Who creates and who bears flow externalities in mutual funds?

Daniel Fricke

Stephan Jank

Hannes Wilke

AFA Meeting 2023

January 7th, 2023

Disclaimer: The views expressed here are the authors' and do not necessarily represent the views of Deutsche Bundesbank or the Eurosystem.

Flow externality

- Remaining investors bear flow externality in open-ended funds:
 - Daily redeemability. Large outflows ⇒ costly portfolio adjustments (commissions, bid-ask spreads, taxes ...).
 - Portfolio adjustments spread over longer period.
- Funds with large outflows underperform in next period (e.g., Chordia, 1996; Edelen, 1999; Chen et al., 2010).

Motivation

Who creates and who bears flow externalities?

Contribution:

Motivation

- Quarterly data on dynamic sectoral ownership structure of euro area mutual funds.
- Empirical framework to measure fund-level externality generated/received at the investor sector level.

Main findings: actively managed equity funds, 2013Q4:2020Q2

- Total flow externality in illiquid funds: -45 bps.
- Net externality generators: Investment funds.
- Net externality receivers: Households + insurers.
- Behavioral differences across investors (procyclicality, performance-sensitivity) in line with these patterns.

Fricke-Jank-Wilke Fund flow externality 2/13

Motivation

Related Literature

• Strategic complementarities and fund fragility
Chordia (1996); Edelen (1999); Dickson et al. (2000); Chen et al. (2010); Goldstein et al. (2017); Capponi et al. (2020); Jin et al. (2021)
Coval/Stafford (2007); Chernenko/Sunderam (2020); Falato et al. (2020); Giannetti/Jotikasthira (2022)

```
    Contagion in economic and financial networks
```

```
Gai et al. (2011); Acemoglu et al. (2012); Elliott et al. (2014); Acemoglu et al. (2015); Fricke/Wilke (2020)
```

Investment horizons and financial markets

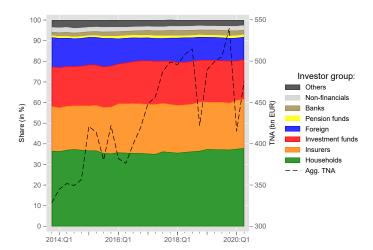
```
Miller/Rock (1985); Narayanan (1985); Stein (1989); Froot et al. (1992); Graham et al. (2005); Timmer (2018); Giannetti/Yu (2021)
```

Data and Descriptives

Data

Sources

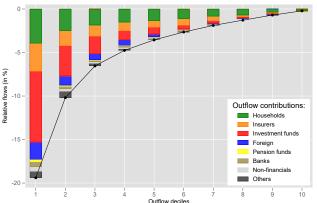
- Morningstar: fund characteristics.
- Securities Holdings Statistics by Sector: fund ownership.


Sample construction

- Actively-managed equity mutual funds
- Domiciled and available for sale in euro area
- Subject to harmonized EU regulation (UCITS)
- Predominantly held by euro area investors (residual = Foreign)

⇒ Final sample: 2013Q4:2020Q2; 7,722 share classes; 2,597 funds

Fricke-Jank-Wilke Fund flow externality 4 / 13


Holdings by investor sector *i*

0000

Large outflow contribution by investor sector i

EuroFlows_{t,f,i} = TNA_{t,f,i} - TNA_{t-1,f,i} × (1 + Return_{t,f,i}), with
$$\sum_{i} EuroFlows_{t,f,i}$$
 = EuroFlows_{t,f}.

Extreme outflows are more (less) than proportionally driven by investment funds (households and insurers)

Framework

Who drives and who bears the flow externality?

• Direct measure of the total flow externality for funds with large outflows in t-1:

$$\widetilde{Alpha}_{t,f} = Alpha_{t,f} - \widehat{Alpha}_{t,f}$$

with Alpha as benchmark-adjusted fund return and Alpha as cond. expectation given four lags of fund performance

• Average total within-fund externality due to outflows in t-1:

Externality =
$$\frac{1}{n} \sum_{t,f} \widetilde{Alpha}_{t,f}$$

Fricke-Jank-Wilke Fund flow externality 7 / 13

Decomposition by investor sector *i*

Externality generated is proportional to relative flow contribution:

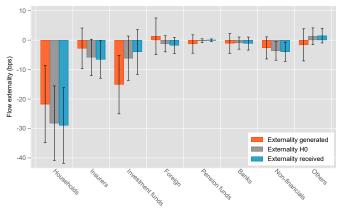
$$\underbrace{Externality_{i}^{\mathsf{generated}}}_{} = \frac{1}{n} \sum_{f,t} \left(\frac{\mathsf{EuroFlows}_{t-1,f,i}}{\mathsf{EuroFlows}_{t-1,f}} \right) \times \widehat{\mathsf{Alpha}}_{t,f}$$

Externality *received* is proportional to relative TNA share:

$$Externality_{i}^{\text{received}} = \frac{1}{n} \sum_{f,t} \left(\frac{\mathsf{TNA}_{t-1,f,i}}{\mathsf{TNA}_{t-1,f}} \right) \times \widetilde{\mathsf{Alpha}}_{t,f}$$

$$\rightarrow$$
 Net externality_i = Externality_i received - Externality_i generated

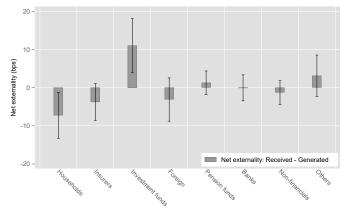
Externality =
$$\sum_{i}$$
 Externality $_{i}^{\text{generated}}$ = \sum_{i} Externality $_{i}^{\text{received}}$


Null model: Externality
$$_i^{\text{H0}} = \frac{1}{n} \sum_{f,t} \left(\frac{\text{TNA}_{t-2,f,i}}{\text{TNA}_{t-2,f}} \right) \times \overline{\text{Alpha}}_{t,f}$$

Fricke-Jank-Wilke Fund flow externality 8 / 13

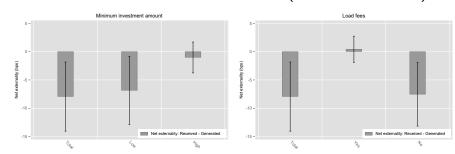
Results

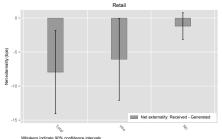
Results: Flow externality decomposition


Illiquid funds (top 25% small-/mid-cap holdings), Outflows(t-1) \geq 10%: Average total externality: -45 bps.

Whiskers indicate 90% confidence intervals

Results: Flow externality decomposition


Illiquid funds (top 25% small-/mid-cap holdings), Outflows(t-1) \geq 10%: Average total externality: -45 bps.



Whiskers indicate 90% confidence intervals

Net externality = $Externality_i^{received}$ - $Externality_i^{generated}$

Results: A closer look at households (share-class char.)

Additional Results/Robustness

- Network perspective Joint decomposition by generator/receiver confirms strong linkage from funds to households.
- Timing Total externality twice as large for contemp. outflows; net externality patterns similar. But: endogeneity concerns.
- No performance reversal Large outflows have a lasting one-off effect on fund NAVs. In line with trading-related costs.
- Excluding COVID-19 Total externality is smaller for pre-2020 data; net externality patterns similar.
- Different threshold Total externality varies with Outflow-threshold. Investment funds consistently net generators.
- (Alternative performance measures) Results very similar for CAPM-Alpha.
- Unexpected outflows Total externality is larger for large unexpected outflows; net externality patterns similar.
- (Asymmetry) No evidence of a positive inflow externality.

Behavioral Differences Across Sectors

Lastly, we ...

- (i) regress investor sector flows on market returns and the VIX,
- (ii) estimate the flow-performance relationship investor sectors,
- (iii) take a closer look at COVID-19.

Compared to households/insurers, investment funds react stronger

- (i) to market downturns and increases in uncertainty
- (ii) on past fund performance (also within-fund)
- (iii) during COVID-19

- Novel framework to decompose fund flow externality.
 - Net externality generators: Investment funds.
 - Net externality receivers: Households + insurers.
 - Differences due to investment funds' stronger performance sensitivity and more procyclical trading.
- Financial stability concerns: detrimental effect of short-term investors' trading activity.
- Consumer-protection concerns: retail investors bear most of the flow externality (and pay highest fund fees).
- Outlook: other fund types, liquidity management tools, between-fund externality...

Fricke-Jank-Wilke Fund flow externality 13 / 13

Who creates and who bears flow externalities in mutual funds?

Daniel Fricke

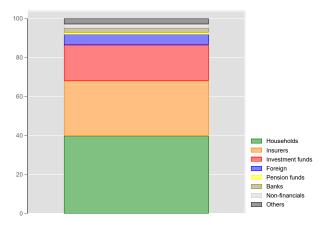
Stephan Jank

Hannes Wilke

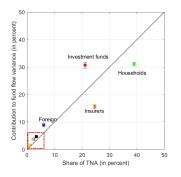
AFA Meeting 2023

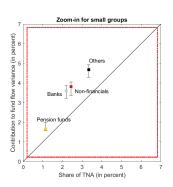
January 7th, 2023

Disclaimer: The views expressed here are the authors' and do not necessarily represent the views of Deutsche Bundesbank or the Eurosystem.


Fund characteristics by investor sector

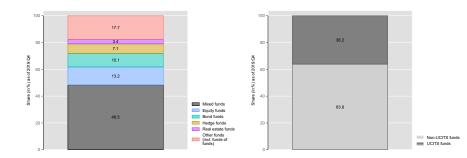
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Households	Insurers	Investment funds	Foreign	Pension funds	Banks	Non- financials	Others
Institutional share class	0.02	0.09	0.33 0.31***	0.17	0.51 0.49***	0.31	0.13 0.11***	0.32
Load fees	0.85	(7.06) 0.92 0.07***	(12.59) 0.75 -0.10***	(43.07) 0.78 -0.06***	(36.81) 0.64 -0.21***	(9.28) 0.71 -0.14***	(9.09) 0.79 -0.06***	(10.94) 0.77 -0.08***
log(Minimum investment)	10.87	(7.00) 12.92 2.05***	(-3.95) 14.18 3.31***	(-7.81) 14.57 3.70***	(-6.15) 13.38 2.51***	(-4.47) 14.14 3.28***	(-3.46) 12.66 1.80***	(-7.40) 13.41 2.55***
Expense ratio (%, p.a.)	1.64	(12.26) 1.53 -0.10***	(25.49) 1.25 -0.39***	(9.05) 1.46 -0.18***	(6.97) 1.19 -0.45***	(18.60) 1.43 -0.21***	(9.13) 1.60 -0.04**	(27.97) 1.33 -0.31***
log(Fund TNA)	7.98	(-9.97) 7.42 -0.56***	(-13.80) 6.93 -1.05***	(-19.71) 7.28 -0.70***	(-28.11) 6.83 -1.15***	(-3.63) 7.53 -0.46***	(-2.42) 7.40 -0.58***	(-7.42) 7.02 -0.96***
Age (years)	22.59	(-9.07) 22.59 0.00 (-0.01)	(-9.80) 14.46 -8.13*** (-13.26)	(-7.62) 18.01 -4.59*** (-5.89)	(-15.51) 14.98 -7.61*** (-8.53)	(-11.82) 15.38 -7.22*** (-8.73)	(-6.53) 16.40 -6.19***	(-9.33) 15.04 -7.55*** (-9.50)
Share of small/mid-cap stocks	22.49	(-0.01) 25.93 3.44*** (9.15)	(-13.26) 29.20 6.72*** (49.73)	(-5.89) 30.26 7.78*** (10.90)	(-8.53) 24.37 1.88* (1.92)	(-8.73) 29.47 6.99*** (16.60)	(-18.74) 30.52 8.04*** (10.02)	(-9.50) 31.15 8.67*** (21.40)


Expense ratios across different sectors


	Dependent variable: Expense ratio					
	(1) OLS	(2) OLS	(3) WLS	(4) WLS		
Insurers	-0.089***	-0.040***	-0.099**	-0.043***		
Investment funds	(-9.26) -0.319***	(-7.90) -0.214***	(-2.30) -0.512***	(-3.41) -0.271***		
Foreign	(-22.56) -0.163***	(-22.10) -0.129***	(-11.85) -0.306***	(-11.96) -0.275***		
Pension funds	(-17.56) -0.509***	(-15.73) -0.227***	(-5.58) -0.630***	(-9.94) -0.302***		
Banks	(-18.42) -0.088***	(-12.70) -0.043***	(-10.51) -0.314***	(-7.15) -0.170***		
	(-8.03)	(-8.01)	(-4.06)	(-5.19)		
Non-financials	-0.012* (-1.95)	-0.018*** (-5.89)	-0.046 (-1.22)	-0.046*** (-3.12)		
Others	-0.047***	-0.040***	-0.346***	-0.137***		
Households (Constant)	(-5.64) 1.864*** (140.28)	(-9.37) 1.827*** (562.52)	(-4.03) 1.696*** (59.33)	(-6.74) 1.620*** (183.41)		
R^2	0.03	0.89	0.10	0.90		
Within R ²		0.08		0.17		
Obs.	253,338	252,889	253,338	252,889		
Fund-quarter FE	No	Yes	No	Yes		

Ownership structure, conditional on outflows

Flow variance contribution by investor sector

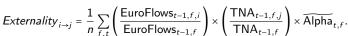


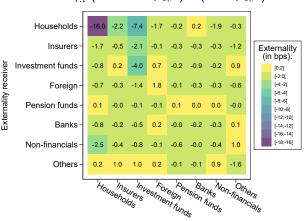
H0 of uniform flow behavior: flow contributions prop. to relative sector size \Rightarrow All sectors would lie on the main diagonal.

Investment funds in SHS are institutional-dominated

Total fund holdings: 2.33 trillion Euros (2019:Q4).

HH-share (non-)UCITS funds: 20% (11%).

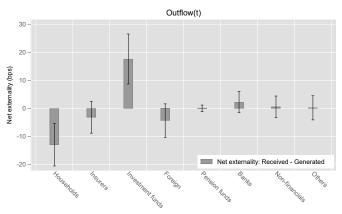

Institutional share: $64\% \times 0.89 + 36\% \times 0.8 = 86\%$.


Fricke-Jank-Wilke Fund flow externality 13 / 13

Alpha Regression

Dep. va	r.: Alpha _{t,f}	
	(1)	(2)
$Alpha_{t-1}$	0.09***	0.09***
	(9.40)	(8.98)
$Alpha_{t-2}$	0.04***	0.04***
	(4.65)	(4.23)
$Alpha_{t-3}$	0.14***	0.13***
	(17.69)	(17.07)
Alpha _{t-4}	0.01*	0.01
	(1.66)	(1.20)
Illiquid $_{t-1}$	0.00***	0.00***
	(3.87)	(4.79)
$log(TNA_{t-1})$		0.00***
		(5.53)
Expense Ratio $_{t-1}$		-0.00***
		(-3.98)
Constant	-0.01***	-0.02***
	(-17.03)	(-9.26)
Time FEs	Yes	Yes
R^2	.1284	.1304
Obs.	29817	29817

Network view: externality from i to j



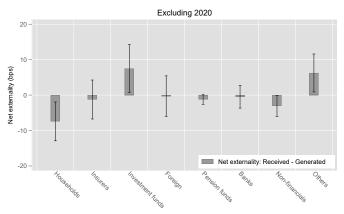
Externality generator

Flow externality decomposition: contemp. outflows

Illiquid funds (top 25% small-/mid-cap holdings), Outflows(t) $\geq 10\%$: Average total externality: -96 bps.

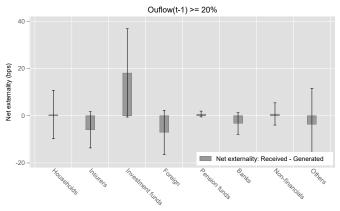
Whiskers indicate 90% confidence intervals

Alpha over different forward horizons


Illiquid funds (top 25% small-/mid-cap holdings), Outflows(t-1) \geq 10%:

·	(1)	(2)	(3)	(4)
	D	ep. var.: Alp	$ha_{f,t+ au}$ (in \S	%)
	$\tau = 0$	$\tau = 1$	$\tau = 2$	$\tau = 3$
$Outflows_{t-1}$	0.06	0.07	-0.09	-0.10
	(0.92)	(0.98)	(-1.31)	(-1.32)
$Outflows_{t-1} \times Illiquid fund_{t-1}$	-0.57***	0.11	-0.05	0.18
	(-3.27)	(0.57)	(-0.25)	(0.81)
Illiquid fund $_{t-1}$	0.29***	0.31***	0.44***	0.37***
	(5.72)	(5.38)	(7.40)	(5.59)
$Alpha_{t-1}$	0.08***	0.07***	0.15***	0.04***
	(8.76)	(6.91)	(19.03)	(4.77)
$Alpha_{t-2}$	0.04***	0.14***	0.04***	-0.01
	(4.02)	(17.66)	(4.39)	(-1.58)
Alpha _{t-3}	0.13***	0.04***	-0.01	-0.06***
	(16.93)	(4.43)	(-0.60)	(-6.28)
Alpha _{t-4}	0.01	-0.03***	-0.09***	-0.00
	(1.13)	(-2.90)	(-9.51)	(-0.14)
$log(TNA_{t-1})$	0.07***	0.07***	0.06***	0.06***
	(5.58)	(5.30)	(4.60)	(3.63)
Expense ratio $t-1$	-0.12***	-0.13***	-0.18***	-0.26***
	(-3.96)	(-3.99)	(-4.78)	(-6.69)
Constant	-2.33***	-0.84***	Ò.09	-0.28
	(-9.28)	(-3.07)	(0.30)	(-0.87)
Time fixed effects	Yes	Yes	Yes	Yes
R^2	.1319	.1287	.1356	.117
Obs.	29,799	27,077	24,623	22,643
003.	25,199	21,011	27,023	22,043

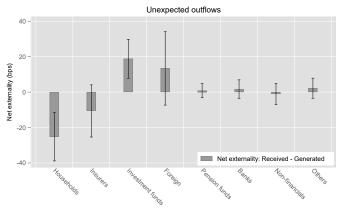
Flow externality decomposition: excluding COVID-19


Illiquid funds (top 25% small-/mid-cap holdings), Outflows(t-1) \geq 10%: Average total externality: -26 bps.

Whiskers indicate 90% confidence intervals

Flow externality decomposition: Higher threshold

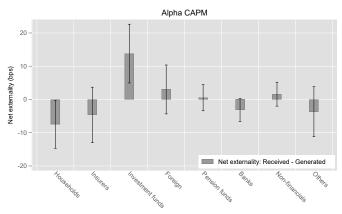
Illiquid funds (top 25% small-/mid-cap holdings), Outflows(t-1) \geq 20%: Average total externality: -64 bps.



Whiskers indicate 90% confidence intervals

Flow externality decomposition: unexpected outflows

Illiquid funds (top 25% small-/mid-cap holdings), Outflows $^{U}(t-1) \ge 10\%$: Average total externality: -54 bps.



Whiskers indicate 90% confidence intervals

Flow externality decomposition: Alpha CAPM

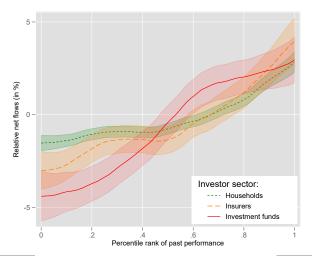
Illiquid funds (top 25% small-/mid-cap holdings), Outflows(t-1) \geq 10%: Average total externality: -46 bps.

Whiskers indicate 90% confidence intervals

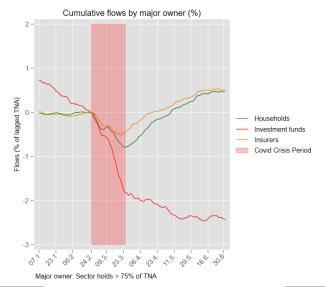
No positive externality from large inflows

	(1)	(2) Dependen Alpha _{f,t}	(4)	
$Outflows_{t-1}$	-0.08	0.06	(111 /0)	
$Outflows_{t-1} \times IIIiquid fund_{t-1}$	(-1.26)	(0.92) -0.57*** (-3.27)		
$Inflows_{t-1}$,	0.07	0.03
$Inflows_{t-1} \times Illiquid \; fund_{t-1}$			(1.09)	(0.53) 0.10 (0.64)
Illiquid fund $_{t-1}$		0.29*** (5.72)		0.23*** (4.37)
Controls Time fixed effects	Yes Yes	Yes Yes	Yes Yes	Yes Yes
R^2	.1303	.1319	.1303	.1314
Obs.	29,799	29,799	29,799	29,799

Behavioral Differences Across Sectors: Procyclicality


	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Households	Insurers	Investment funds	Foreign	Pension funds	Banks	Non- financials	Others
Panel A: Agg	regate sector fl							
		Dependent	variable: Aggre	gate sector	tlows (in perc	ent of previo	us INA)	
Market	0.08**	0.02	0.18***	0.03	0.12	0.20*	0.02	-0.06
								-0.00
	(2.31)	(0.89)	(4.38)	(0.48)	(1.04)	(1.79)	(0.28)	(-0.69)
R^2	(2.31) 23.0	(0.89) 1.1	(4.38) 46.4	(0.48) 0.7	(1.04) 5.1	(1.79) 11.7	(0.28) 0.1	
R^2 $\Delta(j) - (1)$, ,	, ,	,	, ,	,	` ,	, ,	(-0.69)

Panel B: Aggregate sector flows and the VIX


		Dependent variable: Aggregate sector flows (in percent of previous TNA)							
VIX	-0.04	0.02	-0.16	-0.01	-0.33***	-0.40***	0.03	0.05	
	(-0.49)	(0.64)	(-1.38)	(-0.09)	(-4.15)	(-3.36)	(0.45)	(0.41)	
R^2	2.2	0.4	17.6	0.0	20.3	24.4	0.2	0.3	
$\Delta(j) - (1)$) –	0.05	-0.12**	0.03	-0.29***	-0.36***	0.07	0.08	
		(0.79)	(-2.22)	(0.39)	(-4.26)	(-5.09)	(0.83)	(0.86)	

Behavioral Differences Across Sectors: FPR

 $\mathsf{RelFlows}_{t,f,i}^b = f\big(\mathsf{AlphaRank}_{t-1,f}\big) + b \times X_{t-1,f} + \mu_t + \epsilon_{t,f,i},$

Outflows during the COVID-19 stress episode

