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This paper

@ We show that a causal effect can be nonparametrically identified
using bunching.

o Causal effect: average marginal treatment effect among the marginal
observations at the bunching point.

o lIdentification does NOT require:
o Exclusion restrictions
o Functional forms
o Distributional assumptions
o Special data structures

@ lIdentification requires:

o Continuity conditions
o Local independence and monotonicity conditions
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Bunching

Bunching: Concentration of observations at a point of an otherwise
locally continuous distribution.

Probability Density Function
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Hours per week children watch TV on CDS-PSID
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Treatment variables with corner bunching
More common than you think!

@ Usually found when treatment is a choice: often there is bunching at
zero.

o Consumption goods: e.g. vitamin supplements, cigarettes, alcohol,
and coffee.

o Financial variables: e.g. credit card debt, credit access, bequests,
and expenditure on ads.

o Time use: e.g. exercising, working, doing homework, volunteering,
and using social media.

o Artificially created restrictions: minimum schooling, minimum wage,
minimum age to work, and minimum 401K contributions.

o Generally applicable whenever Caetano (2015)'s test can be applied
at the boundary. Several examples in a variety of settings in
economics, political science, and finance.
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Main insight (1)
Distribution of confounders is discontinuous at the bunching point

PR; = how strict the parents are
X; = hours watching TV per week

~ ® ]E[PR,lX, = 0]

E[PR;|Xi]
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Main insight (2)

Discontinuity of the outcome at the bunching point reveals
behavior of confounders

P-value of Discontinuity: 0.000
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Probability Density Function
.05
Cognitive Skill
2

[
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If effect of TV is continuous, discontinuity on skills is due to one reason:
differences in confounders and/or their effects on the outcome among

those at the bunching point and those near it.
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Ordering at the bunching point

@ Treatment variable X; has bunching at X; = 0.

@ Suppose observations at the bunching point may be ordered by an
unobservable X < 0. When X; > 0, we write X* = X;, so

X,' = maX{X,'*, 0}, P(X’* < O) >0

e Helpful: X" is a “desired treatment” under no constraint.
o Helpful: X;* orders observations by level of indifference between
X;i =0 and X; = h for a small h > 0.

e X not a structural quantity, only an index such that those with

X = —h are comparable with those with X; = h.
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Outcome and Treatment Effect

Potential outcomes model:

Average Marginal Treatment Effect at X; = x:

B(x) = E[Y/(x)|X; = x]

Conclusion

e]e]
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Fundamental problem of causality

Y = E[Y/(X)) — Y:(0)X;] + E[Y;(0)|X;]+ Y; — E[Y;[X/]

treatment effect selection idiosyncratic error
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Fundamental problem of causality

Y = E[Y/(X)) — Y:(0)X;] + E[Y;(0)|X;]+ Y; — E[Y;[X/]

treatment effect selection idiosyncratic error

d
dx;

SCEIYIX = 0% = EY/O)X; = 0]+ - EI%(0)1X; =0
i —

(0)

endogeneity bias
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Assumption 1 (part 1)

© Distribution of X:: for some h > 0,

@ The support of the distribution of X; is dense in (0, h).

© X has a density for x € (—o0, h]
Continuous treatment
@ 7x+(0)>0.
- (0) and treatment effects
@ fx+(x) is right-continuous at x = 0 conditional on X;*

@ Treatment effects: for all x, x" € [0, h), for somE h > 0,

@ Yi(x) is continuously differentiable a.s. conditional on X = x’

© For all € > 0, there exists § > 0 such that x,x’ € [0,§) =
E[IY/(x) = Y/(O)l X7 = x] <.
Q@ E[Y/()IX" =x]< C <oo.

Conclusion

e]e]
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Assumption 1 (part 2)

[ Continuous selection on X at zero J

@ Selection:
Q Asx]0, Yi(0)|X" =x—as Yi(0)| X" =0.
O E[Y/(0)|X7 = x'] is right-continuous at x" = 0.

@ Either E[Y;(0)| X" = x] is equal to zero, or it is monotonic and
differentiable for x < 0.

Q fipy(oyx+x=0 < € < 0.

@ Idiosyncratic error: either
@ Stronger condition: Y;(0) — E[Y;(0)|X] L X"|X; = 0.
© Weakest condition: define W; a random variable derived from the

deconvolution of dFy o)_gv(0)x*]jx=0+ from fy()x=0. Then
fwix=0(E[Yi(0)|X;" = 0]) = fipv(0)x=11x=0(E[¥i(0)| X" = O]) holds.
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Assumption 1 (part 2)

O Selection: [ Monotonic selection on X* at zero ]

Q@ Asx]0, Yi(0)|X" =x—as Yi(0)| X" =0.
O E[Y/(0)|X” = x'] is right-continuous at x/= 0.

@ Either E[Y;(0)| X" = x] is equal to zero, or it is monotonic and
differentiable for x < 0].

Q fipy(oyx+x=0 < € < 0.

@ Idiosyncratic error: either
@ Stronger condition: Y;(0) — E[Y;(0)|X] L X"|X; = 0.
© Weakest condition: define W; a random variable derived from the

deconvolution of dFy o)_gv(0)x*]jx=0+ from fy()x=0. Then
fwix=0(E[Yi(0)|X;" = 0]) = fipv(0)x=11x=0(E[¥i(0)| X" = O]) holds.
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Assumption 1 (part 2)

@ Selection:
Q Asx 10, Yi(0)[ X/ = x —as Yi(0)|X" = 0.
O E[Y/(0)|X? = x'] is right-continuous at x" = 0.

@ Either E[Y;(0)|X;" = x] is equal to zero, or it is monotonic and
differentiable for x < 0.

Local independence of
Q fiv(o)x*x=0 < C < 0. the idiosyncratic error
and X;* at bunching point

@ Idiosyncratic error: either
@ Stronger condition: Y;(0) — E[Y;(0)|X] L X |X; = 0.
@ Weakest condition: define W; a random variable derived from the

deconvolution of dFy(o)_g[y(0)x*]x=0+ from fy()x=0. Then
fW‘X:O(E[Y,'(ONX,-* = O]) = fﬁ;[y(o)‘x*]‘X:O(E[Y,'(ONX,-* = O]) hO|dS.
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How to identify v/(0)?

Yi = E[Yi(X;) — Yi(0)[X7] + E[Yi(0)[X{] + i — E[Yi|X]]

u(X) =
. . / d *
endogeneity bias: u'(0) = X E[Y;(0)| X = 0]

u(X?) is a deterministic function of X*.

Conclusion
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How to identify v/(0)?

Yi = E[Yi(X;) — Yi(0)[X7] + E[Yi(0)[X{] + i — E[Yi|X]]

u(Xr) Ei

d
endogeneity bias: v'(0) = WE[Y,-(ONX;* =0]

u(X7) is a deterministic function of X*. Change in Variables Theorem:

u invertible and differentiable = f,(x+)(u(x)) - |u'(x)| = fx-(x)
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How to identify v/(0)?

Yi = E[Yi(X;) — Yi(0)[X7] + E[Yi(0)[X{] + i — E[Yi|X]]

u(X) =
. . / d *
endogeneity bias: u'(0) = X E[Y;(0)| X = 0]

u(X7) is a deterministic function of X*. Change in Variables Theorem:

u invertible and differentiable = f,(x+)(u(x)) - |[u'(x)| = fx=(x)

IF ey (u(x)) # 0,
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How to identify v/(0)?

fx+(x)

/) =sen(w () 7 S
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How to identify v/(0)?

) — ool () . o)
u'(x) = sgn(u'(x)) fu(X*)‘x:O(u(X))

We can identify if u(x) is increasing or decreasing.
We can identify fx«(x) for x > 0.
We can identify f,(x«yx=<o(u(x)) for u(x) < u(0) if u is increasing,

for u(x) > u(0) if u is decreasing.
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How to identify v/(0)?

) — sl () . Tzl
u'(x) = sgn(u'(x)) fu(X*)‘Xzo(u(X))

We can identify if u(x) is increasing or decreasing.
We can identify fx«(x) for x > 0.
We can identify f,(x«yx=<o(u(x)) for u(x) < u(0) if u is increasing,

for u(x) > u(0) if u is decreasing.
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How to identify u/(0)?
Suppose u increasing.

/ B , fx*|X:0(o)
/(0 =5 O g o)

fu(X*]f\X:O(U(O)) N

Conclusion
e]e]
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How to identify u/(0)?

Suppose u increasing.

fx+1x=0(0)

um=w(@k;ﬂﬁmﬁ

f(x* yx=o(u(x)) @ . N

fie- (x')/Fx (0):

Conclusion
e]e]
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Conclusion
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How to identify sgn(u’(0))?

Y; = E[Yi(X;) — Yi(0)|X;'] + E[Yi(0)|X;] +Y; — E[Yi[X}]
N——

u(X*)

i

A = E[Yi|X; = 0*] ~ E[¥;[X; = 0] = u(0) — E[u(X})|X;" < 0]

1
\_/\

P-value of Discontinuity: 0.000

Cognitive Skill

0 5 10 15 20 25 30 35 40 45 50 55 60
Hours Per Week Watching TV
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How to identify fX*|X,-:0(0)?

fx+1x=0(0) =

Probability Density Function

.05
L

fx~(0)
Fx(0)

20 40
Hours Per Week Watching TV

T
60

Conclusion
e]e]
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How to identify fX*|X,-:0(0)?

P (0) - fX*(O) o Iimxw fx(X) . fx(0+)
XIX= TR (0) T Fx(0) Fx(0)

Probability Density Function
.05
1

T
20 40 60
Hours Per Week Watching TV
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How to identify f,(x-)x=o(u(0))?

Yi = E[Y;(Xi) = Yi(0)[X7] + E[Yi(0)| X;'] + Yi — E[ Y| X]
u(X*) €j

Convolution: for X; =0, Y; = u(X*) +¢;
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How to identify f,(x-)x=o(u(0))?

Yi = E[Yi(Xi) = Yi(0)|X7] + E[Y;(0)| X;'] + Y; — E[Yi|X{']

u(X*) €j

Convolution: for X; =0, Y; = u(X*) +¢;, so

fyix=o(y) = /fu(x*)\x:o(y —e)dF.x=o(e)
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How to identify f,(x-)x=o(u(0))?

Yi = E[Yi(Xi) — Yi(0)|X7'] + E[Yi(0)| X{'] + Yi — E[Yi| X/]

u(X*) €j

Convolution: for X; =0, Y; = u(X*) +¢;, so

fyix=o(y) = /fu(x*)\x:o(y —e)dF.x=o(e)

By the continuity of the distribution of €| X = x, we can identify

Feix=o(e) = Fy_g[y|x=0+]x=0+(e)

Conclusion
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How to identify f,(x-)x=o(u(0))?

Yi = E[Yi(Xi) — Yi(0)|X7'] + E[Yi(0)| X{'] + Yi — E[Yi| X/]

u(X*) €j

Convolution: for X; =0, Y; = u(X*) +¢;, so

fyix=o(y) = /fu(x*)\x:o(y —e)dF.x=o(e)

By the continuity of the distribution of €| X = x, we can identify
Feix=o(e) = Fy_g[y|x=0+]x=0+(e)

By the Fourier representation:

1 IE[eigy"p(i = 0] —igu(0)
fux+)ix=0(u(0)) = %/E[eif(\/;—U(O))p(i —o¢ 9%

where i = /—1.

Conclusion
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How to identify f,(x-)x=o(u(0))?

Yi = E[Yi(Xi) — Yi(0)|X7'] + E[Yi(0)| X{'] + Yi — E[Yi| X/]

u(X*) €j

Convolution: for X; =0, Y; = u(X*) +¢;, so
frix=o(y) = /fu(X*)\Xzo(y — e)dF.x—o(e)
By the continuity of the distribution of €| X = x, we can identify
Feix=o(e) = Fy_g[y|x=0+]x=0+(€)

By the Fourier representation:

1 E[lY|X; = 0]
upxyix=ou(0) = 57 / E[e€(V—ElV%=0D|X; = 0+]

where i = v/—1.

e—iéﬂf[\’i\Xf:fﬁldf7
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Theorem: ldentification of tre

If Assumption 1 holds, then the 3(0) = E[Y/(0)| X = 0] is identifiable as

fx+1x=0(0)

im ¢ = x| —sgn(v e
B(O)ZLT(] &E[Yi‘xi— ] —sgn((0)) fu(x*)|x=0(u(0))7

where

A =E[Y;|X; = 07] - E[Y|X; = 0]

1 E[elYi|X; =0 emty
fux+) 1 x=0(u(0)) / ol ] e~ ELYiIX=0"] g¢

= 21 | E[e€(-EVIX=0T)|X; = 0]



Introduction Setup Identification Conclusion
[e]e]e} [e]o]e} 00000000000 e e]e]

Theorem: ldentification of tre

If Assumption 1 holds, then the 3(0) = E[Y/(0)| X = 0] is identifiable as

fx+1x=0(0)

. d
pl0) = lefa aE[Yi‘X" == sgn(4) fux)x=o0(u(0))’

where

A =E[Y;|X; = 07] - E[Y|X; = 0]

1 / E[elfY,|X’ = 0] e_iE]E[Ylei:OJr]dé'

fuxsyx=0(u(0)) = o E[e€(Vi EVIX=0TD|X; = 0+]
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Theorem: ldentification of tre

If Assumption 1 holds, then the 3(0) = E[Y/(0)| X = 0] is identifiable as

fx+1x=0(0)

. d
pl0) = lefa aE[Yi‘X" =] = sgn(4)- fux)x=o0(u(0))’

where

A =E[Y;|X; = 07] - E[Y|X; = 0]

1 / E[elfY,|X’ = 0] e_iE]E[Yflxl':O+]d§

fuxsyx=0(u(0)) = o E[e€(Vi EVIX=0TD|X; = 0+]



Introduction Setup Identification Conclusion
[e]e]e} [e]o]e} 00000000000 e e]e]

Theorem: ldentification of tre

If Assumption 1 holds, then the 8(0) = E[Y/(0)|X* = 0] is identifiable as

tim L EYX — x]— sgn(a) . KO/ Fx(©)
B0) = lim G BYilX: =] = sen(A) - 2" =7 )y
where

A =E[Yj|X; = 0%] - E[Yi|X; = 0]

1 E[e¢Yi|X; = 0] —igE[Y;|Xi=0"
fux)x=0(u(0)) = / E[e€07EYIX=0T|X; = 0+] © | o«




Introduction Setup Identification Conclusion
[e]e]e} [e]o]e} 00000000000 e e]e]

Theorem: ldentification of tre

If Assumption 1 holds, then the 8(0) = E[Y/(0)|X* = 0] is identifiable as

fx(0%)/Fx(0)

. d o )
p(0) = Ef?) E]E[Y,-\X,- =x] —sen(A) fuix+)x=0(u(0))’

where

A =E[Y;|X; = 0F] - E[Y|X; = 0]

1 E[e¢Y/[X; = 0]
fuxs)x=0(u(0)) = - / E[e(V—EVIX=0[X; = 07]

e I€E[Yi|X;=07] d¢



Introduction Setup Identification Conclusion
[e]e]e} [e]o]e} 000000000000 @0

What else is on the paper?

o If u'(x) = g(x;0) is invertible on 6, then all treatment effects are
identified. Example: E[Y;(0)|X*] = do + .X}*.
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Introduction

What else is on the paper?

o If u'(x) = g(x;0) is invertible on 6, then all treatment effects are
identified. Example: E[Y;(0)|X*] = do + .X}*.
e Conditioning on controls, Z;, weakens assumptions:
© Monotonicity of E[Y;(0)|X;", Zi] may switch signs.
Q@ Y —E[Yi|X", Z] L XX, =0, Z.

@ Identification of treatment effects elsewhere may be done by
assuming, e.g. E[Y:(0)| X", Zi] = do(Z) + 6(Z) X"
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What else is on the paper?

o If u'(x) = g(x;0) is invertible on 6, then all treatment effects are
identified. Example: E[Y;(0)|X*] = do + .X}*.
e Conditioning on controls, Z;, weakens assumptions:
© Monotonicity of E[Y;(0)|X;", Zi] may switch signs.
Q@ Y —E[Yi|X", Z] L XX, =0, Z.
@ Identification of treatment effects elsewhere may be done by

assuming, e.g. E[Y:(0)| X", Zi] = do(Z) + 6(Z) X"

o Estimators, and estimators in the control case: methods for large

vector of mixed discrete/continuous controls.
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What else is on the paper?

o If u'(x) = g(x;0) is invertible on 6, then all treatment effects are
identified. Example: E[Y;(0)|X*] = do + .X}*.
e Conditioning on controls, Z;, weakens assumptions:
© Monotonicity of E[Y;(0)|X;", Zi] may switch signs.
Q@ Y —E[Yi|X", Z] L XX, =0, Z.
@ Identification of treatment effects elsewhere may be done by

assuming, e.g. E[Y:(0)| X", Zi] = do(Z) + 6(Z) X"

o Estimators, and estimators in the control case: methods for large
vector of mixed discrete/continuous controls.
@ Application to the effects of TV watching on children’s cognitive and

cognitive skills. Results are positive on cognitive skills and slightly
more negative on non-cognitive skills.
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Conclusion

@ We show that bunching may be used for nonparametric
identification of a treatment effect in the presence of endogeneity.

@ Method identifies the average marginal treatment effect among the
marginal observations at the bunching point.

@ At the bunching point, requirements are: (1) ordering according to
X, (2) monotonicity of E[Y;(0)|X], (3) independence of
Yi(0) - E[Y;(0)}X] and X;

@ Above (near) the bunching point, requirement are (1) the
right-continuity of treatment effects, (2) right continuity of
E[Y/(0)|X*] and distribution of Y;(0)|X*.

o lIdentification uses the change-in-variables theorem to derive d)%
from the comparison between the density of X;* and the densit§'/ of
E[Yi(0)|X] at Xix = 0.
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Average Marginal Treatment Effects elsewhere
For x > 0, C%(]E[YAX = x] = B(x) + v'(x)

o Extend requirements on differentiability to x > 0.
@ In this case, identification of all marginal effects depends
exclusively on assumptions on u/(X*) = ZE[Y;(0)[X/]:
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Average Marginal Treatment Effects elsewhere
For x > 0, diXE[Yi|X = x] = B(x) + v'(x)

o Extend requirements on differentiability to x > 0.
@ In this case, identification of all marginal effects depends
exclusively on assumptions on u/(X*) = ZE[Y;(0)[X/]:

Assumption 2

Suppose that v’(x) = g(x;0), where g is known, but the scalar 0 is not.
Suppose also that g(0; 8) is invertible in 6.
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Average Marginal Treatment Effects elsewhere
For x > 0, diXE[Yi|X = x] = B(x) + v'(x)

o Extend requirements on differentiability to x > 0.
@ In this case, identification of all marginal effects depends
exclusively on assumptions on u/(X*) = ZE[Y;(0)[X/]:
Assumption 2

Suppose that v’(x) = g(x;0), where g is known, but the scalar 0 is not.
Suppose also that g(0; 8) is invertible in 6.

If Assumptions 1 and 2 hold, then

u'(x) = g(x;0) = 0=g '(0;/(0))

and so,
5x) = EIYVIX; = x] — (x5 (0;0/(0))).
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|dentification of 3(0) including controls

o Z={zesupp(Z)s. t. P(X;=0]|Z) >0}
If Assumption 1 conditional on controls holds on Z with probability one,
then 5(0) is identifiable.

B(0) = E[5(0, Z))|X; = 0] = E[3(0, Z;)|X; = 0, Z; € Z]P(Z; € Z|X; =0).

We provide estimators for cases with discrete, continuous and mixed large
dimensional controls.
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Estimation

£(0)+
Fx(0) - fix)1x=0(u(0))

B(0) = dxE[Yi|X; = 07] — sgn(A) -

)

where

A d
dxB[Yi[X; = 0%] = lim —-E[Y;|X; =
KE[Y|X = 07] = lim B[Vl Xi = ]

A =E[Y;|X; = 07] - B[Y;|X; = 0]
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Estimation

B(O) - de’F\:[Yi‘Xi = 0+] — sgn(A) - fX(O)-k— 7

Fx(0) - fuox+)x=0(u(0))

where

A d
dxB[Yi[X; = 0%] = lim —-E[Y;|X; =
KE[Y|X = 07] = lim B[Vl Xi = ]

A =E[Y;|X; = 07] - B[Y;|X; = 0]

o Fx(0)=1%" 1(X;=0)
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Estimation

B(O) - de’F\:[Yi‘Xi = 0+] — sgn(A) - fX(O)-k— 7

Fx(0) - fuox+)1x=0(u(0))

where

. d .
A =&[Yi|X; = 0F] — B[Yi|X; = 0]
o Fx(0) =+ 37, 1(X; =0)

o E[Yi[X; =0] = Fx(0) ™12 327, V- 1(X; = 0)
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Estimation

] fx(0)+
Fx(0) - fugx=yx—o(u(0))’

B(0) = dxE[Yj|X; = 0%] — sgn(A) -
where
~ d ~
dxE[Y;|X; = 07] |X.33 de[mx, x]

A =E[Y;|X; = 07] - B[Y;|X; = 0]

o Fx(0) =137 ,1(X;=0)
o B[Yi|X; =0] = Fx(0)*E 327, Vi - 1(Xi = 0)
° IAE[Y;\X,- = 0"] is the intercept, and dXIE[Y,-\X,- = 0"] is the slope of

a local linear regression of Y; onto X; at X; = 0 using only
observations such that X; > 0.
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Estimation

X A A fx(0)+
O _ d ' Y, Xi — 0+ S — — B}
B(0) = dxE[Yi| NYOR fugx)x=0(u(0))

@ fx(0), uses Pinkse and Schurter (2021)'s estimator.

n

K(0): = 5 S KOX),

p_3. 2+ [%.(0)2H2 - elx(@h(2 — 2[4 (0)h)
2 L (0)3h?

T IS X Xi/hL0 < X; < h)’
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Estimation

A . A A(0)4
0) = dylft \/l Xi — 0+ — — - —= = )
5(0) XELYi] ] |A] Fx(0) - fux+yx=0(u(0))

o fy|x—o(Y7) is a classic deconvolution estimator.
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A . A A(0)4
0) = dylft \/l Xi — 0+ — — - —= = )
5(0) XE[Y] ] |A] Fx(0) - fux+yx=0(u(0))

o fy|x=o(Y7) is a classic deconvolution estimator.

@ Program the function $(¢) = e1(x'kx) *x'kA(&)
o A(£) := (eig(Yl—]E[Y,-|X:O+]’ e eig(vn—JE[Y,-\x:oﬂ)/
@ x is the matrix with with rows (1, X;)’
o k = Diag{ks(X;/h3)1(X; > 0)}"_,
e e; = (1,0)
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Estimation

A . A A(0)4
0) = dylft \/l Xi — 0+ — — - —= = )
5(0) XE[Y] ] |A] Fx(0) - fux+yx=0(u(0))

o fy|x=o(Y7) is a classic deconvolution estimator.

@ Program the function $(¢) = e1(x'kx) *x'kA(&)
o A(£) := (eig(Yl—]E[Y,-|X:O+]’ e eig(vn—JE[Y,-\x:oﬂ)/
@ x is the matrix with with rows (1, X;)’
o k = Diag{ks(X;/h3)1(X; > 0)}"_,

@ e = (1,0),
@ Calculate for Y; such that X; =0,
g(Y;) = 1 eig(y,fﬁ[yf\xf:o+]) Pk (hag) d¢
Fx(0) - 27 A(€)

o ¢y, (&) = [ ka(v)elME¥ du is the Fourier transform of the kernel ks.
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Estimation

A fx(0)4

Al Fx(0)- fu(x*)|x=o(u(0))

o fy|x=o(Y7) is a classic deconvolution estimator.

B(0) = B[ Yi|X; =

@ Program the function $(¢) = e1(x'kx) *x'kA(&)
o A(£) := (e ie(Yr—E[Y;| X= o*] “7ei§(Yn—]E[Y,-\X:O+])/
@ x is the matrix with with rows (1, X;)’
o k= Diag{k3(X;/h3)1(X,‘ > 0)}7:1

@ e = (1,0),
@ Calculate for Y; such that X; =0,
g(Y)) = 1 eig(yifﬁ[yf\xf:o+]) Pk (hag) dé¢
Fx(0) - 27 A(€)

o ¢y, (&) = [ ka(v)elME¥ du is the Fourier transform of the kernel ks.

Q fuix) x=ol = e Zg )1(Xi = 0)
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Application

@ Panel Study of Income Dynamics Child Development Supplement
(PSID-CDS)

e Waves 1997, 2002 and 2007.

@ All children 5-18 years of age with complete time diaries and
non-missing skill measures.

o N =4,396.
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Outcome Variables (standardized) Al Grades Grades Grades
K-5 6-8 9-12
Cognitive Skill 0.07 -0.35 0.30 0.56
(093)  (093)  (0.76)  (0.72)
Non-cognitive Skill 0.01 -0.02 -0.03 0.11
(095)  (095)  (0.98)  (0.92)
Treatment Variable (hours per day) |
Watch TV 1.99 1.92 2.12 1.97
(146)  (130)  (151)  (1.67)
Watch TV =0 0.05 0.03 0.04 0.09
(0.22)  (017)  (0.20)  (0.28)
Covariates |
Child is Male 0.51 0.53 0.46 0.50
(0.50)  (050)  (0.50)  (0.50)
Child is White 0.48 0.49 0.47 0.47
(050)  (050)  (0.50)  (0.50)
Child is Black 0.40 0.39 0.41 0.41
(0.49)  (049)  (0.49)  (0.49)
Child is Hispanic 0.08 0.08 0.07 0.08
(026)  (027)  (0.26)  (0.27)
Child is Another Race 0.05 0.05 0.05 0.04
(021)  (021)  (0.21)  (0.20)
Child is in Grade PreK-5 0.47 1.00 0.00 0.00
(050)  (0.00)  (0.00)  (0.00)
Child is in Grade 6-8 0.27 0.00 1.00 0.00
(0.44)  (000)  (0.00)  (0.00)
Child is in Grade 9-12 0.27 0.00 0.00 1.00
(0.44)  (0.00)  (0.00)  (0.00)
Household Income (in $1,000s) 73.62 66.63 7279 86.77
(82.21)  (67.65)  (70.87)  (109.95)
Age (years) 11.29 8.10 1238 15.82
(364)  (213)  (0.95)  (1.19)
Observations | 439% 2,060 1,167 1,169
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Application

Xi=Watching TV (hours per week)

Y;= cognitive and non-cognitive skills (standard deviation units)

Bandwidth (in hours per week)

Cognitive Skill h= h=17 h =10
B(0) 0.178 0.259 0.338

(0.122) (0.113) (0.106)

w'(0) -0.232 -0.295 -0.357
(0.118) (0.105) (0.097)

Non-Cognitive Skill h= h= h =10
B(0) -0.215 -0.277 -0.331

(0.103) (0.098) (0.092)

u’(0) 0.212 0.269 0.326
(0.099) (0.087) (0.085)
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