Talking Over Time - Dynamic Central Bank Communication

Laura Gáti1

ECB Research Department

ASSA

January 8, 2023

1The views expressed are solely the views of the author and do not necessarily reflect the views of the European Central Bank or the Eurosystem.
A new tradeoff in a dynamic world

- Central banks represent the public, talk to the public
- Financial markets pay close attention (e.g. Rosa & Verga 2008)
- But households inattentive (e.g. Coibion et al. 2020)

- Misaligned preferences
- Financial markets care about future returns
- Central bank’s mandate: current inflation and employment

→ How to optimally deal with this tradeoff?

- How to balance talking about today vs tomorrow?
- How clearly to talk?
A new tradeoff in a dynamic world

• Central banks represent the public, talk to the public
A new tradeoff in a dynamic world

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)
A new tradeoff in a dynamic world

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)
 - But households inattentive (e.g. Coibion et al. 2020)

→ How to optimally deal with this tradeoff?

- How to balance talking about today vs tomorrow?
- How clearly to talk?
A new tradeoff in a dynamic world

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)
 - But households inattentive (e.g. Coibion et al. 2020)

- Misaligned preferences
A new tradeoff in a dynamic world

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)
 - But households inattentive (e.g. Coibion et al. 2020)

- Misaligned preferences
 - Financial markets care about future returns
A new tradeoff in a dynamic world

• Central banks represent the public, talk to the public
 • Financial markets pay close attention (e.g. Rosa & Verga 2008)
 • But households inattentive (e.g. Coibion et al. 2020)

• Misaligned preferences
 • Financial markets care about future returns
 • Central bank’s mandate: current inflation and employment
A new tradeoff in a dynamic world

• Central banks represent the public, talk to the public
 • Financial markets pay close attention (e.g. Rosa & Verga 2008)
 • But households inattentive (e.g. Coibion et al. 2020)

• Misaligned preferences
 • Financial markets care about future returns
 • Central bank’s mandate: current inflation and employment

→ How to optimally deal with this tradeoff?
A new tradeoff in a dynamic world

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)
 - But households inattentive (e.g. Coibion et al. 2020)

- Misaligned preferences
 - Financial markets care about future returns
 - Central bank’s mandate: current inflation and employment

→ How to optimally deal with this tradeoff?
 - How to balance talking about today vs tomorrow?
A new tradeoff in a dynamic world

- Central banks represent the public, talk to the public
 - Financial markets pay close attention (e.g. Rosa & Verga 2008)
 - But households inattentive (e.g. Coibion et al. 2020)

- Misaligned preferences
 - Financial markets care about future returns
 - Central bank’s mandate: current inflation and employment

→ How to optimally deal with this tradeoff?
 - How to balance talking about today vs tomorrow?
 - How clearly to talk?
This paper

1. The *same communication problem* in a *static* and *dynamic* setting
This paper

1. The **same communication problem** in a **static** and **dynamic** setting
 - Dynamic Bayesian persuasion game

 ... vs. static benchmark: treat present & future as correlated in cross section
1. The same communication problem in a static and dynamic setting
 - Dynamic Bayesian persuasion game
 → Central bank sends signal to financial market

2. Findings: key role of prior beliefs
 - Direction of prior mean
 → talk more about the present
 - Tightness of prior variance
 → talk less clearly

... vs. static benchmark: treat present & future as correlated in cross section
This paper

1. The same communication problem in a static and dynamic setting
 • Dynamic Bayesian persuasion game
 → Central bank sends signal to financial market
 → Signal mixes present and future economic stance
1. The same communication problem in a static and dynamic setting

• Dynamic Bayesian persuasion game
 → Central bank sends signal to financial market
 → Signal mixes present and future economic stance

• Optimal weighting between present and future → targetedness
This paper

1. The same communication problem in a static and dynamic setting

 • Dynamic Bayesian persuasion game
 ↦ Central bank sends signal to financial market
 ↦ Signal mixes present and future economic stance

 • Optimal weighting between present and future → targetedness

 • Optimal clarity of communication → precision

Laura Gáti (ECB)
Talking Over Time
1. The same communication problem in a static and dynamic setting

 • Dynamic Bayesian persuasion game
 \(\rightarrow \) Central bank sends signal to financial market
 \(\rightarrow \) Signal mixes present and future economic stance

 • Optimal weighting between present and future \(\rightarrow \) targetedness

 • Optimal clarity of communication \(\rightarrow \) precision

2. Findings: key role of prior beliefs
This paper

1. The same communication problem in a static and dynamic setting
 • Dynamic Bayesian persuasion game
 → Central bank sends signal to financial market
 → Signal mixes present and future economic stance
 • Optimal weighting between present and future → targetedness
 • Optimal clarity of communication → precision

2. Findings: key role of prior beliefs
 • Direction of prior mean → talk more about the present
This paper

1. The same communication problem in a static and dynamic setting
 - Dynamic Bayesian persuasion game
 - Central bank sends signal to financial market
 - Signal mixes present and future economic stance
 - Optimal weighting between present and future → targetedness
 - Optimal clarity of communication → precision

2. Findings: key role of prior beliefs
 - Direction of prior mean → talk more about the present
 - Tightness of prior variance → talk less clearly
1. The same communication problem in a *static* and *dynamic* setting
 - Dynamic Bayesian persuasion game
 - Central bank sends signal to financial market
 - Signal mixes present and future economic stance
 - Optimal weighting between present and future → targetedness
 - Optimal clarity of communication → precision

2. Findings: key role of *prior* beliefs
 - Direction of prior mean → talk more about the present
 - Tightness of prior variance → talk less clearly

... vs. *static benchmark*: treat present & future as correlated in *cross section*
1. Global games

2. Bayesian persuasion

A DYNAMIC BAYESIAN PERSUASION GAME
Dynamic Bayesian persuasion game

- Sender (central bank, CB) and receiver (financial market, FM)
Dynamic Bayesian persuasion game

- Sender (central bank, CB) and receiver (financial market, FM)
- Two states $\theta_t, \theta_{t+1} \in \Theta$, known to CB, unknown to FM
Dynamic Bayesian persuasion game

- Sender (central bank, CB) and receiver (financial market, FM)
- Two states $\theta_t, \theta_{t+1} \in \Theta$, known to CB, unknown to FM
- Payoffs are functions of states and FM action
Dynamic Bayesian persuasion game

- Sender (central bank, CB) and receiver (financial market, FM)
- Two states $\theta_t, \theta_{t+1} \in \Theta$, known to CB, unknown to FM
- Payoffs are functions of states and FM action
- FM takes action (investment, I_t) to maximize FM payoff
Dynamic Bayesian persuasion game

- Sender (central bank, CB) and receiver (financial market, FM)
- Two states $\theta_t, \theta_{t+1} \in \Theta$, known to CB, unknown to FM
- Payoffs are functions of states and FM action
- FM takes action (investment, I_t) to maximize FM payoff
- **Persuasion**: CB sends signal $s_t \in S$ to FM
Dynamic Bayesian persuasion game

- Sender (central bank, CB) and receiver (financial market, FM)
- Two states $\theta_t, \theta_{t+1} \in \Theta$, known to CB, unknown to FM
- Payoffs are functions of states and FM action
- FM takes action (investment, I_t) to maximize FM payoff
- **Persuasion**: CB sends signal $s_t \in S$ to FM

 \rightarrow give FM info so FM takes action that maximizes CB’s payoff
The economic environment

\[\theta_{t+1} = \rho \theta_t + \varepsilon_{t+1} \]

\[\varepsilon_{t+1} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2) \quad \sigma_{\varepsilon}^2 = 1 - \rho^2 \]
The economic environment

\[\theta_{t+1} = \rho \theta_t + \varepsilon_{t+1} \]

“Future output” “Current output”

\[\varepsilon_{t+1} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2) \quad \sigma_{\varepsilon}^2 = 1 - \rho^2 \]
Financial market and central bank payoffs

\[L^F_{t}(I_t, \theta_{t+1}) = \mathbb{E}^F_{t}(I_t - \theta_{t+1})^2 \]

\[L^{CB}(\{I_t, \theta_t\}_{t=0}^{\infty}) = \mathbb{E}^{CB}_{0} \sum_{t=0}^{\infty} \beta^t (I_t - b\theta_t)^2 \]
Financial market and central bank payoffs

\[L_{t}^{FM}(I_{t}, \theta_{t+1}) = \mathbb{E}_{t}^{FM}(I_{t} - \theta_{t+1})^{2} \]

\[L^{CB}({I_{t}, \theta_{t}}_{t=0}^{\infty}) = \mathbb{E}_{0}^{CB} \sum_{t=0}^{\infty} \beta^{t}(I_{t} - b\theta_{t})^{2} \]

Financial market (FM) sets investment (I) to maximize future returns
Financial market and central bank payoffs

\[L_t^{FM}(I_t, \theta_{t+1}) = \mathbb{E}_t^{FM}(I_t - \theta_{t+1})^2 \]

\[L^{CB}(\{I_t, \theta_t\}_{t=0}^{\infty}) = \mathbb{E}_0^{CB} \sum_{t=0}^{\infty} \beta^t(I_t - b\theta_t)^2 \]

Financial market (FM) sets investment (I) to maximize future returns

Central bank (CB) wants investment to track current output, with weight \(b \)

\(\beta \in (0, 1) \) CB’s discount factor
Information structure

\[\mathcal{I}_t^{CB} = \{\theta_{t+1}, \theta_t, \ldots, \theta_0\}, \quad \mathcal{I}_t^{FM} = \{s_t, s_{t-1}, \ldots, s_0\} \]

where \(s_t \in S \) is a signal the CB sends the FM.
The central bank’s signal

\[s_t = \theta_t + \frac{1}{\psi} \theta_{t+1} + v_t, \quad v_t \sim \mathcal{N}(0, \sigma_v^2) \]
Two dimensions of communication

\[s_t = \theta_t + \frac{1}{\psi} \theta_{t+1} + \nu_t, \quad \nu_t \sim \mathcal{N}(0, \sigma_v^2) \]

\psi: how much the CB weights either state \(\rightarrow\) “targetedness”
Two dimensions of communication

\[s_t = \theta_t + \frac{1}{\psi} \theta_{t+1} + \nu_t, \quad \nu_t \sim \mathcal{N}(0, \sigma_v^2) \]

\(\psi \): how much the CB weights either state \(\rightarrow \) “targetedness”

- If \(\psi < 1 \) \(\rightarrow \) signal targeted toward tomorrow’s state
- If \(\psi > 1 \) \(\rightarrow \) signal targeted toward today’s state
- If \(\psi = 1 \) \(\rightarrow \) signal not targeted (“confounding”)

\(\sigma_v \): how much noise there is in the signal \(\rightarrow \) “precision”

- If \(\sigma_v = \infty \) \(\rightarrow \) signal perfectly imprecise
- If \(\sigma_v = 0 \) \(\rightarrow \) signal perfectly precise
Two dimensions of communication

\[s_t = \theta_t + \frac{1}{\psi} \theta_{t+1} + \nu_t, \quad \nu_t \sim \mathcal{N}(0, \sigma_v^2) \]

ψ: how much the CB weights either state → “targetedness”

- If \(\psi < 1 \) → signal targeted toward tomorrow’s state
- If \(\psi > 1 \) → signal targeted toward today’s state

σ_v: how much noise there is in the signal → “precision”

- If \(\sigma_v = \infty \) → signal perfectly imprecise
- If \(\sigma_v = 0 \) → signal perfectly precise
Two dimensions of communication

\[s_t = \theta_t + \frac{1}{\psi} \theta_{t+1} + \nu_t, \quad \nu_t \sim \mathcal{N}(0, \sigma_v^2) \]

\(\psi \): how much the CB weights either state \(\rightarrow \) “targetedness”

- If \(\psi < 1 \) \(\rightarrow \) signal targeted toward tomorrow’s state
- If \(\psi > 1 \) \(\rightarrow \) signal targeted toward today’s state
- If \(\psi = 1 \) \(\rightarrow \) signal not targeted (“confounding”)
Two dimensions of communication

\[s_t = \theta_t + \frac{1}{\psi} \theta_{t+1} + \nu_t, \quad \nu_t \sim \mathcal{N}(0, \sigma_v^2) \]

\(\psi \): how much the CB weights either state \(\rightarrow \) “targetedness”

- If \(\psi < 1 \) \(\rightarrow \) signal targeted toward tomorrow’s state
- If \(\psi > 1 \) \(\rightarrow \) signal targeted toward today’s state
- If \(\psi = 1 \) \(\rightarrow \) signal not targeted (“confounding”)

\(\sigma_v \): how much noise there is in the signal \(\rightarrow \) “precision”
Two dimensions of communication

\[s_t = \theta_t + \frac{1}{\psi} \theta_{t+1} + \nu_t, \quad \nu_t \sim \mathcal{N}(0, \sigma_v^2) \]

\(\psi \): how much the CB weights either state \(\rightarrow \) “targetedness”

- If \(\psi < 1 \) \(\rightarrow \) signal targeted toward tomorrow’s state
- If \(\psi > 1 \) \(\rightarrow \) signal targeted toward today’s state
- If \(\psi = 1 \) \(\rightarrow \) signal not targeted (“confounding”)

\(\sigma_v \): how much noise there is in the signal \(\rightarrow \) “precision”

- If \(\sigma_v = \infty \) \(\rightarrow \) signal perfectly imprecise
Two dimensions of communication

\[s_t = \theta_t + \frac{1}{\psi} \theta_{t+1} + \nu_t, \quad \nu_t \sim \mathcal{N}(0, \sigma_v^2) \]

\(\psi \): how much the CB weights either state \(\rightarrow \) “targetedness”

- If \(\psi < 1 \) \(\rightarrow \) signal targeted toward tomorrow’s state
- If \(\psi > 1 \) \(\rightarrow \) signal targeted toward today’s state
- If \(\psi = 1 \) \(\rightarrow \) signal not targeted (“confounding”)

\(\sigma_v \): how much noise there is in the signal \(\rightarrow \) “precision”

- If \(\sigma_v = \infty \) \(\rightarrow \) signal perfectly imprecise
- If \(\sigma_v = 0 \) \(\rightarrow \) signal perfectly precise
Two dimensions of communication

\[s_t = \theta_t + \frac{1}{\psi} \theta_{t+1} + v_t, \quad v_t \sim \mathcal{N}(0, \sigma_v^2) \]

\(\psi \): how much the CB weights either state \(\rightarrow \) “targetedness”
- If \(\psi < 1 \) \(\rightarrow \) signal targeted toward tomorrow’s state
- If \(\psi > 1 \) \(\rightarrow \) signal targeted toward today’s state
- If \(\psi = 1 \) \(\rightarrow \) signal not targeted (“confounding”)

\(\sigma_v \): how much noise there is in the signal \(\rightarrow \) “precision”
- If \(\sigma_v = \infty \) \(\rightarrow \) signal perfectly imprecise
- If \(\sigma_v = 0 \) \(\rightarrow \) signal perfectly precise
Perfect Bayesian equilibrium

Definition

Let $\mu_X(x)$ be the probability distribution of a variable X induced by the FM’s beliefs. A Perfect Bayesian Equilibrium is an action rule I_t, belief system μ and a communication policy (ψ^*, σ_v^*) such that

- $I_t = \arg\min L_{t}^{FM}(I_t, \theta_{t+1})$ s.t. $E_{t}^{FM}(\theta_{t+1}|s_t)$,

- $(\psi^*, \sigma_v^*) = \arg\min L_{t}^{CB}(\{I_t, \theta_t\}_{t=0}^{\infty})$ s.t. $E_{t}^{FM}(\theta_{t+1}|s_t) \forall t \geq 0$ and $s_t = \theta_t + \frac{1}{\psi} \theta_{t+1} + v_t$ with $v_t \sim N(0, \sigma_v^2)$,

- FM beliefs E_{t}^{FM} come from $\mu \forall t$, and μ is consistent with Bayes’ rule:

$$
\mu_{\Theta|S=s}(\theta) = \frac{\mu_{S|\Theta=\theta}(s)\mu_{\Theta}(\theta)}{\mu_S(s)}
$$
OPTIMAL TARGETEDNESS
The graph shows the dynamic and static behavior of $\psi^*(\rho)$ over different values of ρ. The blue line represents ψ^*_{static} and the red line represents $\psi^*_{dynamic}$. As ρ increases, both functions initially rise and then decrease, with $\psi^*_{dynamic}$ reaching a peak at a lower ρ compared to ψ^*_{static}. The dashed line at $\rho = 1$ indicates the boundary for the dynamic case, while the solid line at $\rho = 1$ represents the static case.
CB pushes against the prior

At time t, FM’s beliefs on θ_t informed by
CB pushes against the prior

At time t, FM’s beliefs on θ_t informed by

- Today’s signal: $s_t = \theta_t + \frac{1}{\psi} \theta_{t+1} + v_t$
CB pushes against the prior

At time t, FM’s beliefs on θ_t informed by

- Today’s signal: $s_t = \theta_t + \frac{1}{\psi} \theta_{t+1} + \nu_t$
- Prior beliefs: $s_{t-1} = \theta_{t-1} + \frac{1}{\psi} \theta_t + \nu_{t-1}$
OPTIMAL PRECISION
Optimal precision - a cross-section

\[\psi = 0.2 \]

\[\psi = 1 \]

\[\psi = 1.8 \]

\[\rho \]

\[\sigma_{v, static}^{\rho} \]

\[\sigma_{v, dynamic}^{\rho} \]
Tightness of priors

Prior variance: \[\pi(\theta_T) := \mathbb{E}[(\theta_T - \theta_T|t-1)^2] \]

Posterior variance: \[p(\theta_T, s_t) := \mathbb{E}[(\theta_T - \theta_T|t)^2] \]

\[T = t, t + 1. \]
Tightness of priors

Prior variance: \(\pi(\theta_T) := \mathbb{E}[(\theta_T - \theta_{T|t-1})^2] \)

Posterior variance: \(p(\theta_T, s_t) := \mathbb{E}[(\theta_T - \theta_{T|t})^2] \)

\(T = t, t+1. \)

Reduction in uncertainty (\(\approx \) mutual information):

\[I(\theta_T, s_t) := \pi(\theta_T) - p(\theta_T, s_t) \]
Tightness of priors

Prior variance: \(\pi(\theta_T) := \mathbb{E}[(\theta_T - \theta_{T|t-1})^2] \)

Posterior variance: \(p(\theta_T, s_t) := \mathbb{E}[(\theta_T - \theta_{T|t})^2] \)

\[T = t, t + 1. \]

Reduction in uncertainty (≈ mutual information):

\[I(\theta_T, s_t) := \pi(\theta_T) - p(\theta_T, s_t) \]

\(\leftrightarrow \) “Informativeness of the signal at time \(t \) about \(\theta_T \)”
Figure: Informativeness $I(\theta_{T}, s_{t})$ as a function of σ_{v}
Conclusion: CB pushes against priors

1. **Optimal communication policy** in a **static** and **dynamic** setting
Conclusion: CB pushes against priors

1. Optimal communication policy in a static and dynamic setting

2. Takeaway: relative to static communication, the dynamic policy is...
Conclusion: CB pushes against priors

1. Optimal communication policy in a static and dynamic setting

2. Takeaway: relative to static communication, the dynamic policy is...
 - ... more targeted toward the present
Conclusion: CB pushes against priors

1. Optimal communication policy in a static and dynamic setting

2. Takeaway: relative to static communication, the dynamic policy is...
 • ... more targeted toward the present
 • ... less precise
Conclusion: CB pushes against priors

1. Optimal communication policy in a static and dynamic setting

2. Takeaway: relative to static communication, the dynamic policy is...
 - ... more targeted toward the present
 - ... less precise

 ... in order to correct direction and tightness of priors.
Conclusion: CB pushes against priors

1. Optimal communication policy in a static and dynamic setting
2. Takeaway: relative to static communication, the dynamic policy is...
 • ... more targeted toward the present
 • ... less precise

 ... in order to correct direction and tightness of priors.

3. A central bank following optimal static communication policy:
Conclusion: CB pushes against priors

1. Optimal communication policy in a static and dynamic setting

2. Takeaway: relative to static communication, the dynamic policy is...
 - ... more targeted toward the present
 - ... less precise

 ... in order to correct direction and tightness of priors.

3. A central bank following optimal static communication policy:
 - behaves like discretionary policy
Conclusion: CB pushes against priors

1. Optimal communication policy in a static and dynamic setting

2. Takeaway: relative to static communication, the dynamic policy is...
 - ... more targeted toward the present
 - ... less precise

 ... in order to correct direction and tightness of priors.

3. A central bank following optimal static communication policy:
 - behaves like discretionary policy
 - ignores effect of current communication on future beliefs
The static analogue

Fundamental: \((\theta_1, \theta_2) \sim \mathcal{N}(0, \mathbf{V})\) with \(\mathbf{V} = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}\),

Payoffs: \(\mathcal{L}^{FM}(I, \theta_2) = \mathbb{E}^{FM}(I - \theta_2)^2\),
\(\mathcal{L}^{CB}(I, \theta_1) = \mathbb{E}^{CB}(I - b\theta_1)^2\),

Info structure: \(\mathcal{I}^{CB} = \{\theta_1, \theta_2\}, \quad \mathcal{I}^{FM} = \{s\}\),

Signal: \(s = \theta_1 + \frac{1}{\psi} \theta_2 + v, \quad v \sim \mathcal{N}(0, \sigma_v^2)\).
Kalman filter

\[x_{t+1} = hx_t + \eta \epsilon_{t+1} \]
\[y_t = gx_t + v_t \]

\[x_t = \begin{bmatrix} \theta_{t+1} \\ \theta_t \end{bmatrix}, \quad y_t = s_t, \quad h = \begin{bmatrix} \rho & 0 \\ 1 & 0 \end{bmatrix}, \quad g = \begin{bmatrix} \frac{1}{\psi} & 1 \end{bmatrix}, \]

\[\eta = \begin{bmatrix} \sigma_{\epsilon} & 0 \\ 0 & 0 \end{bmatrix}, \quad \epsilon_t = \begin{bmatrix} \epsilon_t \end{bmatrix}, \quad Q = \eta \eta' = \begin{bmatrix} \sigma_{\epsilon}^2 & 0 \\ 0 & 0 \end{bmatrix}, \quad R = \sigma_v^2. \]

\[m_1 = \rho - \kappa_1 (\frac{\rho}{\psi} + 1), \]

\[m_2 = m_4 = \kappa_1, \]

\[m_3 = \frac{\kappa_1}{\psi}, \]

where \(\kappa_1 \) is the first element of the 2 \(\times \) 1 Kalman gain and is given by

\[\kappa_1 = \frac{\rho p_4 + \frac{1}{\psi} p_1}{p_4 + \frac{1}{\psi^2} p_1 + 2 \frac{\rho}{\psi} p_4 + \sigma_v^2}. \]
Figure: Optimal precision σ^*