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This paper

We show that a causal effect can be nonparametrically identified
using bunching.

Causal effect: average marginal treatment effect among the marginal
observations at the bunching point.

Identification does NOT require:

Exclusion restrictions
Functional forms
Distributional assumptions
Special data structures

Identification requires:

Continuity conditions
Local independence and monotonicity conditions
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Bunching

Bunching: Concentration of observations at a point of an otherwise
locally continuous distribution.
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Treatment variables with corner bunching

More common than you think!

Usually found when treatment is a choice: often there is bunching at
zero.

Consumption goods: e.g. vitamin supplements, cigarettes, alcohol,
and coffee.

Financial variables: e.g. credit card debt, credit access, bequests,
and expenditure on ads.

Time use: e.g. exercising, working, doing homework, volunteering,
and using social media.

Artificially created restrictions: minimum schooling, minimum wage,
minimum age to work, and minimum 401K contributions.

Generally applicable whenever Caetano (2015)’s test can be applied
at the boundary. Several examples in a variety of settings in
economics, political science, and finance.
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Main insight (1)

Distribution of confounders is discontinuous at the bunching point

PRi = how strict the parents are

Xi = hours watching TV per week

Xi0

E[PRi |Xi ]

E[PRi |Xi = 0]
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Main insight (2)

Discontinuity of the outcome at the bunching point reveals
behavior of confounders
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P-value of Discontinuity: 0.000

If effect of TV is continuous, discontinuity on skills is due to one reason:

differences in confounders and/or their effects on the outcome among

those at the bunching point and those near it.
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Ordering at the bunching point

Treatment variable Xi has bunching at Xi = 0.

Suppose observations at the bunching point may be ordered by an

unobservable X ∗i ≤ 0. When Xi > 0, we write X ∗i = Xi , so

Xi = max{X ∗i , 0}, P(X ∗i < 0) > 0

Helpful: X ∗i is a “desired treatment” under no constraint.

Helpful: X ∗i orders observations by level of indifference between

Xi = 0 and Xi = h for a small h > 0.

X ∗i not a structural quantity, only an index such that those with

X ∗i = −h are comparable with those with Xi = h.
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Outcome and Treatment Effect

Potential outcomes model:

Yi = Yi (Xi )

Average Marginal Treatment Effect at Xi = x :

β(x) = E[Y ′i (x)|Xi = x ]
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Fundamental problem of causality

Yi = E[Yi (Xi )− Yi (0)|X ∗i ]︸ ︷︷ ︸
treatment effect

+E[Yi (0)|X ∗i ]︸ ︷︷ ︸
selection

+Yi − E[Yi |X ∗i ]︸ ︷︷ ︸
idiosyncratic error

d

dXi
E[Yi |Xi = 0+] : = E[Y ′i (0)|X ∗i = 0]︸ ︷︷ ︸

β(0)

+
d

dX ∗i
E[Yi (0)|X ∗i = 0]︸ ︷︷ ︸
endogeneity bias
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Assumption 1 (part 1)

1 Distribution of X∗i : for some h > 0,

a The support of the distribution of Xi is dense in (0, h).

b X ∗i has a density for x ∈ (−∞, h]

c fX∗(0) > 0.

d fX∗(x) is right-continuous at x = 0

Continuous treatment
and treatment effects

conditional on X ∗i

2 Treatment effects: for all x , x ′ ∈ [0, h), for some h > 0,

a Yi (x) is continuously differentiable a.s. conditional on X ∗i = x ′

b For all ε > 0, there exists δ > 0 such that x , x ′ ∈ [0, δ) =⇒
E[|Y ′i (x)− Y ′i (0)| |X ∗i = x ′] < ε.

c E[|Y ′i (x)||X ∗i = x ′] ≤ C <∞.
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Assumption 1 (part 2)
Continuous selection on X ∗i at zero

3 Selection:

a As x ↓ 0, Yi (0)|X ∗i = x →a.s. Yi (0)|X ∗i = 0.

b E[Y ′i (0)|X ∗i = x ′] is right-continuous at x ′ = 0.

c Either E[Yi (0)|X ∗i = x ] is equal to zero, or it is monotonic and

differentiable for x ≤ 0.

d fE[Y (0)|X∗]|X=0 ≤ C <∞.

4 Idiosyncratic error: either

a Stronger condition: Yi (0)− E[Yi (0)|X ∗i ] ⊥⊥ X ∗i |Xi = 0.

b Weakest condition: define Wi a random variable derived from the

deconvolution of dFY (0)−E[Y (0)|X∗]|X=0+ from fY (0)|X=0. Then

fW |X=0(E[Yi (0)|X ∗i = 0]) = fE[Y (0)|X∗]|X=0(E[Yi (0)|X ∗i = 0]) holds.
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Assumption 1 (part 2)

Monotonic selection on X ∗i at zero
3 Selection:

a As x ↓ 0, Yi (0)|X ∗i = x →a.s. Yi (0)|X ∗i = 0.

b E[Y ′i (0)|X ∗i = x ′] is right-continuous at x ′ = 0.

c Either E[Yi (0)|X ∗i = x ] is equal to zero, or it is monotonic and

differentiable for x ≤ 0].
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4 Idiosyncratic error: either
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b Weakest condition: define Wi a random variable derived from the

deconvolution of dFY (0)−E[Y (0)|X∗]|X=0+ from fY (0)|X=0. Then

fW |X=0(E[Yi (0)|X ∗i = 0]) = fE[Y (0)|X∗]|X=0(E[Yi (0)|X ∗i = 0]) holds.
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How to identify u′(0)?

Yi = E[Yi (Xi )− Yi (0)|X ∗i ] + E[Yi (0)|X ∗i ]︸ ︷︷ ︸
u(X∗i )

+Yi − E[Yi |X ∗i ]︸ ︷︷ ︸
εi

endogeneity bias: u′(0) =
d

dX ∗i
E[Yi (0)|X ∗i = 0]

u(X ∗i ) is a deterministic function of X ∗i .

Change in Variables Theorem:

u invertible and differentiable =⇒ fu(X∗)(u(x)) · |u′(x)| = fX∗(x)

If fu(X∗)(u(x)) 6= 0,

u′(x) = sgn(u′(x)) · fX∗(x)

fu(X∗)(u(x))
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How to identify u′(0)?

u′(x) = sgn(u′(x)) · fX∗(x)

fu(X∗)(u(x))

We can identify if u(x) is increasing or decreasing.

We can identify fX∗(x) for x > 0.

We can identify fu(X∗)|X∗≤0(u(x)) for u(x) ≤ u(0) if u is increasing,

for u(x) ≥ u(0) if u is decreasing.
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How to identify u′(0)?

Suppose u increasing.

u′(0) = sgn(u′(0))
fX∗|X=0(0)

fu(X∗)|X=0(u(0))

fX∗/FX (0)

0

fX∗|X=0(0)

fu(X∗)|X=0

fu(X∗)|X=0(u(0))

u(0)
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How to identify u′(0)?

Suppose u increasing.

u′(0) = sgn(u′(0))
fX∗|X=0(0)

fu(X∗)|X=0(u(0))

fX∗/FX (0)

0

fX∗(x
′)/FX (0)

fu(X∗)|X=0

fu(X∗)|X=0(u(x ′))

u(0)
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How to identify sgn(u′(0))?

Yi = E[Yi (Xi )− Yi (0)|X ∗i ] + E[Yi (0)|X ∗i ]︸ ︷︷ ︸
u(X∗i )

+Yi − E[Yi |X ∗i ]

∆ := E[Yi |Xi = 0+]− E[Yi |Xi = 0] = u(0)− E[u(X ∗i )|X ∗i ≤ 0]
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How to identify fX ∗|Xi=0(0)?

fX∗|X=0(0) =
fX∗(0)

FX (0)

=
limx↓0 fX (x)

FX (0)
=:

fX (0+)

FX (0)
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How to identify fu(X ∗)|X=0(u(0))?

Yi = E[Yi (Xi )− Yi (0)|X ∗i ] + E[Yi (0)|X ∗i ]︸ ︷︷ ︸
u(X∗i )

+Yi − E[Yi |X ∗i ]︸ ︷︷ ︸
εi

Convolution: for Xi = 0, Yi = u(X ∗i ) + εi

, so

fY |X=0(y) =

∫
fu(X∗)|X=0(y − e)dFε|X=0(e)

By the continuity of the distribution of ε|X = x , we can identify

Fε|X=0(e) =: FY−E[Y |X=0+]|X=0+ (e)

By the Fourier representation:

fu(X∗)|X=0(u(0)) =
1

2π

∫
E[e iξYi |Xi = 0]

E[e iξ(Yi−u(0))|Xi = 0+]
e−iξu(0)dξ,

where i =
√
−1.
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Theorem: Identification of tre

If Assumption 1 holds, then the β(0) = E[Y ′i (0)|X ∗i = 0] is identifiable as

β(0) = lim
x↓0

d

dx
E[Yi |Xi = x ]− sgn(u′(0)) ·

fX∗|X=0(0)

fu(X∗)|X=0(u(0))
,

where

∆ = E[Yi |Xi = 0+]− E[Yi |Xi = 0]

fu(X∗)|X=0(u(0)) =
1

2π

∫
E[e iξYi |Xi = 0]

E[e iξ(Yi−E[Yi |Xi=0+])|Xi = 0+]
e−iξE[Yi |Xi=0+]dξ
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What else is on the paper?

If u′(x) = g(x ; θ) is invertible on θ, then all treatment effects are

identified. Example: E[Yi (0)|X ∗i ] = δ0 + δX ∗i .

Conditioning on controls, Zi , weakens assumptions:

1 Monotonicity of E[Yi (0)|X ∗i ,Zi ] may switch signs.

2 Yi − E[Yi |X ∗i ,Zi ] ⊥⊥ X ∗i |Xi = 0,Zi .

3 Identification of treatment effects elsewhere may be done by
assuming, e.g. E[Yi (0)|X ∗i ,Zi ] = δ0(Zi ) + δ(Zi )X

∗
i .

Estimators, and estimators in the control case: methods for large

vector of mixed discrete/continuous controls.

Application to the effects of TV watching on children’s cognitive and
cognitive skills. Results are positive on cognitive skills and slightly
more negative on non-cognitive skills.
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assuming, e.g. E[Yi (0)|X ∗i ,Zi ] = δ0(Zi ) + δ(Zi )X

∗
i .

Estimators, and estimators in the control case: methods for large

vector of mixed discrete/continuous controls.

Application to the effects of TV watching on children’s cognitive and
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Conclusion

We show that bunching may be used for nonparametric
identification of a treatment effect in the presence of endogeneity.

Method identifies the average marginal treatment effect among the
marginal observations at the bunching point.

At the bunching point, requirements are: (1) ordering according to
X ∗i , (2) monotonicity of E[Yi (0)|X ∗i ], (3) independence of
Yi (0)− E[Yi (0)|X ∗i ] and X ∗i .

Above (near) the bunching point, requirement are (1) the
right-continuity of treatment effects, (2) right continuity of
E[Y ′i (0)|X ∗i ] and distribution of Yi (0)|X ∗i .

Identification uses the change-in-variables theorem to derive d
dX∗i

from the comparison between the density of X ∗i and the density of
E[Yi (0)|X ∗i ] at Xi∗ = 0.
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Additional Material

Average Marginal Treatment Effects elsewhere

For x > 0,
d

dx
E[Yi |X = x ] = β(x) + u′(x)

Extend requirements on differentiability to x > 0.

In this case, identification of all marginal effects depends

exclusively on assumptions on u′(X ∗i ) = d
dxE[Yi (0)|X ∗i ]:

Assumption 2

Suppose that u′(x) = g(x ; θ), where g is known, but the scalar θ is not.

Suppose also that g(0; θ) is invertible in θ.

If Assumptions 1 and 2 hold, then

u′(x) = g(x ; θ) =⇒ θ = g−1(0; u′(0))

and so,

β(x) =
d

dx
E[Yi |Xi = x ]− g(x ; g−1(0; u′(0))).
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Identification of β(0) including controls

Z = {z ∈ supp(Z ) s. t. P(Xi = 0|Zi ) > 0}

If Assumption 1 conditional on controls holds on Z with probability one,
then β(0) is identifiable.

β(0) = E[β(0,Zi )|Xi = 0] = E[β(0,Zi )|Xi = 0,Zi ∈ Z]P(Zi ∈ Z|Xi = 0).

We provide estimators for cases with discrete, continuous and mixed large
dimensional controls.
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Additional Material

Estimation

β̂(0) = dX Ê[Yi |Xi = 0+]− sgn(∆̂) · f̂X (0)+

F̂X (0) · f̂u(X∗)|X=0(u(0))
,

where

dX Ê[Yi |Xi = 0+] = lim
x↓0

d

dx
Ê[Yi |Xi = x ]

∆̂ = Ê[Yi |Xi = 0+]− Ê[Yi |Xi = 0]

F̂X (0) = 1
n

∑n
i=1 1(Xi = 0)

Ê[Yi |Xi = 0] = F̂X (0)−1 1
n

∑n
i=1 Yi · 1(Xi = 0)

Ê[Yi |Xi = 0+] is the intercept, and dX Ê[Yi |Xi = 0+] is the slope of
a local linear regression of Yi onto Xi at Xi = 0 using only
observations such that Xi > 0.
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Ê[Yi |Xi = 0] = F̂X (0)−1 1
n

∑n
i=1 Yi · 1(Xi = 0)
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Additional Material

Estimation

β̂(0) = dX Ê[Yi |Xi = 0+]− ∆̂

|∆̂|
· f̂X (0)+

F̂X (0) · f̂u(X∗)|X=0(u(0))
,

f̂X (0)+ uses Pinkse and Schurter (2021)’s estimator.

f̂X (0)+ =
1

D

1

nh

n∑
i=1

k (Xi/h) ,

D =
3

2
· 2 + L̂′X (0)2h2 − e L̂

′
X (0)h(2− 2L̂′X (0)h)

L̂′X (0)3h3

L̂′X (0) =
1
nh

∑n
i=1(1− 2Xi/h)1(0 ≤ Xi ≤ h)

1
nh

∑n
i=1 Xi (1− Xi/h)1(0 ≤ Xi ≤ h)

,
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Additional Material

Estimation

β̂(0) = dX Ê[Yi |Xi = 0+]− ∆̂

|∆̂|
· f̂X (0)+

F̂X (0) · f̂u(X∗)|X=0(u(0))
,

f̂Y |X=0(Yi ) is a classic deconvolution estimator.

1 Program the function φ̂(ξ) = e1(x′kx)−1x′kA(ξ)

A(ξ) := (e iξ(Y1−Ê[Yi |X=0+], . . . , e iξ(Yn−Ê[Yi |X=0+])′

x is the matrix with with rows (1,Xi )
′

k = Diag{k3(Xi/h3)1(Xi > 0)}ni=1

e1 = (1, 0)′

2 Calculate for Yi such that Xi = 0,

g(Yi ) =
1

F̂X (0) · 2π

∫
e iξ(Yi−Ê[Yi |Xi=0+]) φK (h4ξ)

A(ξ)
dξ

φk4
(h4ξ) =

∫
k4(ν)e ih4ξνdν is the Fourier transform of the kernel k4.

3 f̂u(X∗)|X=0(u(0)) =
1

nh4

n∑
i=1

g(Yi )1(Xi = 0)
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e iξ(Yi−Ê[Yi |Xi=0+]) φK (h4ξ)

A(ξ)
dξ

φk4
(h4ξ) =

∫
k4(ν)e ih4ξνdν is the Fourier transform of the kernel k4.

3 f̂u(X∗)|X=0(u(0)) =
1

nh4

n∑
i=1

g(Yi )1(Xi = 0)



5/8

Additional Material

Estimation
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Additional Material

Application

Panel Study of Income Dynamics Child Development Supplement
(PSID-CDS)

Waves 1997, 2002 and 2007.

All children 5-18 years of age with complete time diaries and
non-missing skill measures.

N = 4, 396.
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Outcome Variables (standardized) All Grades
K-5

Grades
6-8

Grades
9-12

Cognitive Skill 0.07
(0.93)

-0.35
(0.93)

0.30
(0.76)

0.56
(0.72)

Non-cognitive Skill 0.01
(0.95)

-0.02
(0.95)

-0.03
(0.98)

0.11
(0.92)

Treatment Variable (hours per day)

Watch TV 1.99
(1.46)

1.92
(1.30)

2.12
(1.51)

1.97
(1.67)

Watch TV = 0 0.05
(0.22)

0.03
(0.17)

0.04
(0.20)

0.09
(0.28)

Covariates

Child is Male 0.51
(0.50)

0.53
(0.50)

0.46
(0.50)

0.50
(0.50)

Child is White 0.48
(0.50)

0.49
(0.50)

0.47
(0.50)

0.47
(0.50)

Child is Black 0.40
(0.49)

0.39
(0.49)

0.41
(0.49)

0.41
(0.49)

Child is Hispanic 0.08
(0.26)

0.08
(0.27)

0.07
(0.26)

0.08
(0.27)

Child is Another Race 0.05
(0.21)

0.05
(0.21)

0.05
(0.21)

0.04
(0.20)

Child is in Grade PreK-5 0.47
(0.50)

1.00
(0.00)

0.00
(0.00)

0.00
(0.00)

Child is in Grade 6-8 0.27
(0.44)

0.00
(0.00)

1.00
(0.00)

0.00
(0.00)

Child is in Grade 9-12 0.27
(0.44)

0.00
(0.00)

0.00
(0.00)

1.00
(0.00)

Household Income (in $1,000s) 73.62
(82.21)

66.63
(67.65)

72.79
(70.87)

86.77
(109.95)

Age (years) 11.29
(3.64)

8.10
(2.13)

12.38
(0.95)

15.82
(1.19)

Observations 4,396 2,060 1,167 1,169
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Additional Material

Application

Xi=Watching TV (hours per week)

Yi= cognitive and non-cognitive skills (standard deviation units)


	Introduction
	

	Setup
	

	Identification
	

	Conclusion
	

	Appendix
	Additional Material
	



