Intangible Capital, Non-Rivalry, and Growth

Nicolas Crouzet¹ Janice Eberly² Andrea Eisfeldt³ Dimitris Papanikolaou²

¹Kellogg School of Management

²Kellogg School of Management and NBER

³UCLA Anderson School of Management and NBER

Introduction

Intangible assets are an important factor of production

Examples: IT-related assets (software, data), intellectual property (patents, trademarks), organization capital (management processes)

Broad question: What is so special about intangible assets relative to physical assets?

Introduction

Intangible assets are an important factor of production

Examples: IT-related assets (software, data), intellectual property (patents, trademarks), organization capital (management processes)

Broad question: What is so special about intangible assets relative to physical assets?

Existing approaches define intangibles by what intangibles lack

Productive assets not measured in accounting assets

Introduction

Intangible assets are an important factor of production

Examples: IT-related assets (software, data), intellectual property (patents, trademarks), organization capital (management processes)

Broad question: What is so special about intangible assets relative to physical assets?

Existing approaches define intangibles by what intangibles lack

Productive assets not measured in accounting assets

Goal: Write model emphasizing positive features of intangibles, examine implications for growth

Intangibles start as knowledge (an idea) in the mind of a creator

Intangibles start as knowledge (an idea) in the mind of a creator

1. Ideas can be codified, stored in documents, software or team of humans

Intangibles start as knowledge (an idea) in the mind of a creator

- 1. Ideas can be codified, stored in documents, software or team of humans
- 2. Ideas can be replicated and transmitted

Intangibles start as knowledge (an idea) in the mind of a creator

- 1. Ideas can be codified, stored in documents, software or team of humans
- 2. Ideas can be replicated and transmitted

Ideas can be stored in multiple locations:

- ► Ideas are (partly) non-rival in use, scalability
- ► Property rights are fuzzy, limited appropriability

Intangibles start as knowledge (an idea) in the mind of a creator

- 1. Ideas can be codified, stored in documents, software or team of humans
- 2. Ideas can be replicated and transmitted

Ideas can be stored in multiple locations:

- ▶ Ideas are (partly) non-rival in use, scalability
- ► Property rights are fuzzy, limited appropriability

Technology determines the feasibility of storing and transmitting ideas (example: writing or the internet)

Intangibles start as knowledge (an idea) in the mind of a creator

- 1. Ideas can be codified, stored in documents, software or team of humans
- 2. Ideas can be replicated and transmitted

Ideas can be stored in multiple locations:

- ▶ Ideas are (partly) non-rival in use, scalability
- ► Property rights are fuzzy, limited appropriability

Technology determines the feasibility of storing and transmitting ideas (example: writing or the internet)

Institutions enforce exclusivity and therefore turn ideas into intangible assets (example: the patent system)

Intangibles start as knowledge (an idea) in the mind of a creator

- 1. Ideas can be codified, stored in documents, software or team of humans
- 2. Ideas can be replicated and transmitted

Ideas can be stored in multiple locations:

- ► Ideas are (partly) non-rival in use, scalability $-\rho$
- ightharpoonup Property rights are fuzzy, limited appropriability δ

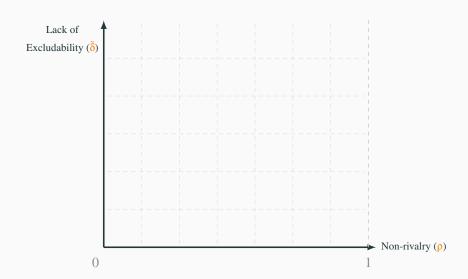
Intangibles start as knowledge (an idea) in the mind of a creator

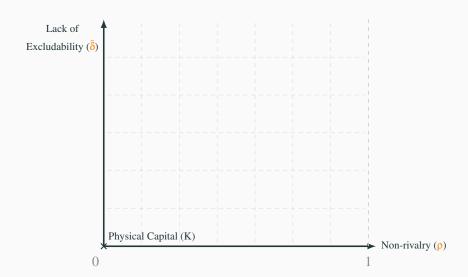
- 1. Ideas can be codified, stored in documents, software or team of humans
- 2. Ideas can be replicated and transmitted

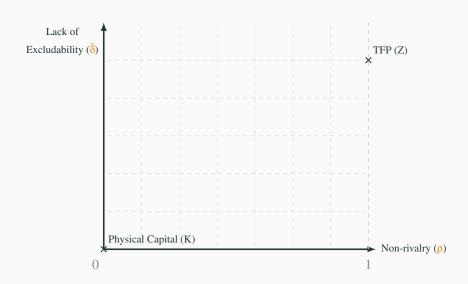
Ideas can be stored in multiple locations:

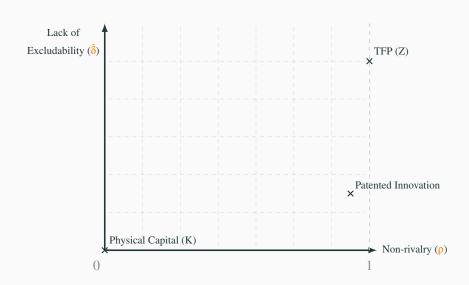
- ► Ideas are (partly) non-rival in use, scalability $-\rho$
- ▶ Property rights are fuzzy, limited appropriability $-\delta$

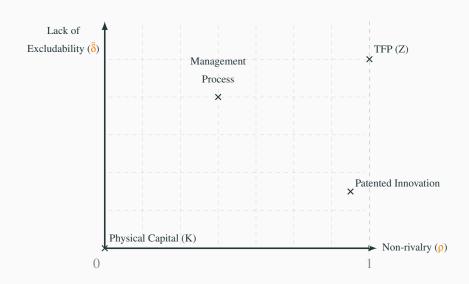
Different types of intangible assets \leftrightarrow different (ρ, δ)

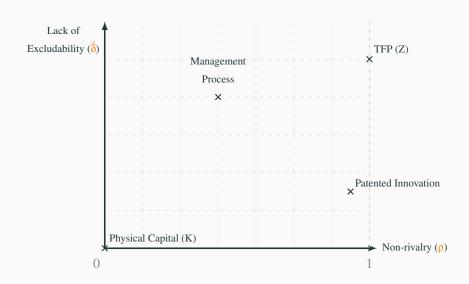


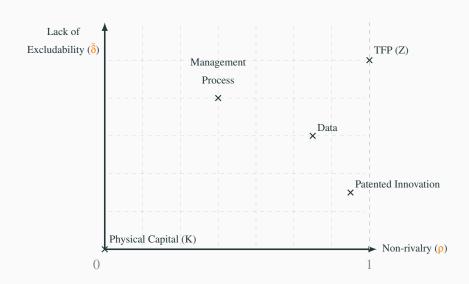












Contrast to Existing Approaches of Modeling Intangibles

- Intangibles are just another type of capital, except hard to measure e.g. Hall (2001); Bhandari and McGrattan (2021)
- Investment in intangibles allows firms to lower marginal cost e.g. Klette and Kortum (2004); De Ridder (2019)

Q: Implications for long-term growth?

 \underline{Q} : Implications for long-term growth?

Contribution: Macro model w/ intangibles

Imperfect rivalry + imperfect excludability

Q: Implications for long-term growth?

Contribution: Macro model w/ intangibles

Imperfect rivalry + imperfect excludability

Effects of ↑ non-rivalry

Benchmarks:

Physical Capital *K*: perfectly rival (Solow model, no growth)

TFP Z: perfectly non-rival (AK or Romer, perpetual growth)

Q: Implications for long-term growth?

Contribution: Macro model w/ intangibles

Imperfect rivalry + imperfect excludability

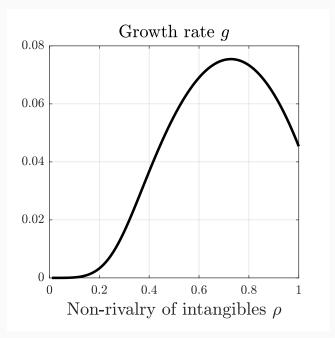
Effects of ↑ non-rivalry

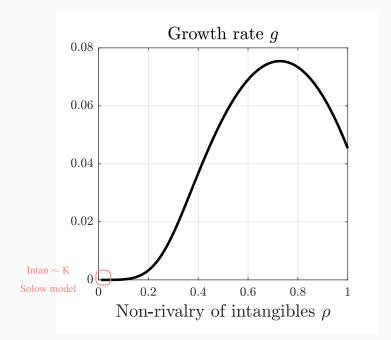
Benchmarks:

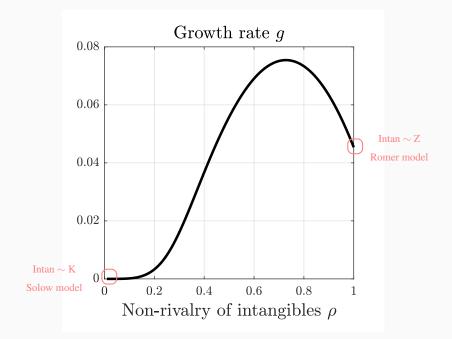
Physical Capital *K*: perfectly rival (Solow model, no growth)

TFP Z: perfectly non-rival (AK or Romer, perpetual growth)

<u>Findings:</u> Non-monotonic (inverse U-shaped) relationship between non-rivalry and growth







$$\uparrow \rho \Longrightarrow \left\{\begin{array}{c} \uparrow \text{ scale economies} \\ \end{array}\right.$$

$$\uparrow \rho \implies \left\{ \begin{array}{l} \uparrow \text{ scale economies} \\ \uparrow \text{ spillovers to future entrants} \end{array} \right.$$

```
\uparrow \rho \implies \left\{ \begin{array}{l} \uparrow \text{ scale economies} \\ \uparrow \text{ spillovers to future entrants} \\ \uparrow \text{ spillovers to existing competitors} \end{array} \right.
```

Increase in the degree of non-rivalry:

```
↑ρ ⇒ { ↑ scale economies

↑ spillovers to future entrants

↑ spillovers to existing competitors
```

Competing forces:

```
⇒ Larger new firms (↑ size conditional on entry)
```

Increase in the degree of non-rivalry:

```
↑ p ⇒ { ↑ scale economies

↑ spillovers to future entrants

↑ spillovers to existing competitors
```

Competing forces:

```
⇒ Larger new firms (↑ size conditional on entry)
Entrepreneurs appropriate lower share
(incentive to enter ↓)
```

Increase in the degree of non-rivalry:

```
↑ p ⇒ { ↑ scale economies

↑ spillovers to future entrants

↑ spillovers to existing competitors
```

Competing forces:

```
⇒ Larger new firms (↑ size conditional on entry)
Entrepreneurs appropriate lower share
(incentive to enter ↓)
```

Implications

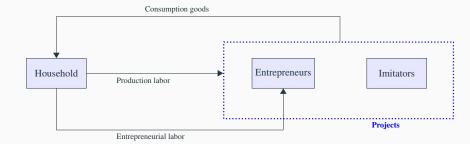
```
↑ profits, valuations, concentration
↓ entry and investment
```

Roadmap

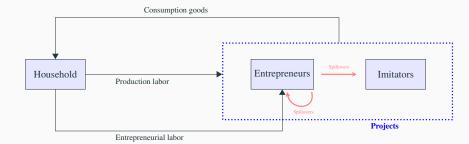
- 1. Economic Environment
- 2. The Effects of Non-rivalry on Growth
- 3. Model Implications

Economic environment

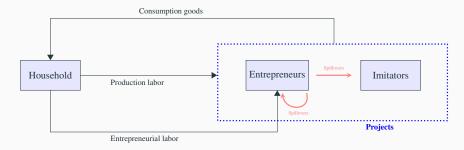
Overview



Overview



Overview



project = { product streams $s \in [0, x_t]$ } x_t : project "span"

Stage 1: Choose project span

```
Stage 1: Choose project span  \text{project} = \{ \text{ product streams } s \in [0, x_t] \}   x_t \text{: project "span"}
```

choice of x_t is fixed

```
Stage 1: Choose project span  \text{project} = \{ \text{ product streams } s \in [0, x_t] \}   x_t \text{: project "span"}   \text{choice of } x_t \text{ is fixed}
```

Stage 2: Store intangibles in each stream

Stage 1: Choose project span

project = { product streams $s \in [0, x_t]$ } x_t : project "span" choice of x_t is fixed

Stage 2: Store intangibles in each stream

Storing intangibles in a stream is an irreversible decision

Examples: Describing a production process to a local supervisor

Open a Starbucks in a new location

Stage 3: Hire workers

```
Stage 1: Choose project span
```

```
project = { product streams s \in [0, x_t] } x_t: project "span" choice of x_t is fixed
```

Stage 2: Store intangibles in each stream

Storing intangibles in a stream is an irreversible decision

Examples: Describing a production process to a local supervisor Open a Starbucks in a new location

Stage 3: Hire workers

Labor is in fixed supply

No reallocation frictions

8

$$\Pi(x_t, N_t) = \max_{\{N(s), L(s)\}, L_t} \int_0^{x_t} N(s)^{1-\zeta} L(s)^{\zeta} ds - W_t L_t$$

$$\Pi(x_t, N_t) = \max_{\{N(s), L(s)\}, L_t} \int_0^{x_t} N(s)^{1-\zeta} L(s)^{\zeta} ds - W_t L_t$$
s.t.
$$\int_0^{x_t} L(s) ds \le L_t$$

$$\Pi(x_{t}, N_{t}) = \max_{\{N(s), L(s)\}, L_{t}} \int_{0}^{x_{t}} N(s)^{1-\zeta} L(s)^{\zeta} ds - W_{t} L_{t}$$
s.t.
$$\int_{0}^{x_{t}} L(s) ds \leq L_{t}$$

$$\left(\int_{0}^{x_{t}} N(s)^{\frac{1}{1-\rho}} ds\right)^{1-\rho} \leq N_{t} \qquad \rho \in [0, 1]$$

$$\Pi(x_{t}, N_{t}) = \max_{\{N(s), L(s)\}, L_{t}} \int_{0}^{x_{t}} N(s)^{1-\zeta} L(s)^{\zeta} ds - W_{t} L_{t}$$
s.t.
$$\int_{0}^{x_{t}} L(s) ds \leq L_{t}$$

$$\left(\int_{0}^{x_{t}} N(s)^{\frac{1}{1-\rho}} ds\right)^{1-\rho} \leq N_{t} \qquad \rho \in [0, 1]$$

$$\Pi(x_t, N_t) \quad \propto \quad x_t^{\mathsf{p}} N_t$$

$$\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} ds\right)^{1-\rho} \leq N_t$$

$$\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} ds\right)^{1-\rho} \leq N_t$$

$$\rho = 0$$

$$\int_0^{x_t} N(s) \, ds \quad \leq \quad N_t$$

$$\rho = 0$$

$$\int_0^{x_t} N(s) \, ds \quad \leq \quad N_t$$

$$\rho = 0$$

increasing N(s) requires reducing N(-s) one-for-one

What does ρ capture?

$$\int_0^{x_t} N(s) \, ds \quad \leq \quad N_t$$

$$\rho = 0$$

increasing N(s) requires reducing N(-s) one-for-one

intangible capital is <u>rival</u> within the project

$$\int_0^{x_t} N(s) \, ds \quad \leq \quad N_t$$

$$\rho = 0$$

increasing N(s) requires reducing N(-s) one-for-one

intangible capital is <u>rival</u> within the project

e.g. leasehold rights to airport gates

allocating a gate to a route makes it unavailable to other routes

$$\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} ds\right)^{1-\rho} \leq N_t$$

$$\rho = 1$$

$$\max_{s \in [0,x_t]} N(s) \leq N_t$$

$$\rho = 1$$

$$\max_{s \in [0,x_t]} N(s) \leq N_t$$

$$\rho = 1$$

increasing N(s) doesn't require reducing N(-s) at all

intangible capital is non-rival within the project

What does ρ capture?

$$\max_{s \in [0,x_t]} N(s) \quad \leq \quad N_t$$

$$\rho = 1$$

increasing N(s) doesn't require reducing N(-s) at all

intangible capital is non-rival within the project

e.g. a patent for a steel alloy

using it in one mill does not reduce its availability to other mills

$$\max_{s \in [0,x_t]} N(s) \leq N_t$$

$$\rho \in (0,1)$$

$$\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} ds\right)^{1-\rho} \leq N_t$$

What does ρ capture?

$$\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} ds\right)^{1-\rho} \leq N_t$$

$$\rho \in (0,1)$$

increasing N(s) requires reducing N(-s), but <u>less</u> than one-for-one intangible capital is imperfectly rival within the project

$$\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} ds\right)^{1-\rho} \leq N_t$$

$$\rho \in (0,1)$$

increasing N(s) requires reducing N(-s), but <u>less</u> than one-for-one intangible capital is <u>imperfectly rival</u> within the project

e.g. an inventory management process for an online retailer

deploying it in a new warehouse requires managerial resources
takes managerial time away from other warehouses

$$\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} ds\right)^{1-\rho} \leq N_t$$

$$\rho \in (0,1)$$

increasing N(s) requires reducing N(-s), but <u>less</u> than one-for-one intangible capital is <u>imperfectly rival</u> within the project

e.g. an inventory management process for an online retailer

deploying it in a new warehouse requires managerial resources
takes managerial time away from other warehouses

$$\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} ds\right)^{1-\rho} \leq N_t$$

non-rivalry of intangibles $({\color{red}\rho}) \leftrightarrow$ returns to scale

What does ρ capture?

$$\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} ds\right)^{1-\rho} \leq N_t$$

non-rivalry of intangibles $(\rho) \leftrightarrow$ returns to scale

$$\Pi_t \propto x_t^{\mathsf{p}} N_t$$

if $\rho > 0$, N_t raises marginal returns to x_t

Absent any additional considerations, the optimal choice of scope is $x \to \infty$

Absent any additional considerations, the optimal choice of scope is $x \to \infty$

Q: What prevents the same (good) idea being used everywhere?

Absent any additional considerations, the optimal choice of scope is $x \to \infty$

Q: What prevents the same (good) idea being used everywhere?

A: Imperfect appropriability / fuzzy property rights

Absent any additional considerations, the optimal choice of scope is $x \to \infty$

Q: What prevents the same (good) idea being used everywhere?

A: Imperfect appropriability / fuzzy property rights

▶ Imperfect Institutions (IP) implies ideas can be expropriated

Absent any additional considerations, the optimal choice of scope is $x \to \infty$

Q: What prevents the same (good) idea being used everywhere?

A: Imperfect appropriability / fuzzy property rights

- ▶ Imperfect Institutions (IP) implies ideas can be expropriated
- ▶ Degree of expropriation increases with scope of implementation

Absent any additional considerations, the optimal choice of scope is $x \to \infty$

Q: What prevents the same (good) idea being used everywhere?

A: Imperfect appropriability / fuzzy property rights

- ▶ Imperfect Institutions (IP) implies ideas can be expropriated
- ▶ Degree of expropriation increases with scope of implementation

Increasing scope \Rightarrow owner captures a smaller share of a larger pie.

▶ Optimal scope a function of strength of IP protection

Imitators appropriate streams owned by E

Imperfect excludability: ownership of each stream is lost w.p. $\tilde{\delta} dt$

Imitators appropriate streams owned by E

Imperfect excludability: ownership of each stream is lost w.p. $\tilde{\delta} dt$

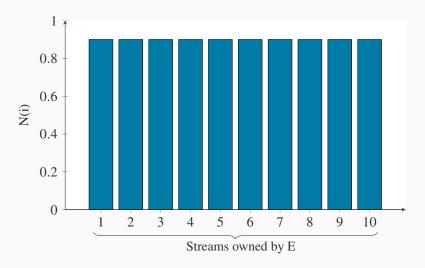
$$dx_t = -\tilde{\delta}x_t dt$$

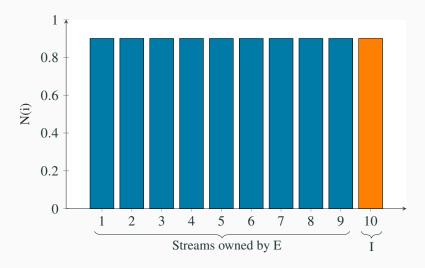
Imitators appropriate streams owned by E

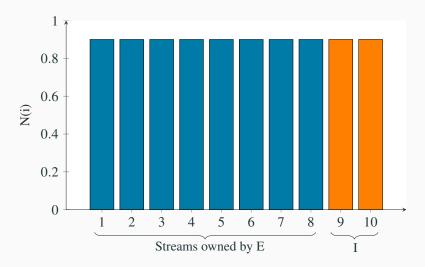
Imperfect excludability: ownership of each stream is lost w.p. δdt

$$dx_t = -\tilde{\delta}x_t dt$$

$$\implies dN_t = -\tilde{\delta}(1-\rho)N_t dt$$







Imitators appropriate streams owned by E

Imperfect excludability: ownership of each stream is lost w.p. δdt

$$dx_t = -\tilde{\delta}x_t dt$$

$$\implies dN_t = -\tilde{\delta}(1-\rho)N_t dt$$

Imitators appropriate streams owned by E

Imperfect excludability: ownership of each stream is lost w.p. δdt

$$dx_t = -\tilde{\delta}x_t dt$$

$$\implies dN_t = -\tilde{\delta}(1-\rho)N_t dt$$

<u>Spillovers</u>: S_t = Intangibles in expropriated streams, in 'public domain'

Imitators appropriate streams owned by E

Imperfect excludability: ownership of each stream is lost w.p. $\tilde{\delta} dt$

$$dx_t = -\tilde{\delta}x_t dt$$

$$\implies dN_t = -\tilde{\delta}(1-\rho)N_t dt$$

Spillovers: S_t = Intangibles in expropriated streams, in 'public domain'

Expropriation does not change the total stock of intangibles

Transforms N_t into S_t

Imitators appropriate streams owned by E

Imperfect excludability: ownership of each stream is lost w.p. $\tilde{\delta} dt$

$$dx_t = -\tilde{\delta}x_t dt$$

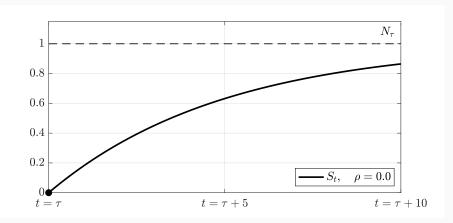
$$\implies dN_t = -\tilde{\delta}(1-\rho)N_t dt$$

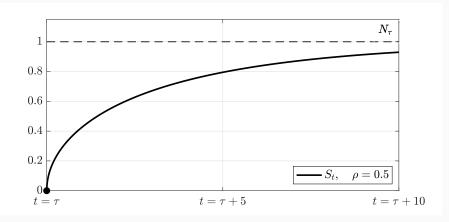
Spillovers: S_t = Intangibles in expropriated streams, in 'public domain'

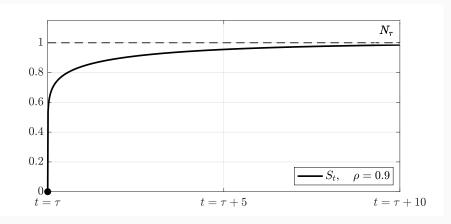
Expropriation does not change the total stock of intangibles

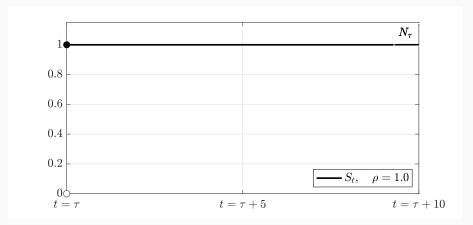
Transforms N_t into S_t

$$N_t$$
 slowly leaks into S_t : $N_0 = \left(N_t^{\frac{1}{1-\rho}} + S_t^{\frac{1}{1-\rho}}\right)^{1-\rho}$









Initial span: x_{τ} .

Initial span: x_{τ} . Assume:

$$\tilde{\delta} = \delta(x_{\tau}), \quad \delta \text{ increasing and convex.}$$

Initial span: x_{τ} . Assume:

$$\tilde{\delta} = \delta(x_{\tau}), \quad \delta \text{ increasing and convex.}$$

Value of project to creator:

$$V^e_{\tau}(N_{\tau}) \propto \max_{x_{\tau}} \frac{N_{\tau}x^{\rho}_{\tau}}{r + \delta(x_{\tau}) - (-\zeta g)}$$

Initial span: x_{τ} . Assume:

$$\tilde{\delta} = \delta(x_{\tau}), \quad \delta \text{ increasing and convex.}$$

Value of project to creator:

$$V^e_{\tau}(N_{\tau}) \propto \max_{x_{\tau}} \frac{N_{\tau} x^{\rho}_{\tau}}{r + \delta(x_{\tau}) - (-\zeta g)}$$
 (scale) (limited excludability)

Initial span: x_{τ} . Assume:

$$\tilde{\delta} = \delta(x_{\tau}), \quad \delta \text{ increasing and convex.}$$

Value of project to creator:

$$V^e_{\tau}(N_{\tau}) \propto \max_{x_{\tau}} \frac{N_{\tau} x^{\rho}_{\tau}}{r + \delta(x_{\tau}) - (-\zeta g)}$$
 (scale) (limited excludability)

Initial span: x_{τ} . Assume:

$$\tilde{\delta} = \delta(x_{\tau}), \quad \delta$$
 increasing and convex.

Value of project to creator:

$$V^e_{\tau}(N_{\tau}) \propto \max_{x_{\tau}} \frac{N_{\tau} x^{\rho}_{\tau}}{r + \delta(x_{\tau}) - (-\zeta g)}$$
 (scale) (limited excludability)

New project requires 1 unit of labor, and starts with intangible stock:

Initial span: x_{τ} . Assume:

$$\tilde{\delta} = \delta(x_{\tau}), \quad \delta$$
 increasing and convex.

Value of project to creator:

$$V_{\tau}^{e}(N_{\tau}) \propto \max_{x_{\tau}} \frac{N_{\tau}x_{\tau}^{\rho}}{r + \delta(x_{\tau}) - (-\zeta g)}$$
 (scale) (limited excludability)

New project requires 1 unit of labor, and starts with intangible stock:

$$N_{ au} = \underbrace{\bigvee_{\substack{ au(i) \leq au \\ ilde{S}_{ au}}} S_{i, au} di}_{ ilde{S}_{ au}}$$

Imitators take over expropriated product streams

Imitators take over expropriated product streams

Imitators take over expropriated product streams

$$V_t \equiv \text{Total project value} \propto \frac{N_t x_t^{\rho}}{r + \zeta g}$$

Imitators take over expropriated product streams

$$V_t \equiv ext{Total project value} \quad \propto \quad \frac{N_t x_t^{\mathbf{p}}}{r + \zeta g}$$

$$\text{Creator's share} \quad = \quad \frac{V_t^e}{V_t} = \frac{r + \zeta g}{r + \tilde{\delta} + \zeta g} \equiv \theta$$

Imitators take over expropriated product streams

$$V_t \equiv \text{Total project value} \quad \propto \quad \frac{N_t x_t^{\delta}}{r + \zeta g}$$

$$\text{Creator's share} \quad = \quad \frac{V_t^e}{V_t} = \frac{r + \zeta g}{r + \tilde{\delta} + \zeta g} \equiv \theta$$

$$\text{Imitators' share} \quad = \quad 1 - \theta$$

Growth

Each time *t* a measure of new projects in being created.

▶ Measure of new projects a function of agents who choose to be entrepreneurs $L_{e,t}$

Aggregate output

$$Y_{t} = \frac{\Lambda_{t}}{1 - \zeta} \int_{0}^{t} \underbrace{v S_{\tau} L_{e, \tau}}_{\text{new}} \underbrace{x_{\tau}^{p_{\tau}}}_{\text{scale}} d\tau$$
intangibles

Labor markets and equilibrium

Free-entry

$$V_t^e(x_t, N_t) = W_t$$

Labor markets and equilibrium

Free-entry
$$V^e_t(x_t,N_t)=W_t$$
 Labor market clearing $\underbrace{L_{e,t}}_{\text{#new projects}}+L_{p,t}=1$

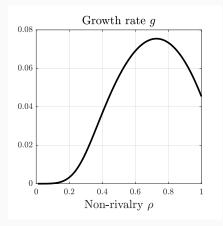
Labor markets and equilibrium

Free-entry
$$V^e_t(x_t,N_t) = W_t$$
 Labor market clearing $\underbrace{L_{e,t}}_{\text{#new projects}} + L_{p,t} = 1$

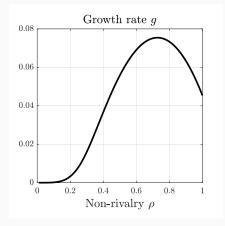
Result 1 (Balanced growth path)

For any $\rho \in [0, 1]$, if ν is sufficiently high, there exists a unique equilibrium where $(x_t, L_{e,t})$ are constant and (\overline{S}_t, N_t) grow at the same constant rate g.

The Effects of Non-Rivalry



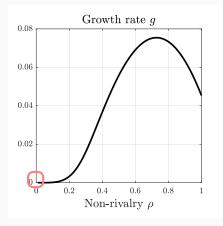
$$N_t = \nu \bar{S}_t$$
 $g = \underbrace{n(g; \rho)}_{\text{Return to Investment}} \times \underbrace{L_e}_{\text{Investment}}$



$$N_t = v \bar{S}_t$$

$$g = \underbrace{n(g; \rho)}_{\text{Return to Investment}} \times \underbrace{L_e}_{\text{Investmen}}$$

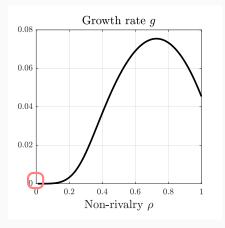
 $\rho = 0$: Solow model



$$N_t = v \bar{S}_t$$

$$g = \underbrace{n(g; \rho)}_{\text{Return to Investment}} \times \underbrace{L_e}_{\text{Investmen}}$$

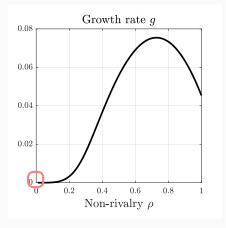
$$\rho = 0$$
: Solow model $n = 0$



$$N_t = \mathbf{v}\,\bar{S}_t$$

$$g = \underbrace{n(g; \mathbf{p})}_{\text{Return to Investment}} \times \underbrace{L_e}_{\text{Investmen}}$$

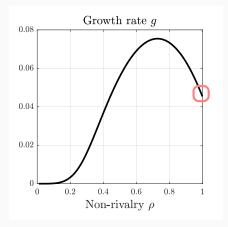
$$\rho = 0$$
: Solow model $n = 0$ $g = 0$



$$N_t = v \bar{S}_t$$
 $g = \underbrace{n(g; \rho)}_{\text{Return to Investment}} \times \underbrace{L_e}_{\text{Investmen}}$

$$\rho = 0$$
: Solow model
$$n = 0$$
$$g = 0$$

 $\rho = 1$: Romer model

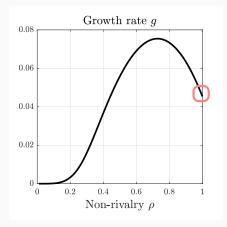


$$N_t = v \bar{S}_t$$

$$g = \underbrace{n(g; \rho)}_{\text{Return to Investment}} \times \underbrace{L_e}_{\text{Investmen}}$$

$$\rho = 0$$
: Solow model
$$n = 0$$
$$g = 0$$

$$\rho = 1$$
: Romer model $n = v$

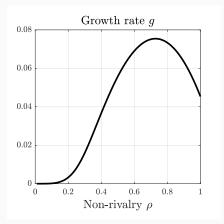


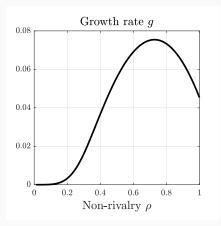
$$N_t = v\bar{S}_t$$
 $g = \underbrace{n(g; \rho)}_{\text{Return to Investment}} \times \underbrace{L_e}_{\text{Investmen}}$

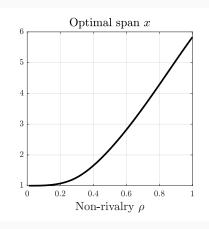
$$\rho = 0$$
: Solow model
$$n = 0$$

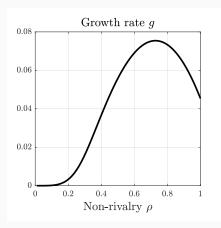
$$g = 0$$

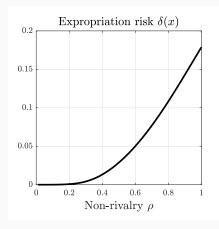
$$\rho = 1$$
: Romer model $n = v$ $g = vL_e$

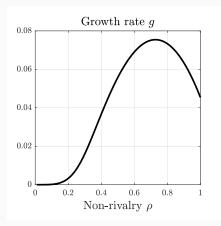


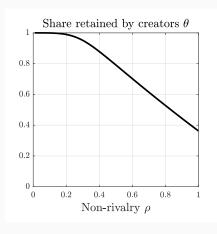


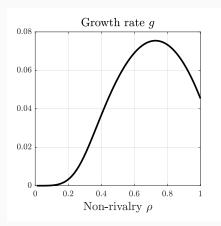


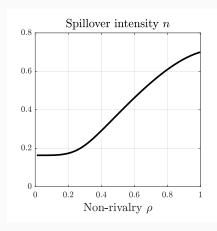


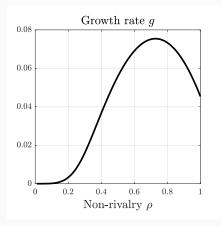


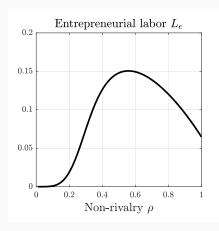












Returns to capital and Tobin's Q

$$V_t = \underbrace{V_t^e}_{\text{creators}} + \underbrace{(1-\theta)V_t}_{\text{imitators}}$$

Returns to capital and Tobin's Q

$$V_t = \underbrace{V_t^e}_{\text{creators}} + \underbrace{(1-\theta)V_t}_{\text{imitators}}$$

Returns to capital

$$Y_{t} = \widetilde{W_{t}L_{t}} + \overbrace{R_{N,t} \times (p_{N,t}\overline{N}_{tot,t}) + (1-\zeta)(1-\theta)Y_{t}}^{\text{capital}}$$

Returns to capital and Tobin's Q

$$V_t = \underbrace{V_t^e}_{\text{creators}} + \underbrace{(1-\theta)V_t}_{\text{imitators}}$$

Returns to capital

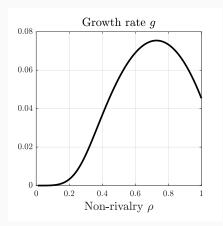
$$Y_t = \overbrace{W_t L_t}^{\text{labor}} + \overbrace{R_{N,t} \times (p_{N,t} \overline{N}_{tot,t}) + (1 - \zeta) (1 - \theta) Y_t}^{\text{capital}}$$

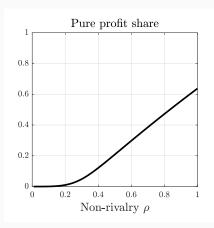
Tobin's Q

$$Q_{t}^{e} \equiv \frac{V_{t}^{e}}{p_{N,t}\overline{N}_{tot,t}} = 1$$

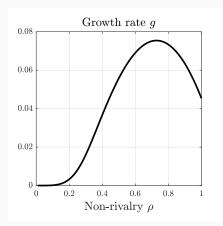
$$Q_{t} \equiv \frac{V_{t}}{p_{N,t}\overline{N}_{tot,t}} = \frac{1}{\theta} > 1$$

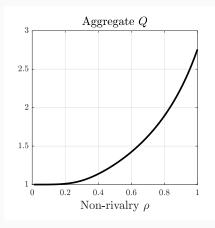
Returns to capital and valuations





Returns to capital and valuations





Concentration

Sales share for project i

$$s_{i,t} = n \times e^{-g} \overbrace{(t - \tau(i))}^{\text{project age}}$$

Stronger spillovers (n) makes the relative size of new projects larger

Concentration

Sales share for project i

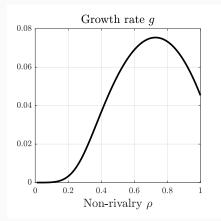
$$s_{i,t} = n \times e^{-g} \overbrace{(t - \tau(i))}^{\text{project age}}$$

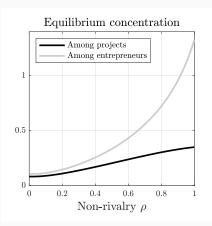
Stronger spillovers (n) makes the relative size of new projects larger

Herfindhal of sales across projects

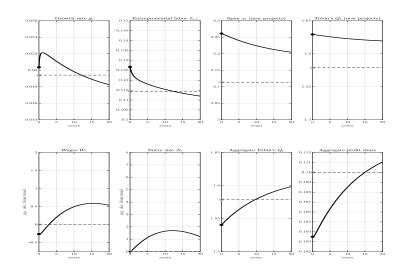
$$H_t = \int_{\tau(i) \le t} s_{i,t}^2 di = \frac{n}{2}$$

Concentration





IRF: Increase in ρ , high ρ case



Conclusion

 \underline{Q} : Intangibles are imperfectly rival within firms. Does that matter for growth?

Scale + spillovers to new firms vs. spillovers to imitators

Non-monotonic relationship btw. ρ and growth

Next:

Estimation of (ρ, δ)

Implications of non-rivalry for capital structure and for firm boundaries