CONDUCTING UNCONVENTIONAL MONETARY POLICY WITH FOREIGN EXCHANGE RESERVES

Min Kim

Rutgers University

ASSA Annual Meeting

January 8, 2023

Emerging market and developing economies (EMDEs) are vulnerable to sudden stops

- Emerging market and developing economies (EMDEs) are vulnerable to sudden stops ▶ data
- Exchange rate depreciation triggers the balance sheet effect, resulting in a severe recession
 - Raising policy rates defends the value of currency but further exacerbates financial stress

- Emerging market and developing economies (EMDEs) are vulnerable to sudden stops ▶ data
- Exchange rate depreciation triggers the *balance sheet effect*, resulting in a severe recession
 - Raising policy rates defends the value of currency but further exacerbates financial stress
- During the COVID-19 crisis, EMDEs conducted asset purchase programs (IMF 2020) ▶ data

- In many cases, asset purchases were sterilized to avoid inflationary pressures

- Emerging market and developing economies (EMDEs) are vulnerable to sudden stops of the sudden stops
- Exchange rate depreciation triggers the balance sheet effect, resulting in a severe recession
 - Raising policy rates defends the value of currency but further exacerbates financial stress
- During the COVID-19 crisis, EMDEs conducted asset purchase programs (IMF 2020) ▶ data
 - In many cases, asset purchases were sterilized to avoid inflationary pressures
- Q1. Can sterilized asset purchase be an effective policy tool in a sudden stop?
 - I examine welfare gains to evaluate effectiveness

- Emerging market and developing economies (EMDEs) are vulnerable to sudden stops of the bata
- Exchange rate depreciation triggers the *balance sheet effect*, resulting in a severe recession
 - Raising policy rates defends the value of currency but further exacerbates financial stress
- During the COVID-19 crisis, EMDEs conducted asset purchase programs (IMF 2020) ▶ data
 - In many cases, asset purchases were sterilized to avoid inflationary pressures
- Q1. Can sterilized asset purchase be an effective policy tool in a sudden stop?
 - I examine welfare gains to evaluate effectiveness
- Q2. If so, how to design this new tool? Which asset to purchase and how to sterilize?
 - I compare three different policy designs to find the most effective one

This paper

- proposes a small-open economy DSGE framework built on Gali-Monacelli (2005)
 - abstracting from nominal rigidity and assuming incomplete financial market
- with three key specifications:
 - (i) Financial market imperfection, (ii) Liability dollarization, and (iii) Fear of losing reserves

This paper

- proposes a small-open economy DSGE framework built on Gali-Monacelli (2005)
 - abstracting from nominal rigidity and assuming incomplete financial market
- with three key specifications:
 - (i) Financial market imperfection, (ii) Liability dollarization, and (iii) Fear of losing reserves
- Results:
- 1. shows sterilized asset purchase is effective and it brings welfare gains
- 2. finds the optimal policy rule considering trade-offs: deep recession vs. slow recovery
- 3. provides the most effective design: purchasing corporate bonds sterilized with FX reserve

Related literature

Financial frictions in open economies

Krugman 1999, Aghion-Bacchetta-Banerjee 2004, Céspedes-Chang-Velasco 2004, Gertler-Gilchrist-Natalucci 2007, Aoki-Benigno-Kiyotaki 2016, Kitano-Takaku 2020, Akinci-Queralto 2022

- ⇒ This paper: nonlinearities arising from the frictions imposed
- Unconventional monetary policies in open economies

Jeanne-Korinek 2010, Bianchi 2011, Bianchi-Mendoza 2018 Céspedes-Chang-Velasco 2017, Chang-Velasco 2017, Chang 2018 Basu-Boz-Gopinath-Roch-Unsal 2020, Carrasco-Hoyle 2020 Hofmann-Patel-Wu 2021, Mimir-Sunel 2021

- ⇒ This paper: sterilized asset purchase as a policy response to sudden stops
- Motive for FX reserve hoarding

Jeanne-Rancière 2011, Gopinath-Stein 2018, Bocola-Lorenzoni 2020, Céspedes-Chang 2020 Das-Gopinath-Kim-Stein 2022

Outline

- Model
- Results
- Conclusion

- Consider a small-open economy with two tradable goods: home and foreign goods
 - inhabited by households, banks, non-financial firms, and the consolidated government

- Consider a small-open economy with two tradable goods: home and foreign goods
 - inhabited by households, banks, non-financial firms, and the consolidated government

- The economy is susceptible to sudden stops induced by risk premium shocks

- Consider a small-open economy with two tradable goods: home and foreign goods
 - inhabited by households, banks, non-financial firms, and the consolidated government
- The economy is susceptible to sudden stops induced by risk premium shocks
- Assume that banks are subject to
 - Liability dollarization: borrow in foreign currency (i.e., in units of foreign goods)
 - Financial market imperfection: operate under leverage constraint (à la Gertler-Kiyotaki-Karadi)

- Consider a small-open economy with two tradable goods: home and foreign goods
 - inhabited by households, banks, non-financial firms, and the consolidated government
- The economy is susceptible to sudden stops induced by risk premium shocks
- Assume that banks are subject to
 - Liability dollarization: borrow in foreign currency (i.e., in units of foreign goods)
 - Financial market imperfection: operate under leverage constraint (à la Gertler-Kiyotaki-Karadi)
- The government conducts asset purchase programs with sterilization using FX reserves
 - Fear of losing reserves: the use of reserves is limited by a constraint

Banks

- The balance sheet is given as

$$\underbrace{q_{kt}s_{Bt} + q_{bt}b_{Bt}}_{\text{assets}} = \underbrace{n_t}_{\text{net worth}} + \underbrace{e_td_t}_{\text{liabilities}}$$

where e_t is real exchange rate and $d_t \equiv d_{Ht} + d_{Ft}$

Banks

The balance sheet is given as

$$\underbrace{q_{kt}s_{Bt} + q_{bt}b_{Bt}}_{\text{assets}} = \underbrace{n_t}_{\text{net worth}} + \underbrace{e_td_t}_{\text{liabilities}}$$

where e_t is real exchange rate and $d_t \equiv d_{Ht} + d_{Ft}$

- Banks are subject to the leverage constraint (Gertler-Karadi 2013) → details

$$V_t(n_t) \ge \underbrace{\theta(q_{kt}s_{Bt} + \Delta q_{bt}b_{Bt})}_{\text{divertible assets}}$$

that is occasionally-binding, where $\Delta \in [0,1)$

- The balance sheet is given as

$$\underbrace{q_{kt}s_{Gt} + e_tf_t}_{\text{assets}} = \underbrace{q_{bt}b_t}_{\text{liabilities}}$$

- The balance sheet is given as

$$\underbrace{q_{kt}s_{Gt} + e_tf_t}_{\text{assets}} = \underbrace{q_{bt}b_t}_{\text{liabilities}}$$

Consider corporate bond purchases sterilized with FX reserves

$$q_{kt} \underbrace{s_{Gt}}_{\uparrow} + e_t \underbrace{f_t}_{\downarrow} = q_{bt} \underbrace{b_t}_{constant}$$

- **Policy rule**: sell Γ_t fraction of FX reserves

$$\Gamma_t \equiv \phi_\mu(\mu_t - \mu)$$

where $\phi_{\mu} > 0$ is the degree of intervention to ease financial stress measured by

$$\mu_t \equiv \mathbb{E}_t (R_{kt+1} - R_{t+1} \frac{e_{t+1}}{e_t})$$

the spread on corporate bond

- **Policy rule**: sell Γ_t fraction of FX reserves

$$\Gamma_t \equiv \phi_\mu(\mu_t - \mu)$$

where $\phi_{\mu} > 0$ is the degree of intervention to ease financial stress measured by

$$\mu_t \equiv \mathbb{E}_t (R_{kt+1} - R_{t+1} \frac{e_{t+1}}{e_t})$$

the spread on corporate bond

Assume a constraint on the use of reserves

$$\Gamma_t \leq \bar{\Gamma}$$

that is occasionally-binding, where $\bar{\Gamma} \in (0, 1]$ due to "fear of losing reserves"

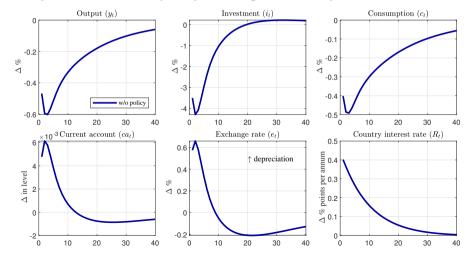
Rest of the model

- The economy is subject to debt-elastic interest rates (Schmitt-Grohé and Uribe 2003)

$$R_t = R_t^* + \psi \left[\exp \left(\frac{e_t (d_{Ft} - f_t)}{y_t} - \frac{e(d_F - f)}{y} \right) - 1 \right] + \xi_t$$

where ξ_t is a risk premium following AR(1) that generates sudden stops

- The model is calibrated using data 2000-2020 for five countries
 - Chile, Colombia, Korea, Philippines, and Turkey calibration model fit


- The model is calibrated using data 2000-2020 for five countries
 - Chile, Colombia, Korea, Philippines, and Turkey calibration model fit
- and solved with two occasionally-binding constraints
 - (i) leverage constraint and (ii) fear of losing reserves

- The model is calibrated using data 2000-2020 for five countries
 - Chile, Colombia, Korea, Philippines, and Turkey calibration model fit
- and solved with two occasionally-binding constraints
 - (i) leverage constraint and (ii) fear of losing reserves
- 1. Sudden stop episodes with and without sterilized asset purchase
- 2. Design of sterilized asset purchase

- In the steady state where banks are not constrained
 - a risk premium shock hits by 0.1%p, initiating a sudden stop

Kim (Rutgers) 11/20

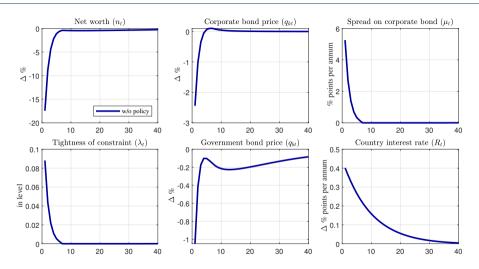
- In the steady state where banks are not constrained
 - a risk premium shock hits by 0.1%p, initiating a sudden stop

Kim (Rutgers) 11/20

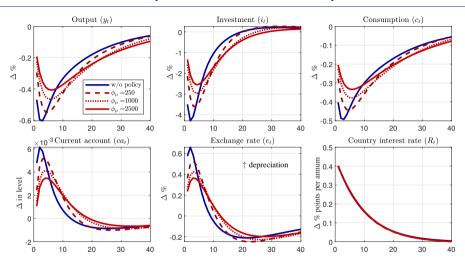
- Sudden stop is contractionary and the effect is amplified as the banks get constrained

- Sudden stop is contractionary and the effect is amplified as the banks get constrained
- To see in more detail, banks' net worth is

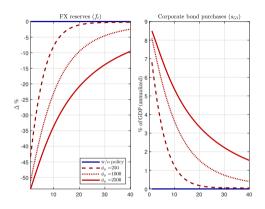
$$\underbrace{n_t}_{\downarrow\downarrow} = \underbrace{(z_t + (1 - \delta)q_{kt})s_{Bt-1}}_{\downarrow\downarrow} + \underbrace{(\Xi + \varrho q_{bt})b_{Bt-1}}_{\downarrow\downarrow} - \underbrace{e_t R_t d_{t-1}}_{\uparrow}$$

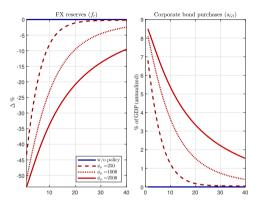

- As banks get constrained, their asset demand decreases
 - which lowers asset prices, and hence, net worth deteriorates further

- Sudden stop is contractionary and the effect is amplified as the banks get constrained
- To see in more detail, banks' net worth is

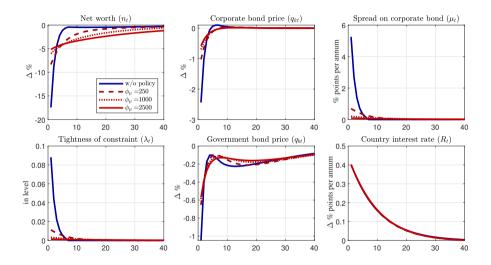

$$\underbrace{n_t}_{\downarrow\downarrow} = \underbrace{(z_t + (1 - \delta)q_{kt})s_{Bt-1}}_{\downarrow} + \underbrace{(\Xi + \varrho q_{bt})b_{Bt-1}}_{\downarrow} - \underbrace{e_t R_t d_{t-1}}_{\uparrow}$$

- As banks get constrained, their asset demand decreases
 - which lowers asset prices, and hence, net worth deteriorates further
- This negative feedback loop is balance sheet effect that amplifies the sudden stop details


Kim (Rutgers) 12 / 20



- The spike in spread indicates a tight credit condition, inducing investment decline


- The impact of sudden stop is significantly diminished under policy
 - More aggressive policy (higher ϕ_{μ}) brings greater buffer effects

- In addition to direct liquidity provision, the policy supports asset prices and exchange rates
- Thus, the policy enchances the value of banks' net worth, relaxing the leverage constraint

Sudden stop with sterilized asset purchase

Kim (Rutgers) 16 / 20

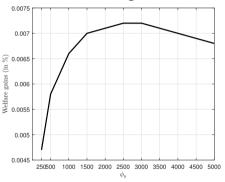
Policy trade-offs

- Trade-offs: deep recession vs. slow recovery
 - Eliminating spreads decreases banks' profits, slowing down the growth of net worth

Kim (Rutgers) 17 / 20

Policy trade-offs

- Trade-offs: deep recession vs. slow recovery
 - Eliminating spreads decreases banks' profits, slowing down the growth of net worth
- The growth of net worth can be written as


$$\underbrace{\frac{n_{t}}{n_{t-1}}}_{\downarrow} = \underbrace{\left(R_{kt} - R_{t} \frac{e_{t}}{e_{t-1}}\right)}_{\downarrow} \underbrace{\frac{q_{kt-1}s_{Bt-1}}{n_{t-1}}}_{\downarrow} + \underbrace{\left(R_{bt} - R_{t} \frac{e_{t}}{e_{t-1}}\right)}_{\downarrow} \underbrace{\frac{q_{bt-1}b_{Bt-1}}{n_{t-1}}}_{\downarrow} + R_{t} \frac{e_{t}}{e_{t-1}}$$

showing that net worth recovers in a slower pace with low spreads

Kim (Rutgers) 17 / 20

Welfare analysis

- The consumption-equivalent welfare measure is given below

- The policy brings welfare gains whose concave shape describes trade-offs
 - The optimal level of intervention is ϕ_{μ} = 2500 under which the welfare is maximized

Kim (Rutgers) 18 / 20

Design of sterilized asset purchase program

- Consider a discretionary asset purchase in the steady state where banks are constrained

Kim (Rutgers) 19 / 20

Design of sterilized asset purchase program

- Consider a discretionary asset purchase in the steady state where banks are constrained
- 1. Purchasing corporate bonds is more effective than government bond (re)purchases Pfigure

$$q_{kt} \underbrace{s_{Gt}}_{\text{constant}} + e_t \underbrace{f_t}_{\downarrow} = q_{bt} \underbrace{b_t}_{\downarrow}$$

- Intuition: since gov. bond is safer, it is less effective in making banks' portfolio less riskier

Kim (Rutgers) 19 / 20

Design of sterilized asset purchase program

- Consider a discretionary asset purchase in the steady state where banks are constrained
- 1. Purchasing corporate bonds is more effective than government bond (re)purchases Pfigure

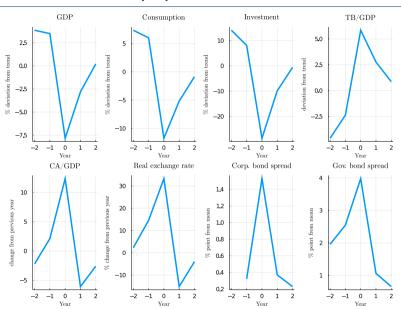
$$q_{kt} \underbrace{s_{Gt}}_{\text{constant}} + e_t \underbrace{f_t}_{\downarrow} = q_{bt} \underbrace{b_t}_{\downarrow}$$

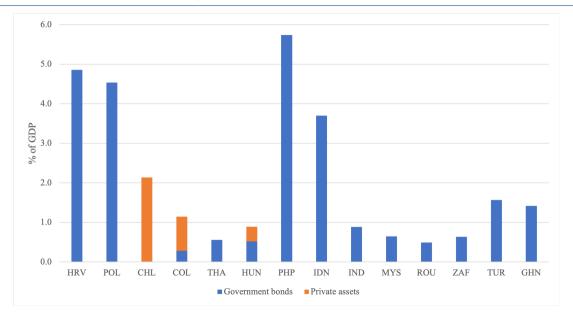
- Intuition: since gov. bond is safer, it is less effective in making banks' portfolio less riskier
- 2. Selling FX reserve is a better sterilization than issuing government bonds of the sterilization than issuing government bonds

$$q_{kt} \underbrace{s_{Gt}}_{\uparrow} + e_t \underbrace{f_t}_{constant} = q_{bt} \underbrace{b_t}_{\uparrow}$$

- Intuition: the effect gets partially offset, since banks must absorb these additional bonds

Kim (Rutgers) 19 / 20


Conclusion


- This paper analyzes the effectiveness and design of sterilized asset purchase programs
- Policy implications:
 - Conduct sterilized asset purchase programs in a sudden stop if banks are constrained
 - Purchasing private assets sterilized with FX reserves is most effective
 - Too much asset purchases may slow down the recovery
 - Hoard enough FX reserves in advance details

Kim (Rutgers) 20 / 20

Appendix

Sudden stop episode (South Korea 1998) Back

- The given constraint can be rewritten in terms of the leverage ratio defined as

$$l_t = \frac{q_{kt}s_{Bt} + \Delta q_{bt}b_{Bt}}{n_t} \le \overline{l}_t$$

where the maximum value is

$$\bar{l}_{t} \equiv \frac{\mathbb{E}_{t} \Lambda_{t,t+1} \Omega_{t+1} R_{t+1} e_{t+1} / e_{t}}{\theta - \mathbb{E}_{t} \Lambda_{t,t+1} \Omega_{t+1} (R_{kt+1} - R_{t+1} e_{t+1} / e_{t})}$$

Calibration Back

- The following parameters are targeting
 - Banks' leverage, government bond spread, and corporate bond spread in the steady state

Parameter	Value	Description	Source/Target
Δ	0.37	Relative divertible fraction of gov. bond	Gov. bond spread
χ	0.92	Banks' surviving probability	Mimir-Sunel (2021)
θ	{0.1587,006116}	Divertible fraction of total assets	Leverage & lending-deposit rate spread
ı	$\{0.0112, 0.0019\}$	Transfer rate for new banks	Small positive number

- The persistence of risk premium is estimated from Emerging Markets Bond Spread (EMBI+)

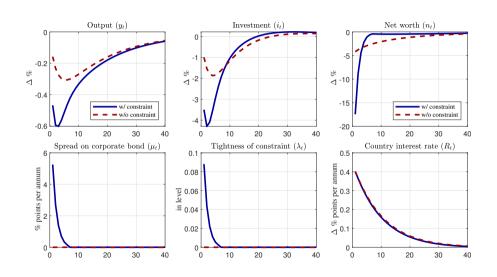
Other parameters • Back

Parameter	Value	Description	Source/Target
β	0.99	Discount factor	Standard
σ	2	Inverse of intertemporal elasticity of subst.	Standard
α	0.33	Income share for capital	Standard
δ	0.025	Depreciation rate	Standard
κ_i	1	Adjustment cost in capital production	Standard
κ_h	2.2434	Utility weight on labor	Labor hours of 1/3
φ	1/3	Inverse of Frisch elasticity	Gertler-Kiyotaki (2010)
η	1.5	Trade elasticity	Kitano-Takaku (2020)
γ	0.29	Trade openness	Export-GDP ratio

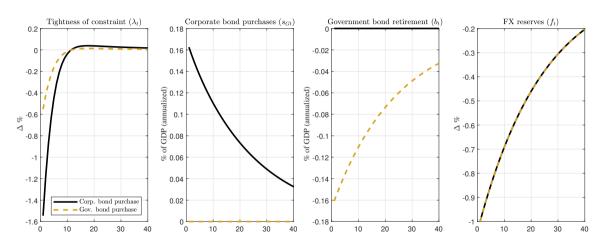
- External debt, FX reserves, gov. spending to GDP ratios are from the data

Other parameters • Back

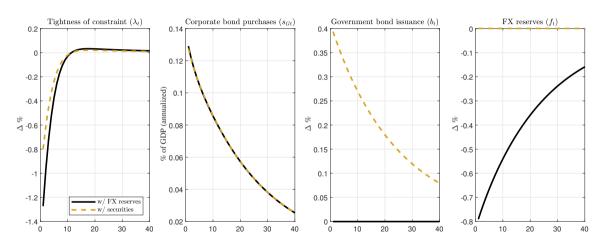
Parameter	Value	Description	Source/Target	
Ξ	0.0275	Coupon payment for gov. bond	Spread on gov. bond	
ϱ	0.9848	Decaying rate for gov bond	10 years duration	
g	0.13	Government public spending	Gov. expenditure to GDP ratio	
f	0.64	FX reserves	Reserve to GDP ratio (annual)	
$\phi_{\underline{\mu}}$	{250,1000,2500}	Responsiveness to spreads in policy rule		
$\dot{ar{\Gamma}}$	{1,0.3}	Limit on the use of FX reserves		
ρ_{ξ}	0.91	Persistence in risk premium	AR(1) estimation	
ψ	0.001	Elasticity of debt in interest rate	Small positive number	
R^*	1.0101	Foreign interest rate	Implied from model	
<i>y</i> *	1	Foreign output	Normalization	
<i>y</i> *	0.344	Foreign trade openness	Implied from model	


Untargeted moments • Back

Moments	Model		Data		
			Average	Minimum	Maximum
$\rho(c, y)$	1.00	0.99	0.71	0.22	0.94
$\rho(i, y)$	0.85	0.79	0.49	0.34	0.75
$\rho(tb, y)$	-0.68	-0.61	-0.46	-0.66	-0.27
$\rho(ca, y)$	-0.66	-0.55	-0.41	-0.73	-0.22
$\rho(e, y)$	-0.3	-0.15	-0.15	-0.48	0.51
$\rho(l, y)$	-0.47	-0.53	-0.06	-0.17	0.11
$\rho(\mu, y)$	-0.51	-0.61	-0.16	-0.7	0.36
$\sigma(c)/\sigma(y)$	0.87	0.92	1.04	0.24	1.63
$\sigma(i)/\sigma(y)$	5.41	6.19	4.07	2.28	7.72


- Although the magnitude is larger, the model delivers the correct cyclicality
- It also delivers relative volatilities close to the ones from data

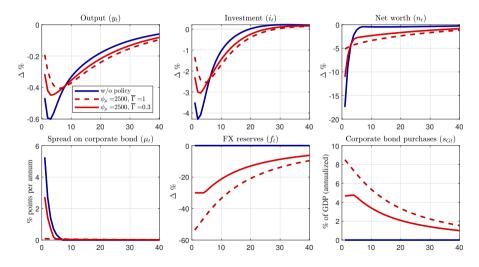
Sudden stop is amplified through balance sheet effect . Back



Corp. bond purchase vs. Gov. bond purchase Pack

- Same amount of FX reserves used but the effect is greater when purchasing corporate bonds

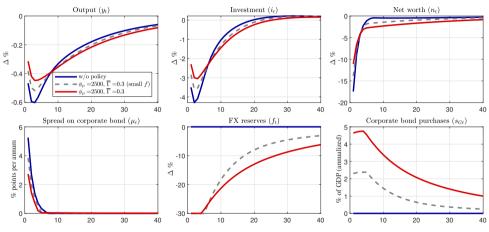
Sterilization with FX reserves vs. Other securities Pack



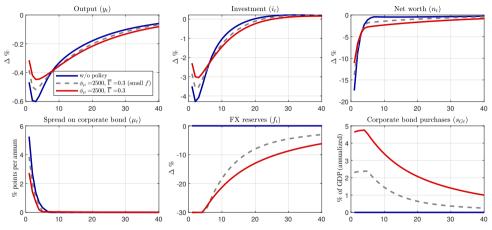
- Same amount of corporate bond purchase but the effect is greater when sterilized with FX reserves

The role of FX reserves → Back

1. Suppose that use of reserves is limited to 30%: $\bar{\Gamma} = 0.3$


1. Suppose that use of reserves is limited to 30%: $\bar{\Gamma}=0.3$

The role of FX reserves ▶ Back


2. Suppose further that the amount of FX reserves is small

2. Suppose further that the amount of FX reserves is small

The role of FX reserves Back

2. Suppose further that the amount of FX reserves is small

- Both analyses emphasize the role of FX reserve as a war chest