Talking Over Time - Dynamic Central Bank Communication

Laura Gáti¹

ECB Research Department

ASSA

January 8, 2023

¹The views expressed are solely the views of the author and do not necessarily reflect the views of the European Central Bank or the Europystem.

• Central banks represent the public, talk to the public

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)
 - But households inattentive (e.g. Coibion et al. 2020)

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)
 - But households inattentive (e.g. Coibion et al. 2020)
- Misaligned preferences

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)
 - But households inattentive (e.g. Coibion et al. 2020)
- Misaligned preferences
 - Financial markets care about future returns

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)
 - But households inattentive (e.g. Coibion et al. 2020)
- Misaligned preferences
 - Financial markets care about future returns
 - Central bank's mandate: current inflation and employment

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)
 - But households inattentive (e.g. Coibion et al. 2020)
- Misaligned preferences
 - Financial markets care about future returns
 - Central bank's mandate: current inflation and employment
- \rightarrow How to optimally deal with this tradeoff?

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)
 - But households inattentive (e.g. Coibion et al. 2020)
- Misaligned preferences
 - Financial markets care about future returns
 - Central bank's mandate: current inflation and employment
- \rightarrow How to optimally deal with this tradeoff?
 - How to balance talking about today vs tomorrow?

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)
 - But households inattentive (e.g. Coibion et al. 2020)
- Misaligned preferences
 - Financial markets care about future returns
 - Central bank's mandate: current inflation and employment
- \rightarrow How to optimally deal with this tradeoff?
 - How to balance talking about today vs tomorrow?
 - How clearly to talk?

1. The same communication problem in a static and dynamic setting

- 1. The same communication problem in a static and dynamic setting
 - Dynamic Bayesian persuasion game

- 1. The same communication problem in a static and dynamic setting
 - Dynamic Bayesian persuasion game
 - \hookrightarrow Central bank sends signal to financial market

- 1. The same communication problem in a static and dynamic setting
 - Dynamic Bayesian persuasion game
 - \hookrightarrow Central bank sends signal to financial market
 - \hookrightarrow Signal mixes present and future economic stance

- 1. The same communication problem in a static and dynamic setting
 - Dynamic Bayesian persuasion game
 - \hookrightarrow Central bank sends signal to financial market
 - \hookrightarrow Signal mixes present and future economic stance
 - Optimal weighting between present and future \rightarrow targetedness

- 1. The same communication problem in a static and dynamic setting
 - Dynamic Bayesian persuasion game
 - \hookrightarrow Central bank sends signal to financial market
 - \hookrightarrow Signal mixes present and future economic stance
 - Optimal weighting between present and future \rightarrow targetedness
 - Optimal clarity of communication \rightarrow precision

- 1. The same communication problem in a static and dynamic setting
 - Dynamic Bayesian persuasion game
 - \hookrightarrow Central bank sends signal to financial market
 - \hookrightarrow Signal mixes present and future economic stance
 - Optimal weighting between present and future \rightarrow targetedness
 - Optimal clarity of communication \rightarrow precision
- 2. Findings: key role of prior beliefs

- 1. The same communication problem in a static and dynamic setting
 - Dynamic Bayesian persuasion game
 - \hookrightarrow Central bank sends signal to financial market
 - \hookrightarrow Signal mixes present and future economic stance
 - Optimal weighting between present and future \rightarrow targetedness
 - Optimal clarity of communication \rightarrow precision
- 2. Findings: key role of prior beliefs
 - Direction of prior mean \rightarrow talk more about the present

- 1. The same communication problem in a static and dynamic setting
 - Dynamic Bayesian persuasion game
 - \hookrightarrow Central bank sends signal to financial market
 - \hookrightarrow Signal mixes present and future economic stance
 - Optimal weighting between present and future \rightarrow targetedness
 - Optimal clarity of communication \rightarrow precision
- 2. Findings: key role of prior beliefs
 - Direction of prior mean \rightarrow talk more about the present
 - Tightness of prior variance \rightarrow talk less clearly

- 1. The same communication problem in a static and dynamic setting
 - Dynamic Bayesian persuasion game
 - \hookrightarrow Central bank sends signal to financial market
 - \hookrightarrow Signal mixes present and future economic stance
 - Optimal weighting between present and future \rightarrow targetedness
 - Optimal clarity of communication \rightarrow precision
- 2. Findings: key role of prior beliefs
 - Direction of prior mean \rightarrow talk more about the present
 - Tightness of prior variance \rightarrow talk less clearly
 - ... vs. static benchmark: treat present & future as correlated in cross section

Literature

1. Global games

Morris and Shin (2002), Svensson (2006), Angeletos and Pavan (2007), Hellwig and Veldkamp (2009), Chahrour (2014).

 $\hookrightarrow\,$ Time dimension: Reis (2011), Gaballo (2016), Hansen and McMahon (2016).

2. Bayesian persuasion

Kamenica and Gentzkow (2011), Inostroza and Pavan (2017), Goldstein and Leitner (2018), Herbert (2021).

• Sender (central bank, CB) and receiver (financial market, FM)

- Sender (central bank, CB) and receiver (financial market, FM)
- Two states $\theta_t, \theta_{t+1} \in \Theta$, known to CB, unknown to FM

- Sender (central bank, CB) and receiver (financial market, FM)
- Two states $\theta_t, \theta_{t+1} \in \Theta$, known to CB, unknown to FM
- Payoffs are functions of states and FM action

- Sender (central bank, CB) and receiver (financial market, FM)
- Two states $\theta_t, \theta_{t+1} \in \Theta$, known to CB, unknown to FM
- Payoffs are functions of states and FM action
- FM takes action (investment, I_t) to maximize FM payoff

- Sender (central bank, CB) and receiver (financial market, FM)
- Two states $\theta_t, \theta_{t+1} \in \Theta$, known to CB, unknown to FM
- Payoffs are functions of states and FM action
- FM takes action (investment, I_t) to maximize FM payoff
- Persuasion: CB sends signal $s_t \in S$ to FM

- Sender (central bank, CB) and receiver (financial market, FM)
- Two states $\theta_t, \theta_{t+1} \in \Theta$, known to CB, unknown to FM
- Payoffs are functions of states and FM action
- FM takes action (investment, I_t) to maximize FM payoff
- Persuasion: CB sends signal $s_t \in S$ to FM

 \hookrightarrow give FM info so FM takes action that maximizes CB's payoff

The economic environment

$$\theta_{t+1} = \rho \theta_t + \varepsilon_{t+1}$$

$$\varepsilon_{t+1} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2) \qquad \sigma_{\varepsilon}^2 = 1 - \rho^2$$

The economic environment

$$\theta_{t+1} = \rho \theta_t + \varepsilon_{t+1}$$

"Future output" "Current output"

$$\varepsilon_{t+1} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2) \qquad \sigma_{\varepsilon}^2 = 1 - \rho^2$$

Financial market and central bank payoffs

$$\mathcal{L}_t^{FM}(I_t, \theta_{t+1}) = \mathbb{E}_t^{FM}(I_t - \theta_{t+1})^2$$
$$\mathcal{L}^{CB}(\{I_t, \theta_t\}_{t=0}^\infty) = \mathbb{E}_0^{CB} \sum_{t=0}^\infty \beta^t (I_t - b\theta_t)^2$$

t=0

Financial market and central bank payoffs

$$\mathcal{L}_t^{FM}(I_t, \theta_{t+1}) = \mathbb{E}_t^{FM}(I_t - \theta_{t+1})^2$$

$$\mathcal{L}^{CB}(\{I_t, \theta_t\}_{t=0}^{\infty}) = \mathbb{E}_0^{CB} \sum_{t=0}^{\infty} \beta^t (I_t - b\theta_t)^2$$

Financial market (FM) sets investment (I) to maximize future returns

Financial market and central bank payoffs

$$\mathcal{L}_t^{FM}(I_t, \theta_{t+1}) = \mathbb{E}_t^{FM}(I_t - \theta_{t+1})^2$$

$$\mathcal{L}^{CB}(\{I_t, \theta_t\}_{t=0}^{\infty}) = \mathbb{E}_0^{CB} \sum_{t=0}^{\infty} \beta^t (I_t - b\theta_t)^2$$

Financial market (FM) sets investment (I) to maximize future returns

Central bank (CB) wants investment to track current output, with weight b $\beta \in (0, 1)$ CB's discount factor

Information structure

$$\mathcal{I}_t^{CB} = \{\theta_{t+1}, \theta_t, \dots, \theta_0\}, \qquad \mathcal{I}_t^{FM} = \{s_t, s_{t-1}, \dots, s_0\}$$

where $s_t \in S$ is a signal the CB sends the FM.

The central bank's signal

$$s_t = heta_t + rac{1}{\psi} heta_{t+1} + v_t, \qquad v_t \sim \mathcal{N}(0, \sigma_v^2)$$

$$s_t = heta_t + rac{1}{\psi} heta_{t+1} + v_t, \qquad v_t \sim \mathcal{N}(0, \sigma_v^2)$$

 ψ : how much the CB weights either state \rightarrow "targetedness"

$$s_t = heta_t + rac{1}{\psi} heta_{t+1} + v_t, \qquad v_t \sim \mathcal{N}(0, \sigma_v^2)$$

 ψ : how much the CB weights either state \rightarrow "targetedness"

• If $\psi < 1 \rightarrow$ signal targeted toward tomorrow's state

$$s_t = heta_t + rac{1}{\psi} heta_{t+1} + v_t, \qquad v_t \sim \mathcal{N}(0, \sigma_v^2)$$

 ψ : how much the CB weights either state \rightarrow "targetedness"

- If $\psi < 1 \rightarrow$ signal targeted toward tomorrow's state
- If $\psi > 1 \rightarrow$ signal targeted toward today's state

$$s_t = heta_t + rac{1}{\psi} heta_{t+1} + v_t, \qquad v_t \sim \mathcal{N}(0, \sigma_v^2)$$

 ψ : how much the CB weights either state \rightarrow "targetedness"

- If $\psi < 1 \rightarrow$ signal targeted toward tomorrow's state
- If $\psi > 1 \longrightarrow$ signal targeted toward today's state
- If $\psi = 1 \rightarrow \text{signal not targeted ("confounding")}$

$$s_t = heta_t + rac{1}{\psi} heta_{t+1} + v_t, \qquad v_t \sim \mathcal{N}(0, \sigma_v^2)$$

 ψ : how much the CB weights either state \rightarrow "targetedness"

- If $\psi < 1 \rightarrow$ signal targeted toward tomorrow's state
- If $\psi > 1 \longrightarrow$ signal targeted toward today's state
- If $\psi = 1 \longrightarrow \text{signal not targeted ("confounding")}$

 σ_v : how much noise there is in the signal \rightarrow "precision"

$$s_t = heta_t + rac{1}{\psi} heta_{t+1} + v_t, \qquad v_t \sim \mathcal{N}(0, \sigma_v^2)$$

 ψ : how much the CB weights either state \rightarrow "targetedness"

- If $\psi < 1 \rightarrow$ signal targeted toward tomorrow's state
- If $\psi > 1 \longrightarrow$ signal targeted toward today's state
- If $\psi = 1 \longrightarrow \text{signal not targeted ("confounding")}$

 σ_v : how much noise there is in the signal \rightarrow "precision"

• If $\sigma_v = \infty \rightarrow$ signal perfectly imprecise

$$s_t = heta_t + rac{1}{\psi} heta_{t+1} + v_t, \qquad v_t \sim \mathcal{N}(0, \sigma_v^2)$$

 ψ : how much the CB weights either state \rightarrow "targetedness"

- If $\psi < 1 \rightarrow$ signal targeted toward tomorrow's state
- If $\psi > 1 \longrightarrow$ signal targeted toward today's state
- If $\psi = 1 \longrightarrow \text{signal not targeted ("confounding")}$

 σ_v : how much noise there is in the signal \rightarrow "precision"

- If $\sigma_v = \infty \longrightarrow$ signal perfectly imprecise
- If $\sigma_v = 0 \rightarrow \text{signal perfectly precise}$

$$s_t = heta_t + rac{1}{\psi} heta_{t+1} + v_t, \qquad v_t \sim \mathcal{N}(0, \sigma_v^2)$$

 ψ : how much the CB weights either state \rightarrow "targetedness"

- If $\psi < 1 \rightarrow$ signal targeted toward tomorrow's state
- If $\psi > 1 \longrightarrow$ signal targeted toward today's state
- If $\psi = 1 \longrightarrow \text{signal not targeted ("confounding")}$

 σ_v : how much noise there is in the signal \rightarrow "precision"

- If $\sigma_v = \infty \longrightarrow$ signal perfectly imprecise
- If $\sigma_v = 0 \longrightarrow \text{signal perfectly precise}$

The static analogue

Perfect Bayesian equilibrium

Definition

Let $\mu_X(x)$ be the probability distribution of a variable X induced by the FM's beliefs. A Perfect Bayesian Equilibrium is an action rule I_t , belief system μ and a communication policy (ψ^*, σ_v^*) such that

- $I_t = \arg \min \mathcal{L}_t^{FM}(I_t, \theta_{t+1})$ s.t. $\mathbb{E}_t^{FM}(\theta_{t+1}|s_t)$,
- $(\psi^*, \sigma_v^*) = \arg \min \mathcal{L}^{CB}(\{I_t, \theta_t\}_{t=0}^\infty)$ s.t. $\mathbb{E}_t^{FM}(\theta_{t+1}|s_t) \ \forall t \ge 0$ and $s_t = \theta_t + \frac{1}{\psi}\theta_{t+1} + v_t$ with $v_t \sim \mathcal{N}(0, \sigma_v^2)$,
- *FM* beliefs \mathbb{E}_t^{FM} come from $\mu \forall t$, and μ is consistent with Bayes' rule:

$$\mu_{\Theta|S=s}(\theta) = \frac{\mu_{S|\Theta=\theta}(s)\mu_{\Theta}(\theta)}{\mu_{S}(s)}$$

OPTIMAL TARGETEDNESS

CB pushes against the prior

At time *t*, FM's beliefs on θ_t informed by

CB pushes against the prior

At time *t*, FM's beliefs on θ_t informed by

• Today's signal: $s_t = \theta_t + \frac{1}{\psi}\theta_{t+1} + v_t$

CB pushes against the prior

At time *t*, FM's beliefs on θ_t informed by

- Today's signal: $s_t = \theta_t + \frac{1}{\psi}\theta_{t+1} + v_t$
- Prior beliefs: $s_{t-1} = \theta_{t-1} + \frac{1}{\psi} \theta_t + v_{t-1}$

OPTIMAL PRECISION

Optimal precision - a cross-section

▶ 3D representation

Tightness of priors

Prior variance: $\pi(\theta_T) := \mathbb{E}[(\theta_T - \theta_{T|t-1})^2]$ Posterior variance: $p(\theta_T, s_t) := \mathbb{E}[(\theta_T - \theta_{T|t})^2]$

T = t, t + 1.

Tightness of priors

 $\begin{array}{ll} \text{Prior variance:} & \pi(\theta_T) \coloneqq \mathbb{E}[(\theta_T - \theta_{T|t-1})^2] \\ \text{Posterior variance:} & p(\theta_T, s_t) \coloneqq \mathbb{E}[(\theta_T - \theta_{T|t})^2] \end{array}$

T = t, t + 1.

Reduction in uncertainty (\approx mutual information):

 $I(\theta_T, s_t) \coloneqq \pi(\theta_T) - p(\theta_T, s_t)$

Tightness of priors

 $\begin{array}{ll} \text{Prior variance:} & \pi(\theta_T) \coloneqq \mathbb{E}[(\theta_T - \theta_{T|t-1})^2] \\ \text{Posterior variance:} & p(\theta_T, s_t) \coloneqq \mathbb{E}[(\theta_T - \theta_{T|t})^2] \end{array}$

T = t, t + 1.

Reduction in uncertainty (\approx mutual information):

 $I(\theta_T, s_t) \coloneqq \pi(\theta_T) - p(\theta_T, s_t)$

 \hookrightarrow "Informativeness of the signal at time *t* about θ_T "

Figure: Informativeness $I(\theta_T, s_t)$ as a function of σ_v

1. Optimal communication policy in a static and dynamic setting

- 1. Optimal communication policy in a static and dynamic setting
- 2. Takeaway: relative to static communication, the dynamic policy is...

- 1. Optimal communication policy in a static and dynamic setting
- 2. Takeaway: relative to static communication, the dynamic policy is...
 - ... more targeted toward the present

- 1. Optimal communication policy in a static and dynamic setting
- 2. Takeaway: relative to static communication, the dynamic policy is...
 - ... more targeted toward the present
 - ... less precise

- 1. Optimal communication policy in a static and dynamic setting
- 2. Takeaway: relative to static communication, the dynamic policy is...
 - ... more targeted toward the present
 - ... less precise
 - ... in order to correct direction and tightness of priors.

- 1. Optimal communication policy in a static and dynamic setting
- 2. Takeaway: relative to static communication, the dynamic policy is...
 - ... more targeted toward the present
 - ... less precise
 - ... in order to correct direction and tightness of priors.
- 3. A central bank following optimal static communication policy:

- 1. Optimal communication policy in a static and dynamic setting
- 2. Takeaway: relative to static communication, the dynamic policy is...
 - ... more targeted toward the present
 - ... less precise
 - ... in order to correct direction and tightness of priors.
- 3. A central bank following optimal static communication policy:
 - behaves like discretionary policy

- 1. Optimal communication policy in a static and dynamic setting
- 2. Takeaway: relative to static communication, the dynamic policy is...
 - ... more targeted toward the present
 - ... less precise
 - ... in order to correct direction and tightness of priors.
- 3. A central bank following optimal static communication policy:
 - behaves like discretionary policy
 - \rightarrow ignores effect of current communication on future beliefs

Appendix

The static analogue

Fundamental:
$$(\theta_1, \theta_2) \sim \mathcal{N}(0, \mathbf{V})$$
 with $\mathbf{V} = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$,

Payoffs:
$$\mathcal{L}^{FM}(I, \theta_2) = \mathbb{E}^{FM}(I - \theta_2)^2,$$

 $\mathcal{L}^{CB}(I, \theta_1) = \mathbb{E}^{CB}(I - b\theta_1)^2,$

Info structure:

$$\mathcal{I}^{CB} = \{\theta_1, \theta_2\}, \quad \mathcal{I}^{FM} = \{s\},$$

-

-

Signal:
$$s = \theta_1 + \frac{1}{\psi}\theta_2 + v, \qquad v \sim \mathcal{N}(0, \sigma_v^2).$$

Kalman filter

$$\begin{aligned} x_{t+1} &= hx_t + \eta \epsilon_{t+1} \\ y_t &= gx_t + v_t \end{aligned}$$

$$\begin{aligned} x_t &= \begin{bmatrix} \theta_{t+1} \\ \theta_t \end{bmatrix}, \quad y_t = s_t, \quad h = \begin{bmatrix} \rho & 0 \\ 1 & 0 \end{bmatrix}, \quad g = \begin{bmatrix} \frac{1}{\psi} & 1 \end{bmatrix}, \\ \eta &= \begin{bmatrix} \sigma_{\varepsilon} & 0 \\ 0 & 0 \end{bmatrix}, \quad \epsilon_t = \begin{bmatrix} \varepsilon_t \\ 0 \end{bmatrix}, \quad Q = \eta \eta' = \begin{bmatrix} \sigma_{\varepsilon}^2 & 0 \\ 0 & 0 \end{bmatrix}, \quad R = \sigma_v^2. \end{aligned}$$

$$\begin{aligned} m_1 &= \rho - \kappa_1(\frac{\rho}{\psi} + 1), \\ m_2 &= m_4 = \kappa_1, \\ m_3 &= \frac{\kappa_1}{\psi}, \end{aligned}$$

where κ_1 is the first element of the 2 × 1 Kalman gain and is given by

$$\kappa_1 = \frac{\rho p_4 + \frac{1}{\psi} p_1}{p_4 + \frac{1}{\psi^2} p_1 + 2\frac{\rho}{\psi} p_4 + \sigma_v^2}.$$

◀ Return