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Experimental Design for Better Decision-Making

ØKeywords: Causal inference, decision-making, and experimental design. 

nTreatment arm (arm / treatment / policy). ex. drugs, advertisements, and economic policies.

• Each treatment arm has a potential outcome. By drawing an arm, we can observe the outcome.

• We are interested in decision-making on the choice of the treatment arm.

→ From treatment effect estimation to treatment choice (decision-making). 

ØTreatment (policy) choice: Choose the best treatment arm (policy) using observations.

cf. Manski (2000), Stoye (2009), Manski and Tetenov (2016).

ØMulti-armed bandit problem: Optimize decision-making with adaptive experiments.

• Regret minimization: Choose the treatment arms to maximize the cumulative reward during the experiment. 
cf. Gittins (1979), and Lai and Robbins (1985). In-sample regret.

• Best arm identification (BAI): Choose the best treatment arm after the experiment. 
cf. Bubeck et al. (2011), Kaufmann et al. (2016), and Kasy and Sautmann (2021). Out-sample regret. Policy regret.
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BAI with a Fixed Budget

nConsider an adaptive experiment where we can draw a treatment arm in each round.
Draw a treatment arm = allocate a treatment arm to an experimental unit and observe the realized outcome.

Ø In this presentation, I consider BAI with a fixed budget.

• The number of rounds of an adaptive experiments (budget / sample size) is predetermined.

• Recommend the best treatment arm from multiple candidates after the experiment. 
↔ BAI with fixed confidence: continue adaptive experiments until a certain criterion is satisfied. cf. sequential experiments.

ØEvaluation performance metrics:

• Probability of misidentifying the best treatment arm.

• Expected simple regret (difference between the expected outcomes of best and suboptimal arms).
Also called expected relative welfare loss, out-sample regret, and policy regret (Kasy and Sautmann 2021)

n Goal: recommend the best arm with smaller probability of misidentification or expected simple regret.
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Contents

n In this presentation, I discuss asymptotically optimal algorithms in BAI with a fixed budget.

For simplicity, I focus on the following case:

• Two treatment arms are given. ex. treatment and control groups.

• Potential outcomes follow Gaussian distributions.

• Minimization of the probability of misidentification.

ØMy presentation is based on the following our paper:

Kato, Ariu, Imaizumi, Nomura, and Qin (2022), 

“Optimal Best Arm Identification in Two-Armed Bandits with a Fixed Budget under a Small Gap.”

• We show that the Neyman allocation is the worst-case optimal in this setting. 
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Contents

nNeyman allocation rule:

• Draw a treatment arm with the ratio of the standard deviations of the potential outcomes.

• When the standard deviations are known, the Neyman allocation (Neyman 1934) is optimal.

cf. Chen et al. (2000), Glynn and Juneja (2004), and Kaufmann et al. (2016).

ØKato, Ariu, Imaizumi, Nomura, and Qin (2022).

• The standard deviations are unknown and estimated in an adaptive experiment.

• The worst-case asymptotic optimality of the Neyman allocation rule.

n In addition to the above paper, I introduce several other findings in my project. 

• ( i ) Beyond the Neyman allocation rule; ( ii ) minimization of the expected simple regret. 
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Optimal Best Arm Identification in Two-Armed 
Bandits with a Fixed Budget under a Small Gap

Kato, Ariu, Imaizumi, Nomura, and Qin (2022)
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Problem Setting

nAdaptive experiment with 𝑻 rounds: T = {1,2, … , 𝑇}.

nBinary treatment arms: {1,0}. 

• Each treatment arm 𝑎 ∈ 1,0 has a potential outcome 𝑌! ∈ ℝ. 

The distributions of (𝑌", 𝑌#) do not change across rounds, and 𝑌"and 𝑌# are independent.

• At round 𝑡, by drawing a treatment arm 𝑎 ∈ 1,0 , we observe 𝑌!,%, which is an iid copy of 𝑌!. 

ØDefinition: Two-armed Gaussian bandit models.

• A class ℳ of joint distributions 𝜈 (bandit models) of (𝑌", 𝑌#).

• 𝑌", 𝑌# under 𝜈 ∈ ℳ follow Gaussian distributions 𝒩(𝜇", 𝜎"&) and 𝒩(𝜇#, 𝜎#&).

• 𝜎!& is the variance of a potential outcome 𝑌!, which is fixed across bandit models 𝜈 ∈ ℳ.
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Problem Setting
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Arm 1

𝑇𝑡 = 1

𝑌!

𝑌" Arm 2

Draw 𝐴#

Observe 𝑌$!,#Experimenter

nBest treatment arm: an arm with the highest expected outcome, 𝑎∗ = arg max
!∈{",#}

𝜇!.

For simplicity, we assume that the best arm is unique.

nBandit process: In each round 𝑡 ∈ {1,2, … , 𝑇}, under a bandit model 𝜈 ∈ ℳ,

• Draw a treatment arm 𝐴% ∈ {1,0}. 

• Observe an outcome 𝑌+!,% of the chosen arm 𝐴%,

• Stop the trial at round 𝑡 = 𝑇

• After the final round 𝑇, an algorithm recommends 

an estimated best treatment arm ?𝑎, ∈ {1,0}. 



Best Arm Identification (BAI) Strategy

nProbability of misidentification ℙ- ?𝑎, ≠ 𝑎∗ , where ℙ- is a probability law under 𝜈 ∈ ℳ.

= A probability of an event that we recommend a suboptimal arm instead of the best arm.

ØGoal：Find the best treatment arm 𝑎∗ efficiently with smaller ℙ- ?𝑎, ≠ 𝑎∗ . 

nOur actions: Using past observations, we can optimize 𝐴% during the bandit process. 

We recommend an estimated best treatment arm after the experiment.

ØThese actions are components of algorithms for BAI, called a strategy.

• Sampling rule (𝐴", 𝐴&, … ): How we draw a treatment arm in each round 𝑡. 

• Recommendation rule ?𝑎, ∈ {1,0}: Which treatment arm we recommend as the best arm. 
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Contributions

ØMain result of Kato, Ariu, Imaizumi, Nomura, and Qin (2022).

nOptimal strategy for minimization of the probability of misidentification under a small gap.

• Consider a lower bound of ℙ- ?𝑎, ≠ 𝑎∗ that any strategy cannot exceeds.

• Propose a strategy using the Neyman allocation rule and the AIPW estimator.

In the strategy, we use the standard deviations during an experiment.

Using estimated standard deviations, we draw a treatment arm in each round.

• The probability of misidentification matches the lower bound when 𝜇" − 𝜇# → 0. 
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Probability of Misidentification

nAssume that the best arm 𝑎∗ is unique.

• ℙ- ?𝑎, ≠ 𝑎∗ converges to 0 with an exponential speed:
ℙ- ?𝑎, ≠ 𝑎∗ = exp(−𝑇(⋆))

for a constant (⋆).

ØConsider evaluating the term (⋆) by

lim sup
,→/

−
1
𝑇 logℙ- ?𝑎, ≠ 𝑎∗ .

• A performance lower (upper) bound of ℙ- ?𝑎, ≠ 𝑎∗ is 

an upper (lower) bound of lim sup
,→/

− "
,
logℙ- ?𝑎, ≠ 𝑎∗ .

cf. Kaufmann et al. (2016).

nLarge deviation analysis: tight evaluation of ℙ- ?𝑎, ≠ 𝑎∗
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Lower Bound

nKaufmann et al. (2016) gives a lower bound for two-armed Gaussian bandit models.

• To derive a lower bound, we restrict a class of strategies.

ØDefinition: consistent strategy.

• A strategy is called consistent for a class ℳ if for each 𝜈 ∈ ℳ, ℙ- ?𝑎, ≠ 𝑎∗ → 1.

• For any bandit model 𝜈 ∈ ℳ, any consistent strategy satisfies 

lim sup
,→/

−
1
𝑇
logℙ- ?𝑎, ≠ 𝑎∗ ≤

Δ&

2 𝜎" + 𝜎# & .

nAny strategy cannot exceed this convergence rate of the probability of misidentification.
A lower bound of the probability of misidentification ℙ" "𝑎# ≠ 𝑎∗ is an upper bound of 

%
# logℙ" "𝑎# ≠ 𝑎∗ .

ØOptimal strategy: a strategy under which ℙ- ?𝑎, ≠ 𝑎∗ matches the lower bound.
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Neyman Allocation Rule

nTarget allocation ratio.

• A ratio of the expected number of arm draws 
"
,
𝔼- ∑%0", 1 𝐴% = 𝑎 under a sampling rule.

= 
!
&
𝔼' ∑#(!& 1 𝐴# = 𝑎 /∑)∈[,]

!
&
𝔼' ∑#(!& 1 𝐴# = 𝑏 . 𝔼' is an expectation under a bandit model 𝜈 ∈ ℳ.

ØNeyman allocation rule. 

• Target allocation ratio is the ratio of the standard deviations. 

= Draw a treatment arm as 
"
,
𝔼- ∑%0", 1 𝐴% = 1 : "

,
𝔼- ∑%0", 1 𝐴% = 0 = 𝜎": 𝜎#.

nWhen the standard deviations 𝜎" and 𝜎# are known, the Neyman allocation is optimal. 

cf. Glynn and Juneja (2004), and Kaufmann et al. (2016). 

ØAn optimal strategy is unknown when the standard deviations are unknown.

n In our strategy, we estimate (𝜎", 𝜎#) and draw an arm 𝑎 with the probability 
12&

12'312(
.
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NA-AIPW Strategy

nProposed strategy: NA-AIPW strategy.

• NA: sampling rule following the Neyman Allocation rule.

• AIPW: recommendation rule using an Augmented Inverse Probability Weighting (AIPW) estimator.

ØProcedure of the NA-AIPW strategy: 

1. In each round 𝑡 ∈ [𝑇], estimate 𝜎!& using observations obtained until round 𝑡.

2. Draw a treatment arm 𝑎 ∈ {1,0} with a probability T𝑤%(𝑎) =
12&,!

12',!312(,!
(Neyman allocation rule).

3. In round 𝑇,  estimate 𝜇! using the AIPW estimator: �̂�.,&/012 = !
&
∑#(!& ! $!(. 3",!456",!

57!(.)
+ �̂�.,# .

�̂�.,# =
!

∑$%&! ![$$(.]
∑;(!# 1 𝐴; = 𝑎 𝑌.,# is an estimator of 𝜇. using observations until round 𝑡.

4. Recommend ?𝑎,4567 = arg max
!∈ ",#

?𝜇!,,4567 as an estimated best treatment arm.
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We can apply this strategy to a case with batched updates (multiple waves)



Upper Bound and Asymptotic Optimality
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• Assume some regularity conditions. 

• Suppose that the estimator T𝑤% converges to 𝑤∗ almost surely (with a certain rate).

• Then, for any 𝜈 ∈ ℳsuch that 0 < 𝜇" − 𝜇# ≤ 𝐶 for some constant 𝐶 > 0, the upper bound is

lim sup
&→=

−
1
𝑇 logℙ' >𝑎&/012 ≠ 𝑎∗ ≥

Δ?

2 𝜎! + 𝜎" ? − C𝐶 Δ@ + ΔA ,

where Y𝐶 is some constant.

• This result implies that lim
8→#

lim sup
,→/

− "
8*,

logℙ- ?𝑎,4567 ≠ 𝑎∗ ≥ "
& 2'32( * − 𝑜 1 .

• Under a small-gap regime (Δ = 𝜇" − 𝜇# → 0), the upper and lower bounds match 

= The NA-AIPW strategy is asymptotically optimal under the small gap.

Theorem (Upper bound)

When potential outcomes follow Bernoulli distributions, an RCT (drawing each arm with probability 1/2) is approximately optimal (Kaufmann et al., 2016). 



On the Optimality under the Small Gap

ØAsymptotically optimal strategy under a small gap.

• This result implies the worst-case optimality of the proposed algorithm. 

nA technical reason for the small gap.

• There is no optimal strategy when the gap is fixed, and the standard deviations are unknown.
↔ When the standard deviations are known, the Neyman allocation is known to be optimal.

cf. Chen et al. (2000), Glynn and Juneja (2004), and Kaufmann et al. (2016).

nWhen the gap is small, we can ignore the estimation error of the standard deviations.
↑The estimation error is trivial compared with the difficulty of identifying the best arm under the small gap. 

ü Optimality under a large gap (constant 𝜇% − 𝜇+) is an open issue.

cf. Average treatment effect estimation via adaptive experimental design: van der Laan (2008), Hahn, Hirano, and Karlan (2011).
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Simulation Studies
ØEmpirical performance of the NA-AIPW (NA) strategy.

nCompare the NA strategy with the 𝛼-elimination (Alpha) and Uniform sampling (Uniform).

The 𝛼-elimination is a strategy using the Neyman allocation when the standard deviations are known (Kaufmann et al., 2016).

The uniform sampling draw each treatment arm with equal probability. A randomized controlled trial without adaptation.

• Setting 1: 𝜇" = 0.05, 𝜇# = 0.01, 𝜎"& = 1, 𝜎#& = 0.2. 

• Setting 2: 𝜇" = 0.05, 𝜇# = 0.01, 𝜎"& = 1, 𝜎#& = 0.1.

nStrategies using the Neyman allocation outperform the RCT.

• Under the NA-AIPW strategy, we can identify the best arm with a lower probability of misidentification than the RCT (uniform sampling). 
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Setting 1 Setting 2

We draw treatment arm 1 in Setting 2 more often than in Setting 1.

𝑦-axis: 
the probability of misidentification.
(lower probability is better)
𝑥-axis: budget (sample size)
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Limitations of the Neyman Allocation Rule

Ø I briefly introduce my ongoing other work.

• Several contents are still conjectures and not published.

nThe Neyman allocation rule.

• Consider a case where there are two treatment arms.

• Not consider covariates (contextual information).

nExtensions of the NA-AIPW strategy with multiple treatment arms and contextual information.

n𝑲 treatment arms: 𝐾 = {1,2, … , 𝐾}.

nCovariate (context): 𝑑-dimensional random variable 𝑋 ∈ 𝒳 ⊂ ℝ9.  Side information such as a feature of arms.
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Problem Setting

nLet 𝜈 be a joint distribution of (𝑌", … . , 𝑌:, 𝑋), called a bandit model. 

• 𝜇!(𝜈) = 𝔼- 𝑌!,% , 𝜇!(𝜈)(𝑥) = 𝔼- 𝑌!,%|𝑋% = 𝑥 .

nBest treatment arm: an arm with the highest expected outcome, 𝑎∗(𝜈) = arg max
!∈[:]

𝜇!(𝜈).

n In each round 𝑡 ∈ {1,2, … , 𝑇}, under a bandit model 𝜈, 

• Observe a covariate (context) 𝑿𝒕 ∈ 𝓧. 

• Draw a treatment arm 𝐴% ∈ [𝐾]. 

• Observe an outcome 𝑌+!,% of chosen arm 𝐴%,

• An algorithm recommends 

an estimated best treatment arm ?𝑎, ∈ [𝐾]. 
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Arm 1

𝑇𝑡 = 1

𝑌!,#

𝑌?,#

𝑌,,#

⋮

Arm 2

Arm 𝐾

Observe 𝑋#

Draw 𝐴#

Observe 𝑌$!,#Experimenter



Bandit Models and Strategy Class

nTo derive lower bound, consider other restrictions on bandit models and strategies. 

ØDefinition: Location-shift bandit class 𝒫.

• For all 𝜈 ∈ 𝒫 and 𝑥 ∈ 𝒳, the conditional variance of 𝑌!,% is constant.
= For all 𝑎 ∈ [𝐾] and any 𝑥 ∈ 𝒳, there exists a constant 𝜎,- 𝑥 such that Var" 𝑌,,. 𝑋. = 𝑥 = 𝜎,- 𝑥 for all 𝜈 ∈ 𝒫.

• For all 𝜈 ∈ 𝒫, 𝑋 has the same distribution and denote the density by 𝜁(𝑥). 
ex. Gaussian distributions with fixed variances. An extension of Gaussian distributions.

ØDefinition: Asymptotically invariant strategy.

• A strategy is asymptotically invariant for 𝒫 if for any 𝜈, 𝜐 ∈ 𝒫, for all 𝑎 ∈ K and any 𝑥 ∈ 𝒳,

𝔼- l
%0"

,

1[𝐴% = 𝑎] |𝑋% = 𝑥 = 𝔼> l
%0"

,

1[𝐴% = 𝑎] |𝑋% = 𝑥 .

The sampling rule does not chance across 𝜈 ∈ 𝒫.

ü I conjecture that if potential results follow particular distributions, such as Bernoulli, such restrictions may not be necessary, and an RCT is optimal.
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Lower Bound

• Consider a location-shift bandit class 𝒫 and 𝜈 ∈ 𝒫.

• Assume that there is a unique best treatment arm 𝑎∗(𝜈). 

• Assume that for all 𝑎 ∈ [𝐾], there exists a constant Δ > 0 such that 𝜇.∗(')(𝜈) − 𝜇.(𝜈) < Δ.

• Then, for any 𝜈 in a location-shift class, any consistent and asymptotically invariant strategy satisfies

if 𝐾 = 2:  lim sup
&→=

− !
&
logℙ' >𝑎&∗ ≠ 𝑎∗(𝜈) ≤ B(

?∫ D& E FD( E
(G E HE

+ 𝐶!Δ@;

if 𝐾 ≥ 3 and strategy is invariant:  lim sup
&→=

− !
&
logℙ' >𝑎&∗ ≠ 𝑎∗(𝜈) ≤ B(

? ∑)∈ + ∫ D)
( E G E HE

+ 𝐶?Δ@,

where 𝐶!, 𝐶? > 0 are some constant.   

22

Theorem (Lower bound)

Small gap



Target Allocation Ratio and Optimal Strategy

nThe lower bound suggests drawing an arm 𝑎 with the following probability 𝑤∗(𝑎|𝑋%): 

• if 𝐾 = 2, 𝑤∗ 𝑎 𝑋% = 2& (@!)
2' @! 32*(@!)

for 𝑎 ∈ [2]; if 𝐾 ≥ 3, 𝑤∗ 𝑎 𝑋% = 2&*(@!)
∑/∈ 1 2/

*(@!)
for 𝑎 ∈ [𝐾].  

ØBeyond the Neyman allocation rule: when 𝐾 ≥ 3, draw arms with the ratio of the variances.

nReplace the Neyman allocation rule in the NA-AIPW strategy with 𝑤∗(𝑎|𝑥) defined here.

• In 𝑡 ∈ [𝑇], estimate 𝜎! 𝑋% using samples until round 𝑡 and draw an arm with an estimated T𝑤%.

• In round 𝑇, estimate 𝜇!(𝜈) using the AIPW estimator: !𝜇,,#2345 = %
#
∑.6%# % 7!6, 8",!9:;",!(=!)

:?!(,|=!)
+ !𝜇,,. 𝑋. .

�̂�.,#(𝑋#): an estimator of 𝜇.(𝜈)(𝑥) using samples until round 𝑡. 

• Recommend ?𝑎,4567 = arg max
!∈[:]

?𝜇!,,4567 as an estimated best treatment arm.

nThis strategy is asymptotically optimal under the small gap as well as the NA-AIPW strategy. 
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When 𝐾 = 2, the target allocation ratio is identical to that in average treatment effect estimation, such as Hahn Hirano, and Karlan (2011).



Expected Simple Regret

ØRelationship between the probability of misidentification and expected simple regret.

nSimple regret: 𝑟, 𝜈 = 𝜇!∗ - 𝜈 − 𝜇 C!D 𝜈 under a bandit model 𝜈 (there is a randomness of "𝑎# 𝜈 ). 

nExpected simple regret: 𝔼- 𝑟% 𝜈 = 𝔼- 𝜇!∗ D 𝜈 − 𝜇 C!D 𝜈 . (𝔼$ is the expectation over $𝑎% 𝜈 ).

• The expected simple regret represents an expected relative welfare loss. 

• In economics, the expected simple regret is often more meaningful than the probability of misidentification.

nA gap between the expected outcomes of arms 𝑎, 𝑏 ∈ [𝐾]: Δ!,E(𝜈) = 𝜇! 𝜈 − 𝜇E 𝜈 . 

nBy using the gap Δ!,E 𝜈 = 𝜇! 𝜈 − 𝜇E 𝜈 , the expected regret can be decomposed as

𝔼- 𝑟% 𝜈 = 𝔼- 𝜇!∗ - 𝜈 − 𝜇 C!D 𝜈 = l
E∉𝒜∗ -

Δ!∗ - ,E(𝜈)ℙ- ?𝑎, = 𝑏 .

nFor some constant 𝐶 > 0, 𝔼- 𝑟%(𝜈) = ∑E∉𝒜∗ - Δ!
∗ D ,E (𝜈) exp −𝐶𝑇 Δ!∗ D ,E(𝜈)

&
.
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A set of the best treatment arms.
The probability of misidentification.



Expected Simple Regret

n The speed of convergence to zero of Δ.∗ I ,)(𝜈) affects the of 𝔼' 𝑟# 𝑃 regarding 𝑇.

1. Δ.∗ ' ,)(𝜈) is slower than 1/ 𝑇 → For some increasing function 𝑔(𝑇)，𝔼' 𝑟# 𝜈 ≈ exp −𝑔 𝑇 .

2. Δ.∗ ' ,) 𝜈 = 𝐶!/ 𝑇 for some constant 𝐶! → For some constant 𝐶? > 0, 𝔼' 𝑟# 𝜈 ≈ J(
&
.

3. Δ.∗ ' ,)(𝜈) is faster than 1/ 𝑇 → 𝔼' 𝑟# 𝜈 ≈ 𝑜(1/ 𝑇)

→ In the worst case, Δ.∗ ' ,) converges to zero with 𝐶!/ 𝑇 （Bubeck et al., 2011）. cf. Limit of experiment framework. 

ü When 𝜟𝒂,𝒃 𝝂 is independent from 𝑻, evaluation of 𝔼' 𝑟#(𝜈) is equivalent to that of ℙ' >𝑎&∗ = 𝑏 .

• ℙ' >𝑎&∗ = 𝑏 converges to zero with an exponential speed if Δ.,) 𝜈 is independent from 𝑇．

• Δ.∗ ' ,) does not affect the rate. 

→ For some constant (⋆), if ℙ' >𝑎&∗ = 𝑏 ≈ exp(−𝑇(⋆)) for 𝑏 ∉ 𝒜∗ 𝜈 , then 𝔼' 𝑟# 𝜈 ≈ exp(−𝑇(⋆)). 

• Our result on the small gap optimality of ℙ' >𝑎&∗ = 𝑏 is directly applicable to the optimality of 𝔼' 𝑟# 𝜈 .
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Summary
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Summary

ØAsymptotically optimal strategy in two-armed Gaussian BAI with a fixed budget.

nEvaluating the performance of BAI strategies by the probability of misidentification. 

• The Neyman allocation rule is globally optimal when the standard deviations are known.

= The Neyman allocation is known to be asymptotically optimal when potential outcomes of two treatment arms follow    

Gaussian distributions with any mean parameters and fixed variances. 

nResult of Kato, Ariu, Imaizumi, and Qin (2022).

• The standard deviations are unknown and estimated during an experiment.

• Under the NA-AIPW strategy, the probability of misidentification matches the lower bound 

when the gap between expected outcomes goes to zero.

→ The strategy based on the Neyman allocation is the worst-case optimal (small-gap optimal).
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