.108
	(0.093)	(0.089)
Married	0.042	0.002
	0.062	0.065
Middle school or less	-0.003	0.146**
	(0.054)	(0.066)
College or more	0.043	-0.192**
	(0.081)	(0.093)
White-collar job	-0.037	-0.207***
	(0.073)	(0.070)
Conservative	0.111	0.115
	(0.088)	(0.082)
Belief about vaccine effectiveness	-0.217	-1.605***
	(0.517)	(0.482)
Worry about vaccine side effects	-0.164	2.126***
	(0.596)	(0.566)

- No difference between Always-takers and Compliers
- Compared to Compliers, Never-takers
 - are less educated
 - have less white-collar jobs
 - have negative belief about vaccine effects
 - worry about side effects

: 95%, *: 99%

- 2. Institutional Background and Data
- 3. Empirical Strategy

4. Results4.1 LATE4.2 Selection Heterogeneity4.3 External Validity

External Validity

Testable Restrictions

- Let $G_i \in \{A, C, N\}$ denote the compliance types.
- Our study has external validity if

$$G_i \perp (Y_i(0), Y_i(1)) \mid \mathsf{BOD}_i$$
 (2)

- Testable restrictions of external validity near the cutoff:

$$\mathbb{E}[Y(0) | \mathbf{N}] - \mathbb{E}[Y(0) | \mathbf{C}] = \frac{P_{\mathsf{C}} + P_{\mathsf{N}}}{P_{\mathsf{C}}} \cdot \beta_{D_{i}=0} = 0$$
(3)
$$\mathbb{E}[Y(1) | \mathbf{A}] - \mathbb{E}[Y(1) | \mathbf{C}] = -\frac{P_{\mathsf{C}} + P_{\mathsf{A}}}{P_{\mathsf{C}}} \cdot \beta_{D_{i}=1} = 0$$
(4)

- The failure to reject the joint test of (3) and (4) lends support to external validity (Bertanha and Imbens 2020).

External Validity Test Result

	Means at the cutoff			Difference in Means		Joint <i>F</i> -Test	
	(1)	(2)	(3)	(4)			(1) - (2) = 0
	Always	Treated	Untreated	Never			and
Variable	-takers	compliers	compliers	-takers	(1) - (2)	(3) - (4)	(3) - (4) = 0
Index:	0.250	0.248	0.227	0.223	0.002	0.004	0.039
social activities	(0.019)	(0.012)	(0.021)	(0.008)	(0.026)	(0.023)	[0.981]

- We can conclude that selection in vaccine take-up does not necessarily imply treatment effect heterogeneity.

- 2. Institutional Background and Data
- 3. Empirical Strategy
- 4. Results4.1 LATE4.2 Selection Heteroge
- 4.3 External Validity

Conclusion

- We study the causal effect of COVID-19 vaccination on social distancing behaviors.
 - Exploit RD design based on birth date cutoff of vaccine rollout in South Korea
 - Use comprehensive data: survey data and credit card data
- Find no evidence of risk compensation effect for all vaccine compliance groups

Thank you!