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Abstract

Danzer and Lavy (2018) study how the duration of paid parental leave af-
fects children’s educational performance using data from PISA. An extension
of the maximum duration from 12 to 24 months in Austria had no signifi-
cant effect on average, but the authors highlight the existence of large and
significant heterogenous effects that vary in sign depending on the education
of mothers and children’s gender. The policy increased the scores obtained by
sons of highly educated mothers, as measured in standard deviations, by 0.33
in Reading and 0.40 in Science. On the contrary, sons of low educated mothers
experienced a decrease of 0.27 in Reading and 0.23 in Science. In this article,
I replicate their study following the recommended estimation procedure that
takes into account that PISA relies on imputation to derive student scores. I
show that the estimates of the effects of the parental leave extension become
substantially smaller and non-significant.

*Aalto University, Department of Economics; email: claudia.troccoli@aalto.fi; phone: +358
405434583. The data and do files used in this replication are available at: https://sites.google.
com/view/claudiatroccoli
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1 Introduction

Danzer and Lavy (2018) (hereafter, DL) study the effects of a parental leave ex-

tension on children’s schooling outcomes in Austria. While parents of children born

before the 1st of July 1990 could take leave only until the child’s first birthday, those

giving birth afterwards were entitled to an additional year of paid and job-protected

parental leave. DL compare the scores obtained at age 15 by children born before

and after the 1st of July 1990, and account for potential month-of-birth effects by

using information on a previous cohort that was not affected by the reform. They

find no statistically significant overall effect of the additional year of leave. How-

ever, the authors emphasize the existence of strong heterogenous effects depending

on children’s gender and maternal education. They find that sons of highly educated

mothers benefited greatly from the reform. Their scores are 0.33 standard deviations

higher in reading (standard error=0.15) and 0.40 standard deviations higher in sci-

ence (st. error=0.11). On the contrary, sons of lower educated mothers were harmed

by the reform. They experience a decrease of 0.27 standard deviations in reading (st.

error=0.13) and 0.23 in science (st. error=0.13). Given that the authors estimate

the intention-to-treat effect of the policy in a context without full compliance, these

estimates should be interpreted as the lower bound of the actual impact of parental

leave. In contrast with DL findings, previous studies on the impact of paid parental

leave tend to find considerably weaker effects for the children of highly educated

mothers and non-negative impacts for the children of lower educated mothers.1

DL analyze data from PISA, a source which is widely used by economists to

1A number of previous papers have considered heterogeneous effects by maternal education.
Liu and Skans (2010) find that an expansion of parental leave from 12 to 15 months in Sweden
improved grades at age 16 of children of highly educated mothers by 0.05 standard deviations.
They observe smaller and statistically insignificant effects for children of lower educated mothers.
Carneiro et al. (2015) study the introduction of 4 months of paid maternity leave and 12 months
of unpaid leave in Norway. The policy reduced high-school dropout rates and increased college
attendance for children of both highly and lower educated mothers. Albagli and Rau (2019) find
that a 3-month extension of maternity leave in Chile improved cognitive abilities of preschool-aged
children by around 20% of a standard deviations, especially for children of less educated mothers.
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study individual-level differences in schooling performance both within and across

countries. As I explain in more detail below, the analysis of PISA data requires a

specific procedure to address the complexity of the survey and the test design. As

happens with other international large-scale assessments such as TIMSS, PIAAC

and PIRLS, due to imputed values and stratified sampling, PISA provides five dif-

ferent plausible values for each score, each one representing a random draw from

the posterior distribution, which need to be taken into account in the estimation

(OECD, 2009). Studies that do not apply the appropriate statistical procedure are

likely to underestimate standard errors and, when the sample size is relatively small,

point estimates might also be greatly affected. Unfortunately, many studies in Eco-

nomics, including DL, fail to implement the methodology recommended by PISA.

As I show in the working paper version of this replication, in a sample of 56 papers

using data from international large-scale assessments that were published between

2000 and 2019 in top economic journals, less than half clearly mention following the

recommended procedure (Troccoli, 2020).2

DL do not take into account the imputed nature of the data and they consider in

their regressions only one plausible value. In this replication, I show that, when the

recommended method is applied, their main point estimates become significantly

closer to zero, standard errors are larger, and none of the main estimates is anymore

significant at standard levels. My analysis contributes to illustrate the relevance

of following the appropriate procedure in the analysis of PISA data. Jerrim et al.

(2017) offer an excellent discussion of the requirements for the analysis of data

with imputed values. As an example, they analyze Lavy (2015), who fails to apply

the recommended methodology and, as a result, underestimates standard errors.

However, in this particular case, due to the large sample size, using the recommended

2I consider articles published in American Economic Review, Economics of Education Review,
Journal of Labor Economics, Journal of Political Economy, Journal of Population Economics,
Labour Economics and The Economic Journal. I presume that authors have not used the recom-
mended procedure whenever they do not mention it explicitly in the paper.
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procedure does not affect substantially the main findings of the paper.

2 Estimation Procedure with International Large-

Scale Assessments

As explained in the PISA Data Analysis Manual (OECD, 2009) and discussed in

great detail by Jerrim et al. (2017), there are three crucial features of international

large-scale assessments datasets that need to be taken into account for statistical

analysis. First, the test scores reported in the datasets are not raw scores, but rather

the result of imputation. In the case of PISA, the assessment aims at evaluating

students on a vast set of skills in mathematics, science, reading and collaborative

problem solving in many different countries. Test-takers do not answer the full set of

questions, but only a small subsample. Each student is randomly allocated to one of

thirteen test booklets, containing a subset of questions either on all the subjects, only

one, or a combination of two or three. Due to the random assignment of booklets,

the questions not answered by each student can be considered as Missing Completely

At Random. Therefore, multiple imputation is applied to obtain five plausible values

(PVs) for each subject. These PVs are random draws from a posterior distribution

and are computed using information on students’ performance and characteristics,

including the school attended and the average scores obtained by the other pupils.

PVs provide information on the final score that the student would have obtained,

had they been tested on the full pool of questions.

Statistical analysis with PVs requires a specific procedure following a modified

version of Rubin’s rule for multiple imputation. The equation of interest is estimated

five times, with each PV as outcome variable. The averages of the five parameters

and the five sampling error estimates are, respectively, the final parameter (β∗)

and the final sampling error (σ∗), and from the latter the standard error can be
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calculated.3 The plausible values for each individual are not perfectly correlated.

For instance, in the sample used by DL, the correlation between the five plausible

values is around 80%. If authors consider only one PV and additionally ignore the

recommended procedure to adjust standard errors, these are underestimated, which

may artificially inflate the statistical significance of the estimates.

Second, the procedure recommended by the survey organisers also requires the

use of sampling weights. Within each country, participating individuals are selected

based on stratified sampling, reflecting the population distribution, geographically

and in terms of other characteristics. A student weight is assigned to each student,

to rescale the sample to the size of the population within each country, taking into

account the stratum each student is drawn from.4 The inclusion of individual student

weights allows to generalize to the overall population of potential test takers.

Finally, the statistical analysis of international large-scale assessments datasets

also requires the use of Balanced Repeated Replication (BRR) weights. These

weights adjust for uncertainty with regards to sampling by taking into account

the two-stage stratification design, whereby schools are selected and students are

randomly drawn from each school.

3 Replication

To replicate the analysis of DL, I use the original PISA data from 2003 and 2006

provided by OECD and, following DL, I restrict the sample to students born in Aus-

tria between May and August in 1987 and 1990, enrolled in “regular” academic and

3The magnitude of the imputation error δ∗ can then be calculated with the formula δ∗ =∑5
pv=1(βpv−β∗)

2

npv−1 . The final standard error is equal to
√
σ2
∗ + (1 + 1

PV ) · δ2∗.
4For PISA, around 30 students are randomly picked within each school. The choice of partici-

pating schools is also random - with probability proportional to each school’s size - within explicit
strata (schools in the same region and type). Additionally, in order to limit the bias caused by
non-response, each selected school is assigned two substitute schools based on characteristics that
are expected to be correlated with PISA scores (implicit stratification).
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vocational schools, and for which mother’s education is known. The resulting sam-

ple is practically identical to the one in DL. My sample includes 2860 observations,

compared to 2840 in DL. All observations in DL are also in my sample.5

I consider exactly the same specification used by DL:

yi = α+β1Post Junei+β2bc1990i+β3Post Junei×bc1990i+Birth monthiθm+Xiµ+ϵi

(1)

where yi is the child i ’s score in mathematics, reading or science; Post June is a

dummy variable indicating that the child was born between 1st of July and 31st of

August, and zero if the child was born between May 1st and June 30th; bc1990 is

a dummy indicator for the birth cohort 1990; Birth month is a set of dummy vari-

ables indicating the month of birth, and X includes the set of background controls

considered by DL (mother’s and father’s educational attainment, school location

and migration background). β3 is the coefficient of interest measuring the intention-

to-treat effect of the reform. Following DL, standard errors are clustered by school

programme, school location and gender.6 DL estimate this regression using as out-

come variable the first plausible value (PV1) listed for each subject. They use

student weights but not BRR weights. First, I replicate their analysis using the

same estimation procedure and outcome variable. As shown in Table 1, my results

are practically identical to DL in all five subsamples.7 Similar to DL, the impact

of parental leave is not significant for the overall sample (panel 1), for daughters

of highly educated mothers (panel 4) or for daughters of lower educated mothers

(panel 5), but there is a large and significant positive effect on the performance of

sons of highly educated mothers in Science and Reading (panel 2, columns 2 and

5The two sample sizes might differ slightly because of the time at which the datesets were
downloaded from the OECD website. It might be that some observations were missing altogether
then and were added afterwards, or that they were previosuly excluded by DL due to missing
information but were later updated.

6It is outside of the scope of this replication to investigate whether this is the appropriate level
of clustering.

7These results are reported in Table 3 (p. 101) and 4 (p. 104) of DL.
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3) and a large and significant negative impact for sons of lower educated mothers

(panel 3, columns 2 and 3).

Next, I explore how results change when the other four plausible values reported

by PISA are used as outcome variable (see rows 3-6 of each panel). In contrast with

the initial estimates, point estimates tend to be closer to zero and none of these

estimates is significant at standard levels. For instance, while according to PV1

parental leave increases the Math score of sons of highly educated mothers by 0.40

(st. error=0.11), using PV2-PV4 the estimate ranges between 0.12 and 0.22 and is

never statistically significant.

In the following row of each panel, titled PV1-PV5 (Rubin), I report the coeffi-

cients and standard errors calculated taking into account all plausible values, using

Rubin’s formula. Compared to the estimates reported in DL, the point estimates

tend to be closer to zero and standard errors are larger. None of the estimates is

significant.8

Finally, in the last row of each panel, titled PV1-PV5 & BRR, I report the coeffi-

cients and standard errors which are obtained following the recommended procedure,

i.e. applying Rubin’s rule for multiple imputation using the estimated coefficients

and standard errors from the five estimations, and taking into account both individ-

ual student weights and the BRR weights. As expected, the coefficients are identical

to the ones in the previous row and standard errors are slightly larger. Again, none

of the estimates is statistically different from zero and, overall, they tend to be

imprecise and uninformative. For instance, while DL conclude that an additional

year of parental leave increases by 0.33 the reading scores of sons of highly educated

mothers (CI: 0.04, 0.62), I cannot exclude negative effects of up to 0.33 or positive

effects of up to 0.58. Similarly, while DL find an increase of 0.40 (CI: 0.18, 0.63) in

science for sons of highly educated mothers, I cannot reject negative effects of up to

8For the anlysis, I use the Stata package PV (Macdonald (2019)).
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0.21 or positive ones of up to 0.64.

In sum, when I use the recommended procedure there is a substantial increase

in standard errors and a large decrease in the magnitude of point of estimates that

were statistically significant in DL’s analysis. While the increase in standard errors

is unsurprising, the systematic decrease in the magnitude of point estimates is more

intriguing. The standard errors increase because, by using a single plausible value

and not taking into account the BRR weights, DL ignore the uncertainty generated

by the imputation and sampling design. However, the systematic decrease in the

magnitude of (statistically significant) point estimates is less obvious. In principle,

using a single plausible value should provide unbiased point estimates. The problem

may arise when journals (and authors) have a preference for papers with estimates

that are statistically significant (Chopra et al., 2022). In this case, false positives

would be more likely to be published and, when more accurate estimates become

available, they will tend to be closer to zero. For instance, had DL written a paper

using plausible values number 2, 3, 4 or 5, they would not have obtained any signif-

icant results in any of the subsamples and dimensions they consider (and arguably

they might have struggled to publish their paper), but the point estimates obtained

using the recommended procedure would have been generally of similar magnitude.

Both problems, the increase in standard errors and the decrease in the magnitude

of significant point estimates, are likely to be more severe when the sample size is

relatively small, as happens in some of the subsamples considered by DL (e.g. N=486

in panel 2 of Table 1). Conversely, as pointed out in the PISA manual, “using one

plausible value or five plausible values does not really make a substantial difference

on large samples” (OECD (2009), page 46, cited by Jerrim et al. (2017), footnote

8).
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4 Conclusion

In this study, I replicate DL taking into account the procedure required for the

analysis of datasets such as PISA which use imputed data and stratified sampling.

When all plausible values are considered and the appropriate weights are taken into

account, the main significant effects identified by DL disappear. The point estimates

are reduced in size, standard errors are larger, and none of the main coefficients is

statistically significant at standard levels.

It would be unfair to single out DL for making this methodological mistake.

An analysis of 56 articles that were published in top economic journals during the

last two decades indicates that a majority of economists using this type of data fail

to use the recommended procedure (Troccoli, 2020). In many of these papers, the

statistical power of the analysis is relatively large and whether authors use or not the

right procedure is unlikely to significantly affect their findings. The large impact that

the correction has on DL’s results probably reflects the lack of power of their study.

Their standard errors are disproportionately large compared to the magnitude of the

effects that have been detected in the literature, implying that the signal-to-noise

ratio of the estimation is likely to be low. In this respect, my findings support the

view held by some authors who have argued that social scientists should be more

cautious in their interpretation of empirical evidence in contexts where statistical

power is limited, an analysis plan has not been pre-specified, and standard errors

are not adjusted for multiple testing (e.g. Ioannidis et al. (2017); Gelman and Loken

(2013); Maniadis et al. (2014)). As these authors have pointed out, such estimates

risk being uninformative, independently of whether they are statistically significant

or not.
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Table 1: Estimated Impact of Parental Leave, % of a Standard Deviation.
MATHEMATICS READING SCIENCE

(1) (2) (3)

Panel 1, full sample, N=2860
PV1 (DL, N=2840) 2.00 -4.14 2.10

(6.70) (8.09) (7.41)
PV1 1.85 -3.81 2.01

(6.62) (7.99) (7.31)
PV2 1.82 -5.85 0.52

(6.83) (8.11) (7.66)
PV3 1.26 -4.90 1.26

(7.73) (8.66) (7.82)
PV4 -1.30 -6.36 -0.95

(7.14) (7.06) (6.62)
PV5 -3.08 -9.40 -1.15

(6.63) (7.71) (7.03)
PV1-PV5 (Rubin) 0.11 -6.06 0.34

(7.13) (7.36) (6.80)
PV1-PV5 & BRR 0.11 -6.06 0.34

(9.30) (9.23) (8.91)

Panel 2, sons of high education mothers, N=484
PV1 (DL, N=482) 15.83 33.12** 40.40***

(12.28) (14.99) (11.45)
PV1 15.78 33.10** 40.38***

(12.31) (15.00) (11.45)
PV2 15.46 5.67 12.47

(13.25) (14.69) (13.61)
PV3 16.11 10.30 21.71

(14.35) (16.03) (12.96)
PV4 6.35 13.24 19.99

(13.26) (16.83) (15.92)
PV5 14.49 0.57 12.45

(13.72) (14.75) (13.54)
PV1-PV5 (Rubin) 13.64 12.58 21.40

(18.02) (22.98) (21.38)
PV1-PV5 & BRR 13.64 12.58 21.40

(18.73) (23.27) (21.48)

Panel 3, sons of low education mothers: N=944
PV1 (DL, N=944) -9.03 -26.63** -23.25*

(11.77) (12.87) (13.38)
PV1 -9.03 -26.63** -23.25*

(11.77) (12.87) (13.38)
PV2 -2.30 -24.73* -20.49

(10.48) (12.32) (12.99)
PV3 -12.28 -18.72 -18.97

(12.09) (13.00) (13.12)
PV4 -13.77 -15.31 -18.10

(10.86) (11.00) (11.94)
PV5 -16.51* -21.85 -25.30*

(9.65) (13.20) (13.14)
PV1-PV5 (Rubin) -10.78 -21.45 -21.22*

(13.00) (13.31) (12.02)
PV1-PV5 & BRR -10.78 -21.45 -21.22

(16.41) (16.45) (15.61)

Continued on next page...



Panel 4, daughters of high education mothers, N=468
PV1 (DL, N=461) 16.00 13.91 6.33

(15.18) (19.08) (15.82)
PV1 16.03 14.38 6.16

(14.90) (18.76) (15.60)
PV2 4.68 22.38 18.11

(14.65) (18.41) (16.57)
PV3 6.83 -2.80 -8.28

(16.39) (18.96) (15.53)
PV4 11.88 -4.98 -2.22

(13.74) (14.59) (13.28)
PV5 5.54 -1.00 -1.60

(18.04) (13.80) (16.21)
PV1-PV5 (Rubin) 8.99 5.60 2.43

(18.30) (22.04) (20.36)
PV1-PV5 & BRR 8.99 5.60 2.43

(23.83) (25.25) (23.01)

Panel 5, daughters of low education mothers, N=964
PV1 (DL, N=953) -2.02 -8.91 5.82

(13.28) (13.98) (13.13)
PV1 -2.91 -9.39 5.27

(13.17) (13.82) (12.92)
PV2 -4.18 -8.90 5.37

(14.45) (15.67) (16.68)
PV3 3.40 -1.40 13.46

(14.83) (15.63) (15.84)
PV4 -0.94 -9.72 5.06

(15.48) (14.20) (13.79)
PV5 -4.46 -9.48 12.98

(13.06) (14.86) (13.00)
PV1-PV5 (Rubin) -1.82 -7.78 8.43

(11.68) (11.99) (11.89)
PV1-PV5 & BRR -1.82 -7.78 8.43

(13.60) (13.96) (13.05)

Notes: The table reports estimates for β3 of Equation 1. The outcome variable standardised
such that the standard deviation is 100, hence the coefficients can be interpreted as “percent of
a standard deviation” (e.g. 2.00 is 2% of a st.dev. or 0.02 st.dev.). Each cell corresponds to a
separate regression. The first column reports results using PISA scores in Mathematics, column
2 in Reading and column 3 in Science. Each panel presents information for a different sample of
children. The first row of each panel, titled PV1 (DL), presents the results reported by Danzer and
Lavy (2018) in Table 3 (p. 101) and 4 (p. 104), where they estimate equation 1 using as outcome
variable the first Plausible Value and accounting for individual inverse probability weights. In the
second row, titled PV1, I report the results that I obtain when I replicate their analysis using
the same outcome variable and specification, but with a slightly different sample size. Next,
in rows 3-6 I report similar estimates using as outcome variables Plausible Values 2-5. Row 7,
titled PV1-PV5 (Rubin), provides the coefficients for the estimation that uses all five Plausible
Values and the Student Weights. Finally, row 8, titled PV1-PV5 & BRR, reports the results using
the procedure recommended by the survey organisers, e.g. using all five Plausible Values and
the Student Weights, as well as the eighty Balance Replication Weights. Following DL 2018, all
regressions include controls for gender (only in panel 1), month of birth, mother’s and father’s
educational attainment, school location (urban or rural) and migration background (whether the
student’s home language is not German). Robust standard errors in parentheses (following DL
2018: clustered by school programme (academic or vocational), school location and gender). ***
p<0.01, ** p<0.05, * p<0.1
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