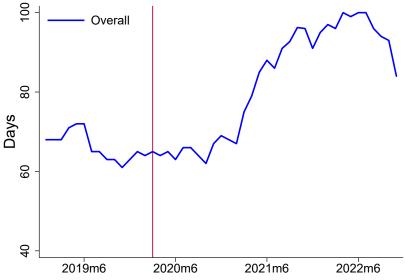
The Aggregate Effects of Global and Local Supply Chain Disruptions: 2020-2022*

George Alessandria Shafaat Yar Khan Armen Khederlarian

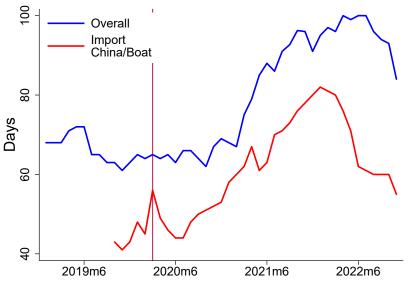
Carter Mix Kim Ruhl

AEA | January 2023


*Authors' opinions only. Does not reflect views of Federal Reserve or World Bank.

Introduction: Supply chain disruptions

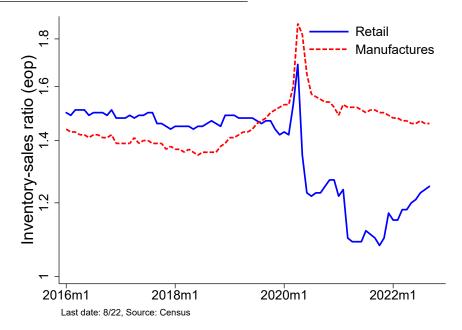
- ▶ Getting inputs for sale or production has been hard since 2020.
 - ► Lead time on inputs: 60 days → 100 days
 - Disruptions global: domestic & int'l transactions; US & ROW
- Confluence of factors
 - ► Production disruptions (public health)
 - ▶ Border & Port closures
 - Reduced air freight capacity
 - Unexpected pace of recovery
 - Congestion effects
- Firms lack buffer stocks to absorb these delays.
 - ► Inventories low since start of COVID (key margin).
 - Consumer stockouts high globally (Cavallo & Kryvstov, 2022)
- ▶ Not unique to COVID, supply delays common from 1950-1987.


1

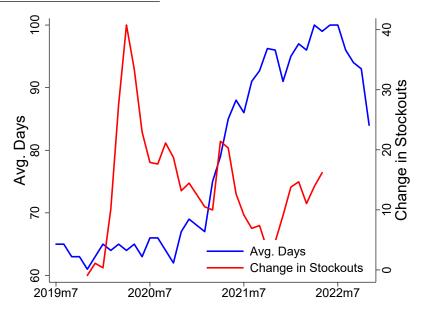
Delivery delays in US: Domestic and Imports

Source: Days (ISM), Shipping from China (Freightos) Last: September 2022.

Delivery delays in US: Domestic and Imports

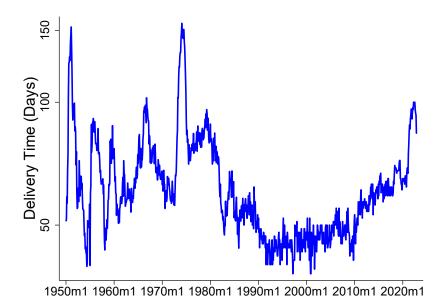


Source: Days (ISM), Shipping from China (Freightos) Last: September 2022.


Domestic and foreign supplier delays (Census, Pulse survey)


Delays happening with low inventory

Leading to More Stockouts


And a large increase in prices

Source: Days (ISM), Prices (BLS) Last date: 8/22. Price of goods deflated by hourly earnings in Manufacturing and detrended with HP10^5.

•

And delays have happened before

The aggregate impact of supply disruptions

- ▶ How do supply disruptions/delays affect
 - ▶ Aggregate production?
 - ▶ Trade?
 - ► Consumption?
 - ▶ Employment?
 - ► Prices?
- ▶ What was the effect in 20-22? And what will the effect be going forward?
- ▶ Standard "macro" or "trade" frameworks ill-equipped to provide answers
- Model ingredients
 - ► Firms can hold inventories, but at a cost (interest/depreciation)
 - Fixed order costs
 - Orders can be delayed
 - ► Firm-level demand is uncertain.
 - ► Production/Consumption may be constrained by inputs available (stockouts)

Findings

- Delays have been
 - A drag on economic activity and trade
 - ▶ Source of price increases
 - Mitigated/magnified by stimulus/shift in spending
 - ▶ Worse because of lean inventories
- ▶ Effects arise from
 - ▶ Delays → higher carrying costs
 - ▶ Production disrupted from lack of inputs
 - ▶ Uneven effects across firms affect highest value, lean inventory products most
- ► Fitting exercise:
 - ▶ Delays were a big drag on output & source of price increases
 - ▶ As supply disruptions dissipate, will unwind effects on output/prices but not enough to offset effects of waning stimulus.

Outline

- Model description
- ▶ Firms' decision rules in steady state and after supply chain disruptions
- Effect of delays on aggregate economy
- Fitting exercise and counterfactuals
- ► Confirming evidence
 - ▶ US VAR from 1950-2020
 - ► Suez canal closure/opening 67/75
 - ► Cross-industry evidence from COVID

Production structure

- ► Two countries: home & foreign (*)
- ▶ Aggregate: state (η_t) ; history $(\eta^t = (\eta_0, \dots, \eta_t))$
- Two continua of retail firms in each country
 - ▶ Use "manufacturing inputs" to produce differentiated goods
 - ▶ One continuum buys domestic manufactures (*D*), one buys imported (*I*)
 - ▶ Sell to the consumption good firm and manufacturing-good firm
 - ► Fixed order cost, shipping delays, demand uncertainty vs. holding costs
- ▶ Representative consumption-good firm
 - ▶ Uses retail goods from *D* and *I* sector to produce consumption
- Representative manufactures firm
 - ▶ Uses retail goods from *D* and *I* sector and labor to produce
 - ▶ Sells to domestic retailers and foreign country import retailers
- ▶ Domestic & imported goods differ in fixed costs + 'timeliness'
 - Global vs local supply chains.

Standard model elements

▶ Representative household chooses consumption, labor supply, and state-contingent debt

$$u(C, L) = \frac{C^{1-\sigma}}{1-\sigma} - \chi \frac{L^{1+\frac{1}{\psi}}}{1+\frac{1}{\psi}}$$

$$P_c(\eta^t)C(\eta^t) + \sum_{n^{t+1}} Q(\eta^{t+1}|\eta^t)B(\eta^{t+1}) = B(\eta^t) + W(\eta^t)L(\eta^t) + \Pi(\eta^t)$$

Consumption-goods producers combine retail goods from D and I to produce C

$$C(\eta^t) = \left[\left(\int_0^1 \nu_D(j,\eta^t)^{\frac{1}{\theta}} c_D(j,\eta^t)^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1}\frac{\gamma-1}{\gamma}} + \tau_c^{\frac{1}{\gamma}} \left(\int_0^1 \nu_I(j,\eta^t)^{\frac{1}{\theta}} c_I(j,\eta^t)^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1}\frac{\gamma-1}{\gamma}} \right]^{\frac{\gamma}{\gamma-1}}$$

▶ Manufacturing producers combine retail goods and labor to produce M

$$M(\eta^{t}) = L_{p}^{1-\alpha} Y_{m}^{\alpha}$$

$$Y_{m}(\eta^{t}) = \left[\left(\int_{0}^{1} \nu_{D}(j, \eta^{t})^{\frac{1}{\theta}} m_{D}(j, \eta^{t})^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1} \frac{\gamma-1}{\gamma}} + \tau_{m}^{\frac{1}{\gamma}} \left(\int_{0}^{1} \nu_{I}(j, \eta^{t})^{\frac{1}{\theta}} m_{I}(j, \eta^{t})^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1} \frac{\gamma-1}{\gamma}} \right]^{\frac{\gamma}{\gamma-1}}$$

Retailers

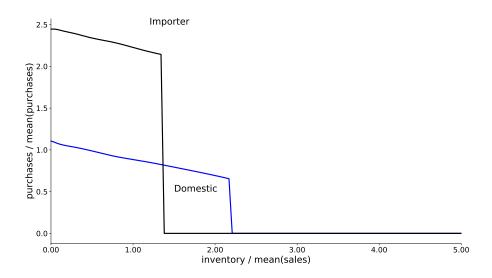
- ► Two continua of monopolistic competitors: *D*, *I* (focus on a *D* firm)
- ▶ Firm j begins period with inventory $s_D(j)$, demand shock $\nu(j)$, and chooses inputs $z_D(j)$ and prices $p_D(j)$
- ▶ If firm places an order: $z_D(j) > 0$
 - ▶ Pay fixed cost ϕ_D (in units of labor, numeraire)
 - ▶ With probability $1 \mu_D$, order arrives at t; μ_D arrives at t + 1
 - \blacktriangleright vary μ_D to match avg. delivery lag
- ▶ Firm's state is $(\eta_t; s_t, \nu_t)$
- lacktriangle Timing: observe demand shock \Longrightarrow place order \Longrightarrow observe delivery \Longrightarrow set prices
- Analogous optimization for home importers, foreign domestic and foreign import sectors

14

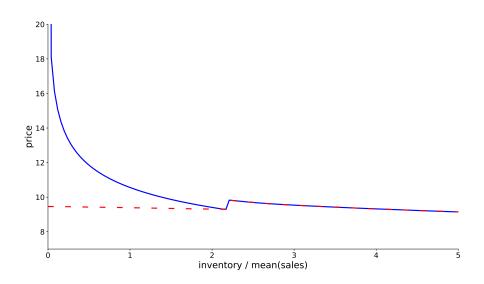
Decision rules

▶ Prices are a markup over discounted **marginal** value of inventories

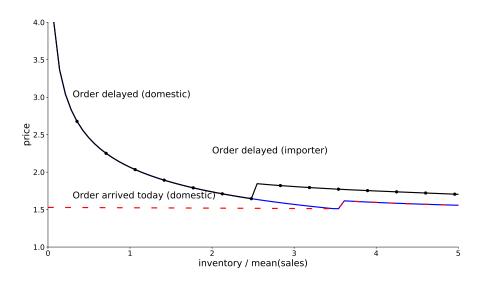
$$p(s,\nu) = \frac{\theta}{\theta - 1} (1 - \delta) \mathop{\mathbb{E}}_{\nu'} Q(\eta'|\eta) V_1(s',\nu';\eta')$$


- ▶ Ordering behavior
 - s,S policy: Order when inventories hit s, restock up to S
 - ► Low inventory/high demand firms order inputs
 - ▶ If it does not arrive, set stock-out price, i.e. $p(s, \nu)$ s.th. $c(p, \nu) + m(p, \nu) = s$

Qualitatively consistent with evidence on firm-level response to supply disruptions.



15


Policy function: Ordering (median demand shock)

Policy function: Price (median demand shock)

Policy function: Price (median demand shock)

Inventories

- ▶ For accounting split inventories across manufacturing and retail.
- Retail inventory (on the shelf)

$$I_{r}(\eta^{t}) = \int \left[s_{D}(j, \eta^{t}) - c_{D}(j, \eta^{t}) - m_{D}(j, \eta^{t}) + (1 - \mu_{D}) z_{D}(j, \eta^{t}) \right] dj$$
$$+ \int \left[s_{I}(j, \eta^{t}) - c_{I}(j, \eta^{t}) - m_{I}(j, \eta^{t}) + (1 - \mu_{I}) z_{I}(j, \eta^{t}) \right] dj$$

Manufacturing inventory (on the ship)

$$I_m(\eta^t) = \int \mu_D z_D(j, \eta^t) dj + \int \mu_I z_I(j, \eta^t) dj$$

19

Calibration - Goods producing sector

- ▶ Elasticity of substitution between sources: $\gamma = 1.1$
- ▶ Inventory holdings and order frequency: δ , μ _D, μ _I, ϕ _D, ϕ _I chosen so that
 - ightharpoonup importing firms hold larger inventories than domestic firms ($\approx 2x$)
 - ightharpoonup importing firms order less frequently (pprox half)
 - ▶ imported goods arrive with 0.5 quarter delay on average
 - ▶ importers order every 4 quarters on average
 - aggregate inventories to purchases ratio of 1.3
- ▶ Trade preferences τ_c and τ_m chosen so that
 - ▶ import share matching U.S. data
 - share of consumption vs material imports from data
 - gross output to VA in mfr

Assigned parameters

► Model period is one quarter

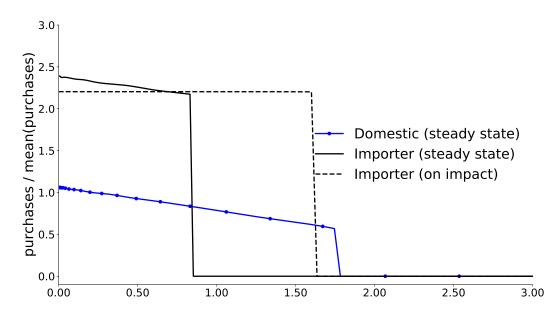
Parameters			Moments	
Discounting	β	0.96 ^{0.25}	Annual real rate	4%
Input cost share	α	0.64	Manufacturing GO/VA	2.8
International delay	μ_I	0.6	Authors' calculation	55 days
Frisch elasticity	ψ	2	Steady State Labor	1/3
Substitution within source	θ	4		
Substitution across source	γ	1.1		
IES	σ	0.5		

Jointly estimated

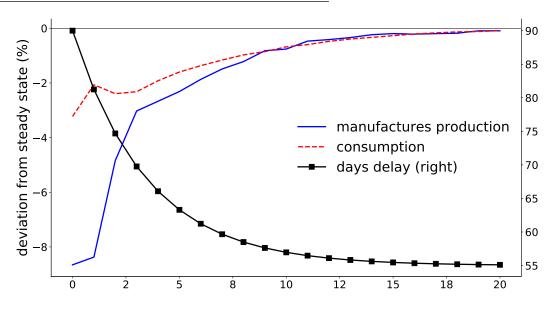
Parameters		Moments	
Home bias manufactures	$ au_{\it m}$ 0.425	Imports-to-IP	30%
Home bias consumption	τ_{c} 0.165	Manufactures' share of imp	74%
Depreciation	δ 0.055	Inventory-purchases ratio (dom)	1.0
Domestic delay	μ_{D} 35 days	Inventory-purchases ratio (imp)	2.1
Demand variance	σ_{ν}^{2} 1.5	Inventory-purchases ratio (agg)	1.31
Fixed order cost [†] (dom)	ϕ_D 1.5%	Order freq (dom)	60%
Fixed order cost [†] (imp)	ϕ_I 19.7%	Order freq (imp)	30%

[†]Expressed as share of average revenue.

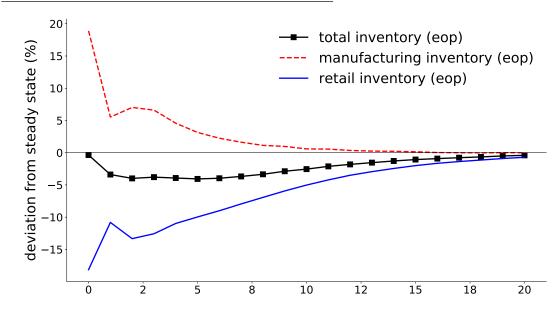
- ► Home biases largely determine import ratios
- lacktriangle Higher δ hold smaller inventories; higher μ hold larger inventories
- ightharpoonup Different ϕ drive different order frequency

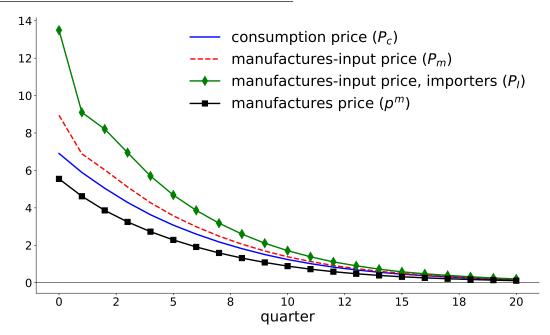

International delivery delays: Dynamics

 Start from steady state; unforeseen change in import deliveries from 55 to 90 days; perfect foresight afterward


$$\mu_{I,t+1} = (1 - \rho_I)\mu_I^{ss} + \rho_I \mu_{It}$$

- $ho_I = 0.75$ implies shock duration of 4 quarters
- Symmetric global import delays
- Domestic delays have similar flavor


Policy function: Ordering (median demand shock)

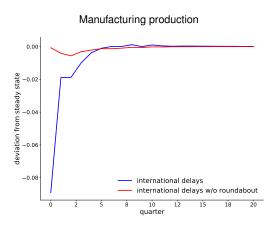

International delivery delays - Aggregates

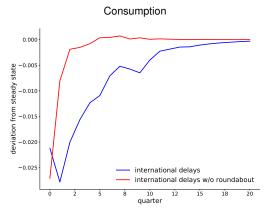
International delivery delays - Inventories

International delivery delays - Prices

Delivery delays - Two main mechanisms

- 1. Reduced supply for production & consumption today
 - ► If nothing arrives today → production & consumption limited to what is on hand (about 1 quarters worth of output)
 - Decreases demand for production labor, more so with complementary inputs.
 - ► Affects firms with the lowest inventories (unlike trade cost or productivity shock)
- 2. Higher replacement costs of inventories
 - ► Interest costs: (extra days/365) × r
 - ▶ Depreciation costs: (extra days/365) $\times \delta$
 - ▶ Fixed costs: more orders burns up resources

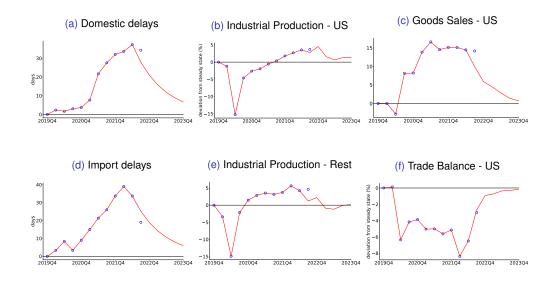

Costs vs. time


- ► Consider an increase in shipping costs equivalent to extra carrying costs of delay.
- Cost shocks less contractionary because they do not constrain the orders of high-demand low-inventory firms.
- Consistent with high willingness to pay very large trade costs to accelerate trade.

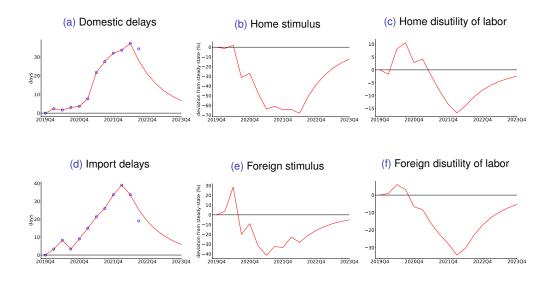
The role of input-output links

- ➤ Outputs of retail/wholesale sector are inputs into manufacturing
 - Delays to wholesalers disrupt manufacturing
- Shut down roundabout structure by making manufacturing only use labor
 - Shipping delays do not disrupt manufacturing production
- ► Keep Trade/GDP constant by increasing import share in consumption
- Roundabout production
 - Magnifies shock on production
 - ▶ Propagates shock over time through decumulation of intermediate inputs.

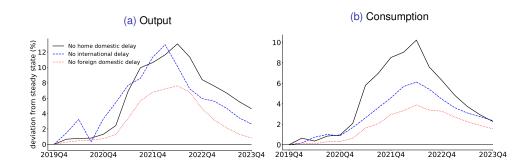
International delays and Roundabout structure

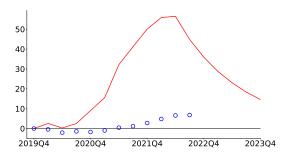

Other factors

- ► Low inventory
 - ▶ More contractionary as more firms constrained by delays
- ► Increase in spending on goods (taste, stimulus)
 - ► Temporarily more expansionary, offset effects of delays
 - ► Larger reduction in inventory, larger drag on recovery.

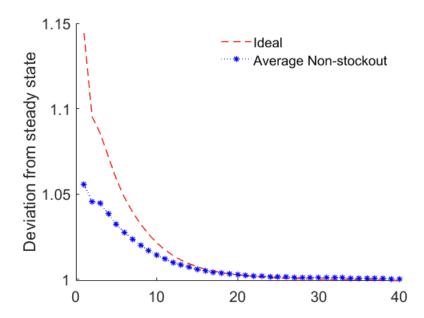

Data Fitting Exercise

- ► Apply model with 3 types of shocks:
 - 1) Restocking delays 2) Labor supply and 3) Stimulus
- ▶ Sequence of unanticipated shocks with AR coefficient of 0.75.
- ▶ Allow delay shocks to be symmetric and other shocks asymmetric
- ▶ Fit to
 - ▶ Delays: import & domestic
 - Industrial production: US & RoW
 - ► Trade balance: US
 - Consumption of goods: US

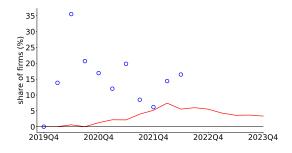

Fitting Exercise - Matched Moments


Fitting Exercise - Recovered Shocks

Fitting Exercise - Counterfactuals



Miss I: Prices



- ► Follow BLS convention using "in-stock" prices"
 - ▶ Model captures "shadow price" of consumption.
- ► Including labor in retailing (PPI effects 2x CPI)
- Setting prices before delivery
 - ▶ No effect on quantities, sales constrained by inventory

Non-Stockout Prices

Miss II: Stockouts

- ▶ Stockouts require combination of
 - ► Increase in uncertainty
 - ► Earlier restocking delays.

Caveat - expectations

- ► The agg. effects of delays will depend on the size and persistence.
- ▶ Hard to discipline in current environment
- ► Historically, hump-shaped (AKKMS, 2022) in US from 1950-1990.
- ▶ Hump-shaped shocks can be expansionary in SR
 - Precautionary stockpiling (order toys for Xmas sooner)
- With AR(2) shocks, most effects half as big.

Evidence: Aggregate and Industry

- ▶ VAR evidence for US from 1950-2020 (delay shocks more common from 50-87)
- ▶ LP cross country panel evidence from Suez-Canal closure in 1967 to 1975
- ▶ Panel VAR with 3 digit NAICS with Census Pulse survey
- ▶ Delays reduce output and raise prices as in model

Summary

- ▶ Model
 - ► Allows for changes in lead times
 - Captures extensive & intensive margin response to delays
 - Delay shocks are more costly than cost shocks
 - ▶ Delays are more costly under the post-pandemic global conditions
- Disruption effects take time to clear
- Inventories were a key adjustment margin in COVID
 - ▶ Very different inventory situation from Great Recession.

Retailer optimization (suppressing aggregate state)

$$V(s, \nu) = \max \left\{ V^N(s, \nu), \ J(s, \nu) - \phi W \right\}$$

Value of not placing an order

$$V^{N}(s,\nu) = \max_{p} \pi(c(p,\nu), m(p,\nu)) + \mathbb{E}_{\nu'} QV(s',\nu')$$
s.t. $s \ge c(p,\nu) + m(p,\nu)$

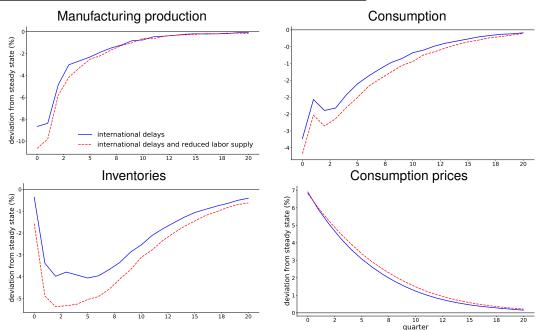
$$s' = (1 - \delta)(s - c(p,\nu) - m(p,\nu))$$

▶ Value of placing an order (within period; no primes)

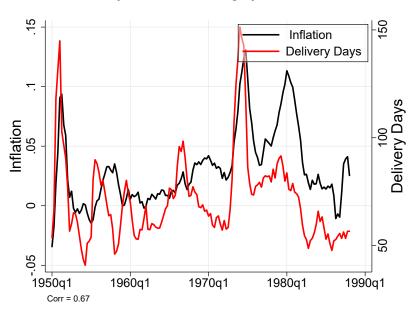
$$J(s,\nu) = \max_{z} -p^{m}z + (1-\mu)V^{N}(s+z,\nu) + \mu V^{O}(s,\nu,z)$$

Value when order but it does not arrive

$$V^{O}(s, \nu, z) = \max_{p} \pi(c(p, \nu), m(p, \nu)) + \mathbb{E}_{\nu'} QV(s', \nu')$$
s.t. $s \ge c(p, \nu) + m(p, \nu)$


$$s' = (1 - \delta)(s + z - c(p, \nu) - m(p, \nu))$$

International delivery delays w/ stimulus



quarter

International delivery delays w/ low labor supply

Delays and Inflation Highly Correlated

