Monetary Policy, Employment, and Firm Heterogeneity

Lina Yu¹

2023 ASSA

^{1.} DISCLAIMER: "Any views expressed are those of the authors and not those of the U.S. Census Bureau or Capital One. The Census Bureau's Disclosure Review Board and Disclosure Avoidance Officers have reviewed this information product for unauthorized disclosure of confidential information and have approved the disclosure avoidance practices applied to this release. This research was performed at a Federal Statistical Research Data Center under FSRDC Project Number 2483. (CBDRB-FY21-P2483-R9167)"

Introduction

Motivation:

- Employment is an important goal for monetary policy
- Distributional effects of monetary policy in employment under explored

Research questions:

- Which firms respond more to monetary policy in employment?
- What transmission channel explains the heterogeneous responses?

Contribution

▶ Distributional effects of monetary policy on firms' **employment**

Ramey (2016); Bahaj et al. (2020); Casiraghi, McGregor, and Palazzo (2021); Singh, Suda, and Zervou (forthcoming)

Contribution: Characterize the role of firms size and age

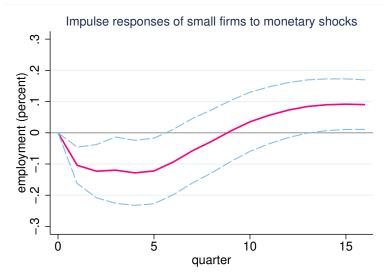
► Transmission channel of monetary policy through housing prices Gertler and Gilchrist (1994); Crouzet and Mehrotra (2020); Ottonello and Winberry (2020); Lakdawala and Moreland (2021)

Contribution: Quantify the role of housing collateral

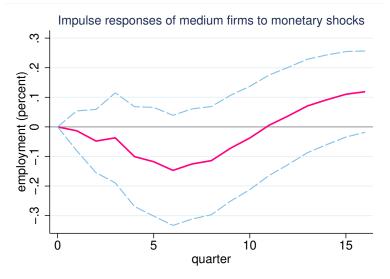
1. Macro-level evidence

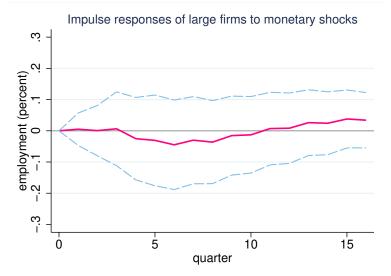
Macro level: empirical method

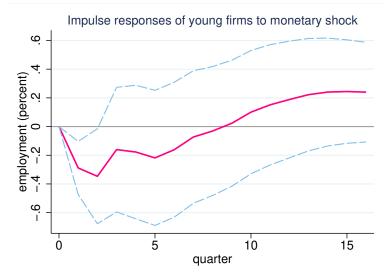
SVAR reduced-form representation:

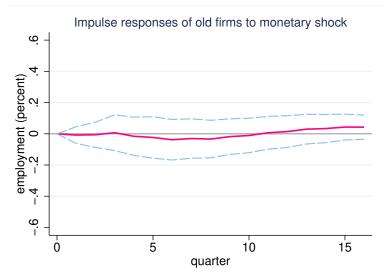

$$y_t' = x_t' \Phi + u_t', u_t \sim \mathcal{N}(0, \Sigma)$$

$$y_t = \begin{bmatrix} \text{industrial production} \\ \text{employment} \\ \text{consumer price index} \\ \text{commodity price index} \\ \text{Romer and Romer shock} \end{bmatrix} x_t = \begin{bmatrix} y'_{t-1} \\ y'_{t-2} \\ \vdots \\ y'_{t-p} \\ 1 \end{bmatrix}$$


▶ Identification method: recursive ordering


Small firms (0-19 employees)


Medium firms (20-499 employees)


Large firms (500+ employees)

Startups (0-1 age)

Older firms (2+ age)

2. Micro-level evidence

Micro level: empirical method

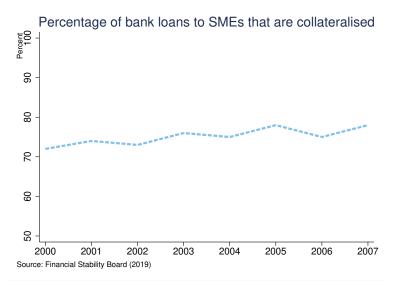
$$\Delta \textit{ln}(\textit{emp})_{\textit{i},\textit{t}} = \alpha_{\textit{i}} + \alpha_{\textit{st}} + \sum_{\textit{g}} \delta_{\textit{g}} D_{\textit{g},\textit{i},\textit{t}-1} + \sum_{\textit{g}} \beta_{\textit{g}} D_{\textit{g},\textit{i},\textit{t}-1} \xi_{\textit{t}}^{\textit{m}} + \epsilon_{\textit{i},\textit{t}}$$

- LHS: change of log employment for firm i in a quarter
- $\triangleright \alpha_i$: firm fixed effect
- $ightharpoonup \alpha_{st}$: sector-time fixed effect
- ▶ $D_{gi,t-1}$: dummy for firm groups (small, young, small and young etc.)
- $\triangleright \xi_t^m$: monetary shock details

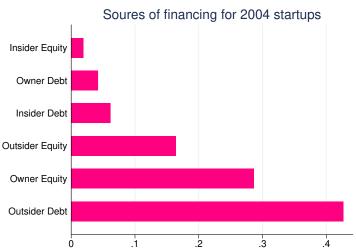
data

Micro empirical results: size 20 age 1

Heterogeneous Responses of Employment to Monetary Shocks


Variables	(1)	(2)	(3)
Small×shocks	-0.278**		
	0.126		
Young imes shocks		-0.875***	
		0.218	
Small and young $ imes$ shocks			-2.376***
			0.238
Small and old×shocks			-0.0569
			0.106
Large and young×shocks			-1.795**
			0.887
Observations	86,390,000	86,390,000	86,390,000
R^2	0.069	0.061	0.063
Firm FE	Yes	Yes	Yes
$Time imes Industry \; FE$	Yes	Yes	Yes

^{*} indicates statistical significance at 5% level, ** at 1% level, and *** at 0.1% level. Shock size is an equivalence of 100 basis points interest rate increase

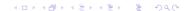

3. Transmission mechanism

Small business finance

In 2003, 29% small businesses pledge personal residence as collateral to obtain loans. Meisenzahl (2011)

Startup finance

Source: Robb and Robinson (2012)

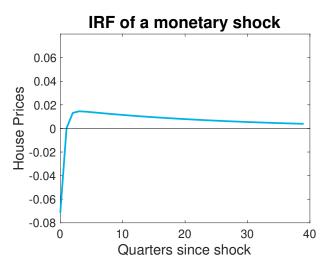

Transmission mechanism: IV method

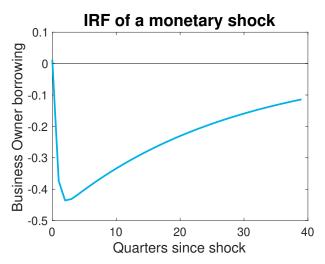
$$Y_{mt} = \sum_{t} \lambda_{t} I_{t} + \sum_{m} \lambda_{m} I_{m} + \beta H P_{mt} + \theta X_{mt} + \epsilon_{mt}$$

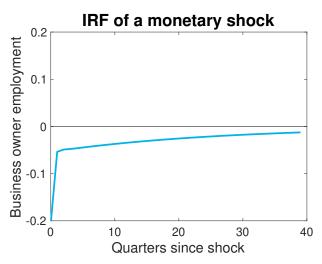
$$HP_{mt} = \sum_{t} \delta_{t} I_{t} + \sum_{m} \delta_{m} I_{m} + \gamma Z_{m} X_{mt}^{*} + \theta X_{mt} + \eta_{mt}$$

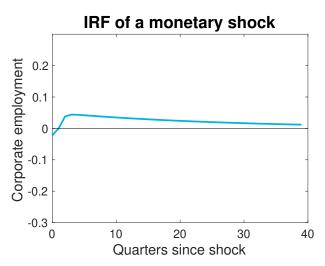
- $ightharpoonup Y_{mt}$: log change in loan amount for MSA m and year t
- $ightharpoonup HP_{mt}$: log change in house price for MSA m and year t
- ► I_t: dummy for year t
- $ightharpoonup I_m$: dummy for MSA m
- \triangleright Z_m : Saiz's housing supply elasticity or sensitivity elasticity (Guren et. al.)
- \triangleright X_{mt} : controls unemployment rate and population growth
- \blacktriangleright β : response of loan amount to local house price
- Assumption: $E(Z_m X_{mt}^*, \epsilon_{mt}) = 0$

Transmission mechanism: IV results

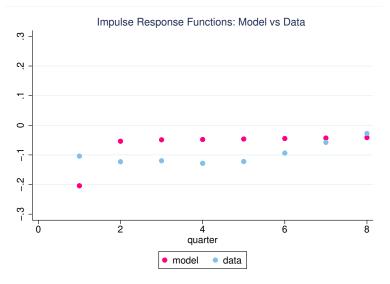

The effect of housing prices on loans to small and young businesses


	(1)	(2)	(3)	(4)	
Variables	OLS	FE	IV_Saiz	IV_GMNS	
Housing prices	0.305***	0.329***	1.775***	0.415***	
	0.0885	0.0950	0.582	0.104	
Observations	6,020	6,020	6,020	6,020	
Number of msa	215	215	215	215	
Year FE	YES	YES	YES	YES	
MSA FE	NO	YES	YES	YES	
F-test			76.03	1483	


^{*} indicates statistical significance at 5% level,** at 1% level, and *** at 0.1% level.


DSGE model

- ► How much can housing collateral channel explain the heterogeneous employment responses?
- Components
 - Production sector
 - Business owners (small/young firms)
 - Corporate sector (large/old firms)
 - Household sector
 - Retailer
 - Central bank
- Feature
 - Housing as collateral
 - Build on (lacoviello 2005)



Compare model and data

The model accounts for 67% of the cumulative responses in the data.

Conclusion

- New empirical facts
 - Macro: Smaller or younger firms respond more
 - Micro: Smaller and younger firms respond most
- Mechanism
 - Evidence: Reliance on housing collateral to obtain loans
 - Quantification: DSGE model accounts for 67% of the cumulative responses in the data

Appendix

LEHD states approved

Arizona, California, Colorado, Connecticut, Delaware, Indiana, Kansas, Maine, Maryland, Nebraska, Nevada, New Jersey, New Mexico, New York, North Dakota, Oklahoma, Pennsylvania, South Carolina, South Dakota, Tennessee, Utah, Virginia, Washington, Wisconsin

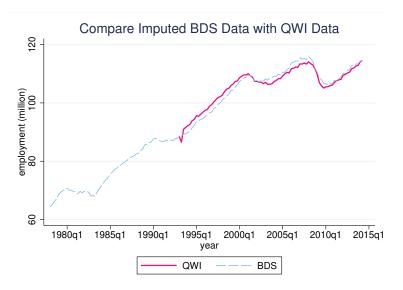
Back

Imputation method

Use QWI to impute BDS 1977A1-2007A1 to 1977Q1-2007Q1

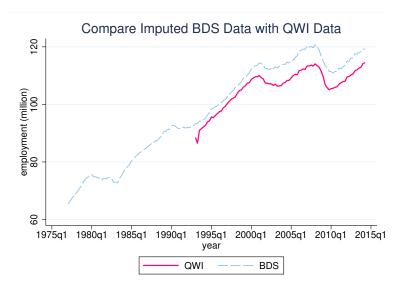
• Step 1 Construct
$$\eta = \frac{QWI - Q\widetilde{W}I}{QWI}$$
, $e = \frac{emp - e\widetilde{m}p}{emp}$

- Step 2 Regress $\eta = \alpha + \beta_1 Q + \beta_2 e$ (for 1993Q1-2017Q2)
- Step 3 Predict $\eta = \alpha + \beta_1 Q + \beta_2 e$ (for 1977Q1-1992Q4)
- Step 4 Construct $BDS = \frac{B\widetilde{D}S}{1-\eta}$



Macro level: time series data

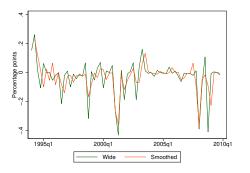
- Business Dynamics Statistics (BDS)
 - Annually
 - 1977-2007
 - Lower frequency with longer period
- Quarterly Workforce Indicators (QWI)
 - Quarterly
 - 1993-2007
 - Higher frequency with shorter period



Imputation result

Imputation result

Micro level: firm panel data


- Census Bureau restricted microdata
 - Establishment and firm level
 - Quarterly frequency
 - Comprehensive coverage
 - Characteristics firm size and age
- The Longitudinal Employer-Household Dynamics (LEHD)
 - Quarterly Workforce Indicators (QWI)
 - 1990-2007 (Quarterly)
 - Employment, NAICS
 - Employer Characteristics File (ECF)
 - 1990-2007 (Quarterly)
 - Firm age and size

Monetary shocks

- ► High-frequency event study approach (Gorodnichenko and Weber (2016) and Ottonello and Winberry (2020))
 - $\bullet \ \ 1994\text{-}2007 \ (\mathsf{Daily} \to \mathsf{Quarterly})$
 - $\xi_t^m = \tau(t)(ffr_{t+\Delta_+} ffr_{t+\Delta_-})$

Variable	Mean	SD
Smoothed shock	0240906	.0860484
Summed shock	0216807	.1077584

Micro empirical results: size 5 age 1

 $\label{thm:equilibrium} \mbox{Heterogeneous Responses of Employment to Monetary Shocks}$

Variables	(1)	(2)	(3)
Small×shocks	-0.594***		
	0.0841		
$Young \times shocks$		-0.875***	
		0.218	
Small and young $ imes$ shocks			-4.684 ***
			0.255
Small and old $ imes$ shocks			-0.595***
			0.0844
Large and young $ imes$ shocks			-2.486***
			0.411
Observations	86,390,000	86,390,000	86,390,000
R^2	0.090	0.061	0.076
Firm FE	Yes	Yes	Yes
$Time imes Industry \; FE$	Yes	Yes	Yes

^{*} indicates statistical significance at 5% level, ** at 1% level, and *** at 0.1% level. Shock size is an equivalence of 100 basis points interest rate increase

Micro empirical results: size 20 age 1 unweighted shock

Heterogeneous Responses of Employment to Monetary Policy

Variables	(1)	(2)	
Small×shocks	-0.277**		
	0.1		
Young× <i>shocks</i>		-1.385***	
		0.171	
Small and young $ imes$ shocks			-2.192***
			0.188
Small and old×shocks			0.0176
			0.0842
Large and young×shocks			-1.788***
			0.675
Observations	86390000	86390000	86390000
R^2	0.069	0.061	0.063
Firm FE	Yes	Yes	Yes
Time×IndustryFE	Yes	Yes	Yes

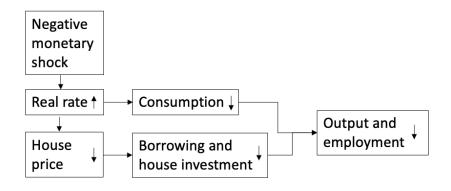
Micro empirical results: size 5 age 1 unweighted shock

Heterogeneous Responses of Employment to Monetary Policy

` '	(2)	
-0.498***		
0.0668		
	-1.385***	
	0.171	
		-3.448***
		0.201
		-0.511***
		0.0671
		-2.726***
		0.32
86390000	86390000	86390000
0.09	0.061	0.076
Yes	Yes	Yes
Yes	Yes	Yes
	86390000 0.09 Yes	-0.498*** 0.0668 -1.385*** 0.171 86390000 0.09 0.061 Yes Yes

Micro empirical results: size 500 age 1 weighted shock

Heterogeneous Responses of Employment to Monetary Policy


Variables	(1)	(2)	
Small×shocks	-0.943		
	0.638		
Young× <i>shocks</i>		-0.875***	
		0.218	
Small and young×shocks			-0.740***
			0.257
Small and old×shocks			-0.302*
			0.156
Large and young×shocks			104.5***
, ,			9.878
Observations	86390000	86390000	86390000
R^2	0.062	0.061	0.061
Firm FE	Yes	Yes	Yes
Time× <i>IndustryFE</i>	Yes	Yes	Yes

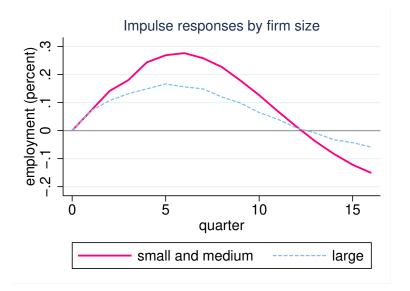
Micro empirical results: size 500 age 1 unweighted shock

Heterogeneous Responses of Employment to Monetary Policy

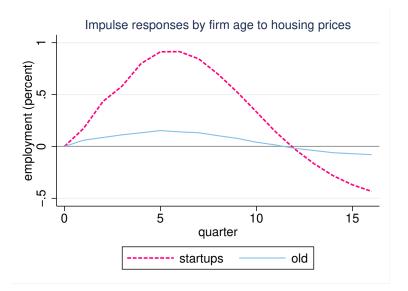
Variables	(1)	(2)	
Small×shocks	0.325		
	0.507		
$Young {\times} shocks$		-1.385***	
		0.171	
Small and young×shocks			-1.047***
			0.203
Small and old×shocks			0.142
			0.123
Large and young×shocks			78.04***
			7.238
Observations	86390000	86390000	86390000
R^2	0.062	0.061	0.061
Firm FE	Yes	Yes	Yes
Time×IndustryFE	Yes	Yes	Yes

Transmission mechanism: role of housing collateral

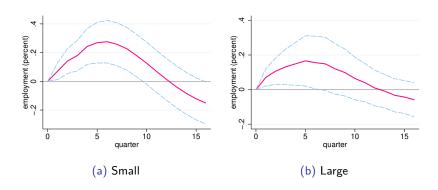
Transmission mechanism: SVAR method

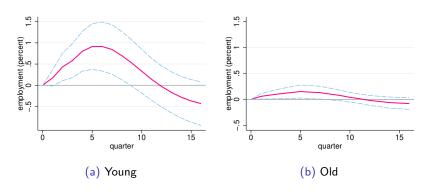

Reduced-form representation:

$$y'_t = x'_t \Phi + u'_t, u_t \sim \mathcal{N}(0, \Sigma)$$

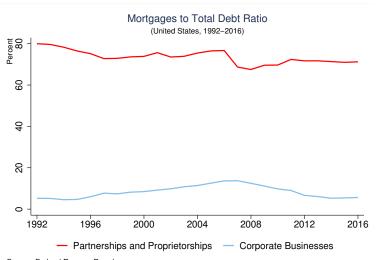

$$y_t = \begin{bmatrix} \text{industrial production} \\ \text{employment} \\ \text{consumer price index} \\ \text{house price index} \\ \text{commodity price index} \\ \text{Romer and Romer shock} \end{bmatrix} x_t = \begin{bmatrix} y'_{t-1} \\ y'_{t-2} \\ \vdots \\ y'_{t-p} \\ 1 \end{bmatrix}$$

Correlation between house price and firms' employment

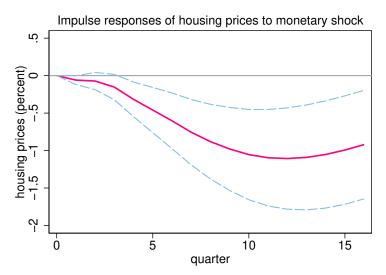

Responses to housing prices shock by firm size


Responses to housing prices shock by firm age

Responses to housing prices shock by firm size



Responses to housing prices shock by firm age


Transmission mechanism: balance sheet evidence

Source: Federal Reserve Board

Transmission mechanism: housing prices response to monetary shocks

Main data

- Loan data from Small Business Administration
 - key variables: loan amount; approval year; borrowers' zip code
 - 1991-2019
- ► House price from Federal Housing Finance Agency
 - MSA level
 - 1981-2019
- ▶ IV1: Local housing supply elasticity from Saiz (2010)
 - MSA level
- ▶ IV2: Local housing price sensitivity from Guren et al. (2020)
 - MSA level

Role of personal residence as collateral in SBA loans

Translate SBA en español For Partners Newsroom Contact Us Re

Business Guide Funding Programs Contracting Learning Center Local Assistance

NORTH DAKOTA DISTRICT OFFICE

SBA.gov » Local Assistance » District Office List » North Dakota District Office » Resources » Collateral and Credit

Collateral and Credit

By: Dale Van Eckhout

Senior Area Manager, Bismarck Area Office North Dakota District Office

What is required to obtain financing for my business? Lenders consider each unique situation, however they will look at some variation of the five C's of credit and "Collateral" (one of the S C's) is still a basis for most loans made. Collateral serves as a secondary means of repaying the loan. The lender does not want to own the collateral and wants the business to succeed. The borrower must put their assets (collateral) at risk or in other words have "skin in the game" in order to obtain the needed financing for their business. Collateral includes assets such as real estate and office or manufacturing equipment. Accounts receivable and inventory may be pledged as collateral. Collateral may also include personal assets and commonly, a second mortgage on a home. Before approaching a lender, you should assume that all assets financed with borrowed funds will be used as collateral for the loan. Depending on how much equity is contributed toward the purchase of these assets, the lender may require other assets as collateral.

Home

About Us

Success Stories

Press Releases

Email Updates

Leadership

Resources

Summary Statistics

Variable	Mean
Firm size	23.55
Firm age	11.72

LEHD Summary Statistics²

Variable	Mean
Firm size	12.46
Firm age	6.74

 $\mathsf{SBA}\ \mathsf{Summary}\ \mathsf{Statistics}^3$

^{2.} Author's calculation based on LEHD data

^{3.} Source: Brown and Earle (2013)

Equilibrium

- Definition: An equilibrium is an allocation $\{h_t^e, h_t^h, L_t^e, L_t^c, L_t^h, c_t^e, c_t^h, b_t^e, b_t^h, Y_t\}_{t=0}^{\infty}$, together with the sequence of price $\{W_t, R_t, P_t, P_t^w, P_t^*, q_t, \}_{t=0}^{\infty}$, such that, given the sequence of monetary shocks $\{e_{R,t}\}$:
 - 1. Business owners optimize: $\{c_t^e, b_t^e, h_t^e, L_t^e\}$ solves P1.
 - 2. Corporations optimize: $\{d_t, Y_t, L^c\}$ solves P2.
 - 3. Households optimize: $\{c_t^h, b_t^h, h_t^h, L_t^h\}$ solves P3.
 - 4. Retailers optimize: $\{P_t^*\}$ solves P4.
 - 5. Labor market clears: $L_t^e + L_t^c = L_t^h$.
 - 6. House market clears: $h_t^e + h_t^h = H$.
 - 7. Goods market clears: $c_t^e + c_t^h = Y_t$.
 - 8. Loans market clears: $b_t^e + b_t^h = 0$.

Business Owner

- ightharpoonup Produce homogeneous intermediate goods Y_t^c
- Pledge personal housing as a collateral

$$\begin{aligned} &\text{P1} \quad \max_{c_t^e, b_t^e, h_t^e, L_t^e} \mathbb{E}_0 \sum_{t=0}^{\infty} \gamma^t \ln c_t^e \quad s.t. \\ &Y_t^e \frac{P_t^w}{P_t} + b_t^e = c_t^e + q_t \triangle h_t^e + \frac{R_{t-1} b_{t-1}^e}{\pi_t} + w_t L_t^e \\ &b_t^e \leq m \mathbb{E}_t (\frac{q_{t+1} h_t^e \pi_{t+1}}{R_t}) \\ &Y_t^e = (h_{t-1}^e)^v (L_t^e)^{1-v} \end{aligned}$$

location

Corporate

- Produce homogeneous intermediate goods Y_t^c
- Not financially constrained
- Owned by households

P2
$$\max_{d_t, Y_t, L^c} \mathbb{E}_0 \sum_{t=0}^{\infty} \Lambda_{t,k} d_t \quad s.t.$$
$$d_t = \frac{P_t^w}{P_t} Y_t^c - w_t L_t^c$$
$$Y_t^c = A(L_t^c)^{\mu}$$

Households

- ightharpoonup Purchase final goods from retailers and consume c_t^h
- ightharpoonup Supply labor L_t^h
- Invest in house h_t^h and lend b_t^h to business owner
- ightharpoonup Own corporations and retailers, receiving d_t , F_t

$$\begin{aligned} \text{P3} \quad & \max_{c_t^h, b_t^h, h_t^h, L_t^h} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \big(\ln c_t^h + \rho \ln h_t^h - \frac{(L_t^h)^{(1+\frac{1}{\eta})}}{1+\frac{1}{\eta}} \big) \quad s.t. \\ & c_t^h + q_t \triangle h_t^h - b_t^h = w_t L_t^h - \frac{R_{t-1} b_{t-1}^h}{\pi_t} + d_t + F_t \end{aligned}$$

New Keynesian block

- Retailers
 - Monopolistic competition (retailers indexed by z)
 - Buy intermediate goods at wholesale price P_t^w
 - Differentiate goods w/o cost and sell $Y_t(z)$ at price $P_t(z)$
 - Total final goods are $Y_t = (\int_0^1 Y_t(z)^{\epsilon-1/\epsilon} dz)^{\epsilon/\epsilon-1}$
 - Change price with probability 1- heta, following Calvo (1983)
 - Aggregate price evolves: $P_t = (\theta P_{t-1}^{1-\epsilon} + (1-\theta)(P_t^*)^{1-\epsilon})^{\frac{1}{1-\epsilon}}$

P4
$$\max_{P_{t}^{*}} \sum_{t=0}^{\infty} \theta^{k} \mathbb{E}_{t-1} \left[\Lambda_{t,k} \frac{P_{t}^{*} - P_{t+k}^{w}}{P_{t+k}} Y_{t+k}^{*} \right] \quad s.t.$$

$$Y_{t+k}^{*}(z) = \left(\frac{P_{t+k}^{*}(z)}{P_{t+k}} \right)^{-\epsilon} Y_{t+k}^{f}$$

Central bank

$$R_{t} = (R_{t-1})^{r_{R}} (\pi_{t-1}^{1+r_{\pi}} (\frac{Y_{t-1}}{Y})^{r_{Y}} \bar{r}r)^{1-r_{R}} e_{R,t}$$

Set parameters

Description	Parameter	Value	Source
Households discount factor	β	0.99	lacoviello (2005)
Business owners discount factor	γ	0.98	lacoviello (2005)
Households labor supply elasticity	η	0.18	Brown (2009)
Steady-state gross markup	X	1.05	lacoviello (2005)
Probability fixed price	θ	0.75	lacoviello (2005)
Loan-to-value ratio	m	0.75	Chang (2020)

Externally set parameters

Description	Param	Value	Target	Model	Data
HH weight on housing	ρ	0.041	Residential Housing Value over GDP	1.28	1.28
BO housing elasticity	v	0.026	Business Owners Share of Households	0.17	0.17
Corp. labor elasticity	μ	0.76	Share of Employment of large firms	0.51	0.52
Corp. technology	Α	1.06	Share of Output of large firms	0.55	0.53

Calibrated parameters

Business Location

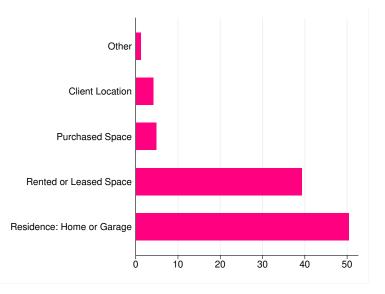


Figure 3: Primary Business Location of Firms in the Kauffman Firm Survey, 2004, Lowrey (2009)