Hysteresis, the Big Push, and Technological Adoption Sebastián Amador

University of California, Davis January, 2023

Introduction

- Conventional view: GDP = Trend + Cycle
 - Trend= f(supply side factors)
 - Cycle= f(demand shocks and monetary policy).
 - $\blacktriangleright \text{ Ideas} \rightarrow \text{TFP.}$

Alternative view

- Relationship between the cycle and the trend.
- Hysteresis: temporary shocks may have long run effects.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

• Ideas \rightarrow implementation process \rightarrow TFP.

Figure: United States Real GDP and Linear Trend (Source: FRED)

(ロ)、(型)、(E)、(E)、 E) のQ()

This paper

- Question: which supply-side factors determine if a temporary shock has permanent effects?
- Focus on the adoption and abandonment of a technology by firms with heterogeneous costs.
- **Why not R&D?** supply-side scarring, relavance for non-R&D intensive economies.
- Coordination failure in the share of adopters (multiple equilibria, Big Push).
- Equilibrium selection: history of shocks \rightarrow hysteresis may appear.
 - **Key feature:** if adoption threshold > exit threshold \rightarrow hysteresis.
 - Typical in stochastic settings when there is an option value of waiting for a high draw.

"In 1899 and 1900, electric vehicles outsold all other types of cars"

Figure: Edison and electric car, 1913, (Source: National Museum of American History)

"[...] it would take more than 60 years before turbines of that size would be built [again]"

Figure: 100 kW turbine in Crimea 1931, (Source: Potter, 2020)

Results

Hysteresis depends on:

- Elasticity of substitution between input varieties.
 - More sustituability/markups \rightarrow more hysteresis.
- Barriers to adoption.
 - Higher entry costs \rightarrow more hysteresis.
- Shock size.
 - Larger shocks \rightarrow more hysteresis.

On the possibility of reverse hysteresis (positive shocks \rightarrow positive long-run effect):

- Complementarity in adoption vs. decreasing profits for late adopters.
- It is relatively more expensive to adopt the higher the adoption share (holding costs constant).
- **Reverse hysteresis** more likely in less technologically advanced economies.
- Friedman's (1964) plucking model more likely in economies near/on the technological frontier.

Related Literature

- Relationship between cycle and trend: Cerra, Fatás, & Saxena (forthcoming); Elfsbacka Schmöller, 2022; Garga & Singh, 2020; Anzoategui, Comin, Gertler, & Martinez, 2019; Bianchi, Kung, & Morales, 2019; Benigno & Fornaro, 2018; Aguiar & Gopinath, 2007;
- Hysteresis non-linearity: Jordá, Singh, & Taylor (2021); Amador (2022); Aikman, Drehmann, Juselius, & Xing, (2022).
 - Hysteresis is asymmetric (no reverse hysteresis).
 - Hysteresis seems to be driven by the largest episodes.

 Output fluctuations as coordination failures: Rosenstein-Rodan (1943); Murphy et al., (1989); Ciccone (2002); Diamond (1982); Kiyotaki (1988); Cooper & John (1988); Durlauf (1991); Fajgelbaum, Schaal, & Taschereau-Dumouchel (2017); Schaal & Taschereau-Dumouchel (2018), Choi & Shim (2022).

Contribution

Parsimonious supply side model of hysteresis consistent with empirical evidence on asymmetry and non-linearity.

Supply-side explanation for Friedman's (1964) plucking model.

Model

- ► Time is discrete and goes on forever.
- ► The economy:
 - 1. Representative household.

$$\mathbb{E} \sum_{t=0}^{\infty} \rho^t U(C_t); \ U(C_t) = \ln C_t; \ P_t C_t \leq W_t + \Pi_t.$$

2. Final good sector.

•
$$Y_t = \left(\iint\limits_{j,k} y_{j,k,t}^{\frac{\sigma-1}{\sigma}} \mathrm{d}j \mathrm{d}k \right)^{\frac{\sigma}{\sigma-1}}$$
; (j,k) ; $P_t = \left(\iint\limits_{j,k} p_{j,k,t}^{1-\sigma} \mathrm{d}j \mathrm{d}k \right)^{\frac{1}{1-\sigma}}$.

- 3. Intermediate goods sector (continuum of varieties).
- Final good used for consumption and to pay for the cost of adopting and operating a modern technology.
- Resources used in adoption are not used for any other purpose.

Intermediate goods producer

- Unit mass of firms indexed by adoption/abandonment thresholds (j, k).
- Varieties produced by monopolist choosing traditional (T) or a modern (M) technology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- ▶ Production function $y_{j,k,t} = A_{j,k,t}I_{j,k,t}$
- ▶ Productivity: $A_{j,k,t} = e^{a_t} u_{j,k,t}$
 - $\blacktriangleright \text{ Shock: } a_t = \psi a_{t-1} + \varepsilon_t^a,$
 - ▶ If in the \mathcal{T} -sector, then $u_{i,k,t} = 1$
 - If in the \mathcal{M} -sector then $u_{j,k,t} = \mathcal{A} > 1$.

Partial equilibrium

- Firm quantity and pricing decisions are independent of *j* and *k*.
- ▶ **Proposition 1:** Prices, $p_{j,k,t}^i$, and quantities, $y_{j,k,t}^i$, will be symmetric across all firms in each type $i \in \{\mathcal{T}, \mathcal{M}\}$:

$$\blacktriangleright \phi_t^{\mathcal{T}} = \frac{W_t}{e^{s_t}}; \ \phi_t^{\mathcal{M}} = \frac{\phi_t^{\mathcal{T}}}{\mathcal{A}}; \ y_t^{\mathcal{T}} = \left(\frac{\sigma}{\sigma-1}\phi_t^{\mathcal{T}}\right)^{-\sigma} Y_t; \ y_t^{\mathcal{M}} = \left(\frac{\sigma}{\sigma-1}\frac{\phi_t^{\mathcal{T}}}{\mathcal{A}}\right)^{-\sigma} Y_t$$

Gross profits in the \mathcal{M} -sector will be a linear function of profits in the \mathcal{T} -sector.

$$\pi_t^{\mathcal{T}} = \left(\frac{1}{\sigma-1}\right) \left(\frac{\sigma}{\sigma-1}\right)^{-\sigma} \left(\frac{1}{\phi_t^{\mathcal{T}}}\right)^{\sigma-1} Y_t$$

$$\pi_t^{\mathcal{M}} = \mathcal{A}^{\sigma-1} \pi_t^{\mathcal{T}}$$

▶ **Proposition 2:** Let the final good, Y_t , be the numéraire $(P_t = 1 \forall t)$. Given a share of firms in the modern sector, m_t , and the optimal choices of prices and quantities for firms in each sector, it is possible to derive functions for aggregate quantities (in terms of m_t and a_t).

Intermediate goods producer

Adoption operator:

$$\gamma_{j,k,t} = \begin{cases} 1 & \text{if } \gamma_{j,k,t-1} = 0, \text{ and } \pi_t^{\mathcal{T}} > j \\ 1 & \text{if } \gamma_{j,k,t-1} = 1, \text{ and } \pi_t^{\mathcal{T}} > k \\ 0 & \text{if } \gamma_{j,k,t-1} = 0, \text{ and } \pi_t^{\mathcal{T}} < j \\ 0 & \text{if } \gamma_{j,k,t-1} = 1, \text{ and } \pi_t^{\mathcal{T}} < k \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

How the optimal thresholds are obtained for each firm?

•
$$\tilde{\pi}_t = \gamma_{j,k,t} \left(\mathcal{A}^{\sigma-1} \pi_t^{\mathcal{T}} - \gamma_{j,k,t} \gamma_{j,k,t-1} k^c - \gamma_{j,k,t} \left(1 - \gamma_{j,k,t-1} \right) j^c \right) + \left(1 - \gamma_{j,k,t} \right) \pi_t^{\mathcal{T}}$$

• $V_0 = E_0 \left\{ \sum_{t=1}^{\infty} \beta^t \tilde{\pi}_t (a_t, m_t, \gamma_{j,k,t} | \gamma_{j,k,t-1}) \right\}$

- $\max_{\gamma_{j,k,t}} \tilde{\pi}_t + \beta E \{ V_{t+1}(a_{t+1}, m_{t+1}, \gamma_{j,k,t+1} | \gamma_{j,k,t}) \}$
- Optimal threshold *j*: $\tilde{\pi}_t(\gamma_{j,k,t}=0) + \beta E \{V_{t+1}(a_{t+1}, m_{t+1}|\gamma_{j,k,t+1}=\gamma_{j,k,t}=0)\} = E \{V_t(a_t, m_t|\gamma_{j,k,t}=1)\}$
- Optimal threshold k: $\tilde{\pi}_t(\gamma_{j,k,t} = 1) + \beta E \{ V_{t+1}(a_{t+1}, m_{t+1} | \gamma_{j,k,t+1} = \gamma_{j,k,t} = 1) \} = E \{ V_t(a_t, m_t | \gamma_{j,k,t} = 0) \}$
- Assumption: firms expect π^T_t to behave as a random walk bounded in the long-run with i.i.d. disturbances.

Expectations are derived from simulations to obtain *j* and *k*.

How the optimal thresholds are obtained for each firm?

・ロト・日本・日本・日本・日本・日本

Equilibrium

Definition 1: An equilibrium is C_t , L_t ; $\gamma_{j,k,t}$, $y_{j,k,t}^i$, $l_{j,k,t}^i$, $i \in \{\mathcal{M}, \mathcal{T}\}$; $p_{j,k,t}^{\mathcal{T}}$, $p_{j,k,t}^{\mathcal{M}}$, $P_t(a^t)$, W_t ; and m_t , such that;

- 1. The household maximizes utility.
- 2. All intermediate producers maximize their profits net of technological costs.
- 3. The final good producer solves its problem.
- 4. Prices clear all markets.
- 5. m_t satisfies:

$$\mathbf{m}_{t} = \int_{j \ge k} \int \delta(j, k) \gamma_{j,k,t} dj dk.$$

$$\mathbf{where} \ \delta(j, k) \text{ is the joint density of } j \text{ and } k.$$

$$\mathbf{and}; \ \gamma_{j,k,t} = \begin{cases} 1 & \text{if } u_{j,k,t} = \mathcal{A} \\ 0 & \text{if } u_{j,k,t} = 1 \end{cases}$$

What if $j = k \forall (j, k)$?

Figure: Single steady state equilibrium when j = k

・ロティロ・ (目下)(目下)(日下)

What if $j \ge k$?

Multiple steady state equilibria (intuition: two CDFs instead of one).

- ▶ Path dependence.
- Possibility of hysteresis (graphic proof).

What if $j \ge k$?

Figure: The $j \ge k$ half plane (t = 0)

What if $j \ge k$?

Figure: (t = 1)

What if $j \ge k$?

Figure: (t = 2)

<ロト <回 > < 三 > < 三 > < 三 > の < ○</p>

Computational exercises

- 1. Explore how different parameters affect hysteresis.
 - Barriers to entry (cost).
 - Shock size.
 - Distance to the technological frontier.
 - Elasticity of substitution/markups.
- 2. Asymmetries in hysteresis effects (reverse hysteresis and Friedman's plucking model).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Hysteresis depends on entry costs *j^c*

Hysteresis depends on shock size and adoption share

Hysteresis depends on productivity of new technology

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Hysteresis depends on markups

<ロト < 回 ト < 巨 ト < 巨 ト 三 三 の Q ()

Hysteresis depends on elasticity of substitution (markups)

Figure: Response of m_t to a -15% shock for different values of σ (markup $\frac{\sigma}{\sigma-1}$)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Conclusion

- Theoretical supply-side framework for hysteresis.
- Relevant for drops in trend and for non-R&D intensive economies.
- Defines a set of conditions for the possibility of reverse hysteresis.
- ▶ Novel equilibrium selection criterion based on history of shocks.
- ▶ Key mechanism based on heterogeneous adoption and abandonment thresholds.
- Results:
 - Hysteresis depends non-linearly on the size of the shock.
 - Hysteresis depends on market power (markups, entry costs).
 - ▶ Reverse hysteresis more likely in economies far away from the technological frontier.

Friedman's plucking model more likely for economies on the technological frontier.