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1 Introduction

“Commuting to office work is obsolete. It is now infinitely easier, cheaper and faster to

do what the nineteenth century could not do: move information, and with it office work,

to where the people are. The tools to do so are already here: the telephone, two-way video,

electronic mail, the fax machine, the personal computer, and so on.”

Peter F. Drucker, 1989

The Covid-19 pandemic led to drastic changes in where people work. Physical office oc-

cupancy in the major office markets of the U.S. fell from 95% at the end of February 2020 to

10% at the end of March 2020, and has remained depressed ever since, only gradually creep-

ing back to 47% by November 2022. In the intervening period, work-from-home (WFH)

practices have become more established, with many firms announcing permanent remote

or hybrid work arrangements associated with shrinking physical footprints. These shifts

in current and projected future office demand have led to concerns that commercial office

buildings may become a stranded asset in the wake of disruptions resulting from remote

work. Because office assets are often financed with debt which resides on banks’ balance

sheets and in Commercial Mortgage-Backed Security (CMBS) portfolios, large declines in

value would have consequences for institutional investors and for financial stability.1 The

spatial concentration of office assets in urban central business districts also poses fiscal chal-

lenges for local governments, which rely heavily on property taxes levied on commercial

real estate to provide public goods and services. A decline in office and adjacent retail real

estate valuations may activate a fiscal doom loop that lowers the quality of life for urban

residents and worsens the business environment.

In this paper, we ask what these changes in remote work arrangements imply for the

value of office buildings. To answer this challenging question, we combine new data with

1Investable commercial real estate assets were worth about $4.7 trillion at the end of 2019, of which office
represents the largest component. They make up an important part of the portfolio allocation to “real assets”
of a growing number of institutional investors (Goetzmann, Spaenjers and Van Nieuwerburgh, 2021). Banks
have about $2.4 trillion in commercial real estate loans on their balance sheets as of June 2022 according to Call
Report data.
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a new asset pricing model. A central model ingredient is uncertainty about future WFH

arrangements.

The value of office reflects the expected present discounted value of its cash flows. We

begin by analyzing the shock to current cash flows. Using a unique data set from Comp-

Stak, we study lease-level data for 105 office markets throughout the United States over the

period from January 2000 until May 2022. We document a 16.89 percentage point decrease

in lease revenue in real terms between December 2019 and May 2022. Two-thirds of this

decline reflects decreases in the quantity of in-force leases. The remainder is accounted for

by declines in real rents on in-force leases. The quantity of newly-signed leases in our data

set falls from 253.43 million square feet per year just before the pandemic to 59.32 million

square feet in May 2022. Rents on newly-signed leases fell by 13.16% in real terms between

December 2019 and December 2021 before reversing to pre-pandemic levels by the end of

2021, with meaningful heterogeneity across cities. Because a large fraction of leases in-force

in early 2020 did not come up for renewal in 2020 and 2021 (61.77% in the U.S., 71.59% in

New York), and vacancy rates are already at 30-year highs in several major markets (21.5%

in New York in 2022.Q2), rents may not have bottomed out.

We establish a direct connection between firms’ remote work plans, measured either from

remote work job postings or from corporate announcements on work schedules, and their

actual reductions in leased office space. We find firms that have a larger share of job postings

which are remote-amenable, or allow their employees to work more days from home, further

reduce their office space demand.

The effects on lease revenue are not uniform across properties. We find evidence of a

“flight to quality,” particularly in rents. Higher quality buildings, those that are built more

recently and have more amenities (informally called class A+), appear to be faring better.

Their rents on newly-signed leases did not fall as much or even went up. This is consistent

with the notion that firms need to improve office quality to induce workers to return to the

office. In contrast, lower quality office appears to be a more substantially stranded asset,

given lower demand, raising questions about whether such assets will ultimately need to be
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repurposed towards other uses.

Because most of the office stock is not publicly-traded (and this segment is also dispro-

portionate high-quality) and sales of privately-held office properties slowed down dramati-

cally during the pandemic, it is not possible to rely on transaction data to infer the changes

that remote work wrought onto office values. To address this challenge, a central contribu-

tion of our paper is to build a novel asset pricing model to infer the changing values. Office

values reflect expectations of future cash flows and discount rates. The model is a bottom-

up valuation tool, adapted to the details of commercial real estate assets. A property is a

portfolio of long-term leases. The model features long lease duration, leasing risk, market

rent risk, and supply growth risk. We aggregate lease revenues to the property level and

subtract costs to arrive at net operating income. The model aggregates so we can compute

the value of (a segment of) the office market as a portfolio of office properties. There are two

sources of aggregate risk: standard business cycle risk and aggregate uncertainty regarding

the state of remote work, with stochastic transitions between a no-WFH and a WFH state.

Rent growth, supply growth, lease renewals, new lease signings, and costs vary across these

aggregate states.

Our main calibration exercise is to New York City’s office market. The model matches

market rent, supply, and vacancy dynamics in the data. This includes the sharp increase in

office vacancy rates between 2020 and 2022. The model’s stochastic discount factor (SDF)

is chosen to match the observed risk-free interest rate, the equity risk premium in the stock

market (and its fluctuation across recessions and expansions), and the returns on a new WFH

risk factor, which we create. The WFH risk factor goes long stocks which support remote

work practices (i.e., Zoom) and goes short stocks which are reliant on physical presence (i.e.,

airlines).

A key parameter that affects the change in office valuations due to remote work is the

persistence of WFH practices. We back out this parameter from the (unlevered) stock return

on NYC-centric office REITs observed between December 2019 and December 2020. Since

REITs predominantly invest in A+ office product, we do so for a separate calibration to the
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A+ segment of the NYC office market. The model matches the 2020 (unlevered) office return

for an annual persistence parameter of 0.82, indicating that office investors believe remote-

work practices to be long-lasting. We show that our conclusions are robust to the specific

choice of our persistence parameter.

With this parameter in hand, we return to the full NYC office market calibration. We ob-

tain a 44.80% reduction in the value of the entire NYC office stock between December 2019

and December 2020. Simulating the model forward for ten years, we characterize the mean

value of the office stock and—just as importantly—the uncertainty around this valuation,

which depends on the sequence of shocks that hits the economy. Along the average path,

office occupancy stabilizes and the economy returns to the no-WFH state with some prob-

ability. These mean-reversion forces push office valuations towards an average office value

in 2029 that is about 39.18% below 2019 values. Along paths where the economy remains

in the WFH state, office values in 2029 are 59.86% below their 2019 values. Hence, there is

substantial uncertainty about future office values, WFH risk, that our approach quantifies.

We repeat the calibration exercise for San Francisco and Austin, the former an example

of an office markets that is hit even more by remote work and the latter an example of a

market that has been more resilient. Naturally we find larger valuation reductions in the

former, compared to NYC, and smaller reductions in the latter. However, both markets see

declines, suggesting that spatial reallocation of activity (for example, from New York City to

the Sunbelt) is not entirely driving our results.

What do these numbers imply for the aggregate value of the office stock? For NYC, we

observe $17.76 billion in annual lease revenue in the CompStak data pre-pandemic and the

ratio of office value to lease revenue is 6.02 based on our model. Hence, the value of the

NYC office properties in our dataset is $124.43 billion. The short-term value reduction of

44.80% amounts to $55.75 billion, while the longer-term reduction of 39.18% amounts to

$48.75 billion. Extrapolating to all properties in the U.S. in our dataset, the $64.86 billion

annual leasing revenue results in a $454.34 billion office value before the pandemic using

the same 6.02 value-to-lease revenue ratio. We estimate that pandemic-related disruptions
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around remote work have lowered the value of office buildings observed in our dataset by

$203.54 billion in the short run (44.80%) and by $178.01 billion in the long-run (39.18%).

Adjusting for incomplete data coverage, the total decline in commercial office valuation in

the U.S. is estimated at $484.00 billion in the short-run and $413.44 billion in the long-run.2

The key takeaway from our analysis is that remote work is shaping up to massively dis-

rupt the value of commercial office real estate in the short and medium term. These findings

are informed by our results that firms appear to demand substantially less office space when

they adopt remote working practices, and that such practices appear to be persistent. In the

long run, firms may discover that the productivity or innovation impact from remote work

is worse or better than expected, remote-work technologies may improve further, and cities

may repurpose existing office assets to alternative use. These changes are likely to play out

over decades and are beyond the horizon of our analysis.3

Related Literature Our work relates to four literatures. One strain of research has focused

on identifying disruptive technological shocks to asset prices. An important topic in this

literature has been that of stranded assets: whether innovation or climate change have the

potential to transform existing assets into liabilities, with consequences for the creative de-

struction of economic activity (Gârleanu, Kogan and Panageas, 2012; Kogan and Papaniko-

laou, 2014, 2019; Barnett, Brock and Hansen, 2020; Pástor, Stambaugh and Taylor, 2022). We

contribute to this literature by documenting a novel disruptive shock in the form of remote

work, proposing a work-from-home risk factor, and highlighting exposure of urban com-

mercial real estate assets to the WFH factor.

We also relate closely to the rapidly growing literature on the impact of remote work on

real estate, surveyed in Van Nieuwerburgh (2022). Rosenthal, Strange and Urrego (2021)

2Table 6 details the coverage of CompStak data for the largest 20 markets, using the inventory data from
Cushman & Wakefield as the universe. For these markets, we scale up our value change by the inverse of the
market-specific coverage ratio. For the remaining 85 office markets, we divide by a common coverage ratio,
chosen to reconcile the aggregate office stock in CompStak (1832.14 million square feet of active leases in our
dataset in February 2020) with Cushman & Wakefield’s office stock (5,375 million square feet at the end of
2019).

3That said, our model calibration features a reduction in office supply in the WFH state, capturing reduced
construction activity and adaptive reuse of office assets in the WFH state.
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documents a decline in the commercial rent gradient in the city center and transit cities as

compared to car-oriented cities with COVID-19. Bartik, Cullen, Glaeser, Luca and Stanton

(2020); Barrero, Bloom and Davis (2021); Aksoy, Barrero, Bloom, Davis, Dolls and Zárate

(2022) present survey data to assess the prevalence of remote work and investigate reasons

why working from home is expected to last. Hoesli and Malle (2021) analyze the effect of

COVID-19 on commercial real estate in the European markets. Gupta, Mittal, Peeters and

Nieuwerburgh (2021); Brueckner, Kahn and Lin (2021); Ramani and Bloom (2021); Mon-

dragon and Wieland (2022) study the impact of work from home on residential real estate

prices in urban and suburban areas. Cohen, Friedt and Lautier (2020) shows changes in real

estate prices in New York City due to COVID-19.

An important urban economics branch of this literature explores the effects of remote

work in quantitative general equilibrium models of labor and real estate markets (Delven-

thal, Kwon and Parkhomenko, 2021; Davis, Ghent and Gregory, 2021; Li and Su, 2021;

Gokan, Kichko, Matheson and Thisse, 2022). These models are well-suited for thinking

about long-run implications of remote work on city structure, including how office space

could be used for alternative purposes. This paper uses micro data on office leases to docu-

ment changes in commercial real estate markets with a rise in remote work, and uses these

data as inputs in a new asset pricing model. The finance perspective, which places WFH

risk at the core, is a useful complement to the urban economics perspective. An important

challenge for future work is to integrate these two approaches.

Finally, our work relates to literature examining commercial real estate as an asset class.

Cvijanović, Milcheva and van de Minne (2021); Badarinza, Ramadorai and Shimizu (2022)

study the role of investor characteristics in commercial real estate. Geltner (1993) assesses

valuation given existing appraised values. A key contribution of our paper to this literature

lies in developing a tractable, yet rich bottom-up model of commercial building valuation.

The valuation model has broad applicability to study pricing of publicly- and privately-

traded assets in different contexts.

The rest of the paper is organized as follows. Section 2 overviews changes in the of-
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fice leasing market during the pandemic, highlighting the contemporaneous losses to lease

revenue. Section 3 estimates the valuation of office buildings in the context of a structural

model, and 4 highlights the implications for office valuation. Section 5 concludes. Appendix

A estimates changes to future expected returns in the context of an asset pricing model in-

corporating work-from-home risk. Appendix B provides model derivations. Appendix C

details the calibration algorithm. Appendix D reports additional results from the model.

Appendix E contains the calibration details for San Francisco and Austin.

2 The Office Market During the Pandemic

2.1 Data

In comparison to other real estate markets, such as residential real estate, the market for

commercial office buildings is opaque. We combine cash flow and pricing data from both

public and private markets in order to understand the valuation of the entire office sector in

light of disruptions introduced by the shift to remote work.

Our main data set is CompStak, a data platform where commercial real estate brokers

exchange leasing information. The data set contains lease-level transaction data for a large

sample of offices leases in the U.S. for the period January 2000–June 2022. Data coverage

improves in the first part of the sample and stabilizes around 2015.

Our data contain information on the lease, the building, and the tenant. Lease charac-

teristics include: the execution date, lease commencement date, lease expiration date, the

starting rent, the rent schedule, free rent period, tenant improvements, the size (in square

feet) of the lease, floor(s) of the building, lease type (new lease, extension, expansion), and

other lease options. Building characteristics include: building location, building class (A, B,

or C), building age, submarket, market. Tenant characteristics include: tenant name, tenant

industry (SIC and NAICS code), tenant employees, and tenant ticker (if publicly traded). We

use this data to study the evolution of the lease market over the course of the pandemic, in
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terms of quantities, prices, and contract features.

In public markets, we obtain office REIT return for office REITS included in the National

Association of Real Estate Investment Trust (NAREIT) office index for the period 2019–2021.

To measure remote working conditions at the firm level, we use job postings data drawn

from Ladders, an online job search service site. The platform focuses on job positions pay-

ing in excess of $100,000 a year, and so has high coverage of many remote working positions

more commonly represented in high-wage professions. We use this service to track the frac-

tion of job postings which mention fully remote terms at the firm level. This allows us to

measure remote working plans by office tenants and connect them to their leasing decisions.

We also measure hybrid work conditions for a sample of 200 firms, chosen from among

the firms with the largest presence in our leasing data. We hand-classify working plans

(in-person, hybrid, and fully-remote) as well as the number of anticipated days back in the

office for these firms.4

2.2 Shock to Leasing Revenue

Figure 1 highlights the first component of the valuation shock: the reduction in current leas-

ing revenue. We compute the total annual leasing revenue on all in-force leases each month,

excluding subleases to avoid double-counting of revenue. The total value of annualized

leasing revenue was $64.86 billion prior to the pandemic in December 2019 (all numbers ex-

pressed in December 2021 dollars). Total leasing revenue then experienced a 16.89% decline,

falling to $53.90 billion in May 2022 (Panel A). This decline is substantial taking into account

the long-term nature of commercial leases. It indicates substantial shifts in leasing activity

among those tenants in a position to make a choice about their office space needs.

We decompose this decline in total leasing revenue into its two underlying components:

changes in average rents on in-force leases (Panel B) and changes in quantities (Panel C).

The average rent is again expressed in real 2021 dollars.

4We used two separate research assistants to hand-classify remote working plans, before having a third
assistant reconcile the two classifications into on uniform data set.

8



Figure 1: Current Office Lease Revenues
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While we observe contractual pricing terms in the CompStak data, lease terms require

some discussion. We focus on net effective rents (NER), which augment the standard con-

tract rent schedule (a rent for each month over the course of the lease) with additional pro-

visions including rent concessions (free rent) as well as tenant improvements (work paid for

by the landlord). The resulting NER reflects the average rent earned by the landlord, and is

the most relevant object in understanding changing market rent dynamics. Annualized net

effective rents on in-force leases fell in real terms throughout the pandemic. Most leases in-

force during the pandemic were signed before the pandemic and have built-in nominal rent

escalation clauses. However, the scheduled rent increases were not large enough to keep

pace with inflation, leading to a modest real NER drop on active leases of 5.75%. We also

show below that net effective rents on new leases signed during the pandemic fell substan-

tially below pre-Covid rent levels in the first year of the pandemic.

In addition, the quantity of in-force leases (in square feet) also fell substantially during

the pandemic (Panel C). The decline is 11.15% between December 2019 and May 2022. This

decline reflects (i) difficulties in filling vacant space with new tenants, (ii) lack of lease re-

newals by existing tenants whose lease is up for renewal, and (iii) renewals for less space

than the prior lease. This suggests that understanding the quantity dimension is of utmost

importance when it comes to understanding shocks to pandemic cash flows.

Flight To Quality in Lease Revenue

The decrease in current lease revenue is felt most strongly for lower- than for higher-quality

office space. To measure high-quality buildings, we define “A+” properties by isolating

leases that are in the top ten percent of NER in each quarter and submarket among all prop-

erties that are ranked as Class A by CompStak. We categorize a building that has such a lease

as A+ and assume that the A+ status remains for ten years, unless another top-10% lease is

signed in that building at which point the ten-year clock resets. The remaining buildings

(“Other”) are classes “A-” (A without A+), B, and C. The right panels of Figure 1 separate

out the two groups, normalizing the statistics for each group at 100 in December of 2019.
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We see that rent increases are stronger for Class A+ buildings during the pandemic (Panel

B), and the decline in active leases is smaller (Panel C). The combination of both of those

forces means that total annualized leasing revenues fall by 14.69% for A+ properties versus

by 17.79% for the rest of the office universe.

We observe even stronger evidence for differing trends across office space by quality in

Figure 2, which focuses on New York City (NYC) and Texas, as representative examples of

both major and non-major commercial real estate markets. Panels A and B display changes

in NER per square foot (sf) on newly-signed leases. The left panels define A+ properties

as before. The right panels use an alternative definition of high-quality buildings based on

building age: younger buildings are those constructed in or after 2010. Properties defined

as A+ sustain rent levels much better in both New York and Texas compared to other prop-

erties. Younger buildings even experience sizable rent increases, compared to substantial

rent decreases for other properties. This divergence suggests a “flight to quality” in office

demand in these markets.

2.3 Physical Occupancy, Contractual Occupancy, and Lease Expiration

In Figure 3 (Panel A) we highlight the key shift which is the focus of our paper: the sudden

drop in physical office presence for white-collar workers. Physical office occupancy is mea-

sured from turnstile data provided by Kastle.5 Over the course of the pandemic, about 70%

of college-educated workers did some or all of their work from home. In the initial wave

of the pandemic, physical office occupancy rates fell to just 20% among the top-10 largest

office markets (10% in NYC). Average occupancy recovered to about 30% (20%) by the end

of 2020. It saw several more dips as the pandemic intensified in early 2021. The recovery

continued in the second half of 2021 to about 40% (35%), before falling sharply due to the

rise of the Omicron variant at the end of 2021. The latest data as of early November 2022

show a 47.3% occupancy rate among the largest 10 office markets (46.7% in NYC). With two

and a half years of remote work experience, many employers and employees have formed
5The Kastle data cover more than 2,600 buildings in 138 cities.
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Figure 2: Changes in Office Rents and Occupancy
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Figure 3: Office Occupancy
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new habits and expectations. Employees have come to like remote work and report being

more productive. Employers have revised upward their own longer-run expectations on

average employee days in the office (Barrero et al., 2021; Aksoy et al., 2022), and have begun

to adjust their demand for office space as shown in more detail below.

These large drops in physical occupancy did not translate into large immediate drops

in commercial office cash flows, as shown above. The reason for the delayed and gradual

reaction is the staggered nature of commercial leases, highlighted in Figure 4. Because most

commercial leases are long-term, and not up for immediate renewal, only a fraction of office

tenants have had to make active choices about their future office demand so far. Among all

in-force leases as of the end of December 2019, only 38.23% came up for renewal in 2020 and

2021 combined. Nearly all of the tenants not up for renewal have continued to make rent

payments, despite their lack of physical occupancy. When more leases come up for renewal

in the future, the office demand of tenants who have made limited use of office space during

the pandemic remains highly uncertain and is a crucial determinant of office valuation.

Despite the modest share of tenants that have seen lease expirations so far, we already

observe drastically higher vacancy rates reflecting lease exits among that sample. The con-

tractual occupancy rate in Manhattan, the country’s largest office market, was at a 30-year

low of 78.5% in the second quarter of 2022 (Cushman & Wakefield), as shown in Figure 3
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Figure 4: Lease Expiration Schedule
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(Panel B). Panels C and D of Figure 2 plot occupancy rates for NYC and Texas using our

CompStak data, scaled to 100 in December 2019. The left panels show that occupancy rates

fell for both A+ and lower-quality buildings. The right panels shows that younger build-

ings, those built after 2010 or after 2015, saw substantially stronger occupancy during the

pandemic than older buildings.

2.4 Impact on Quantities and Prices of New Leases

Pandemic Impact on New Lease Quantities

We next turn to examine the consequences of pandemic-associated shifts in office demand

on the number of new leases signed. To do so, we aggregate the total number of new com-

mercial office leases signed in the CompStak data.6 We observe a dramatic decrease in the

quantity of new leases signed, sometimes called absorption in the industry, across both sets

of markets in Figure 5. The volume of newly signed leases fell from 253.43 million sf per

year in the six months before the pandemic to 59.32 million sf per year over the most recent

six months. This indicates a substantial drop in office demand from tenants who are actively

making space decisions.

6In unreported analysis, we find that the changes are similar in major and non-major office markets. The
major office markets are: New York City, Philadelphia, Boston, Houston, Dallas, Austin, Nashville, Chicago,
Atlanta, Miami, Washington D.C., Denver, Los Angeles, Bay Area, and San Francisco.
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Figure 5: New Leases Signed
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Pandemic Impact on New Lease Duration

Even when tenants do renew leases, they may not do so under the same set of terms. Figure 6

shows that the share of new leases signed that are less than three years in duration increased

substantially during the pandemic, to account for almost half of our sample, while the share

of leases with a duration more than seven years decreased meaningfully. The shortening of

lease duration suggests important shifts in the commercial office market, even conditional

on lease renewal. As a result, the coming years 2023–2025 will feature even larger than ex-

pected lease expiration from two channels: the pre-scheduled expiration of long-term leases

signed before the pandemic, as well as the expiration of short-term leases signed during the

pandemic. This is shown in Panel B of Figure 4.

Pandemic Impact on New Lease Rents

We next explore the dynamics of net effective rents on new leases. We compute the square-

foot weighted average NER (in 2021 dollars). Figure 7 shows large changes in real NERs on

new leases signed over the course of the pandemic. Panel A is for all markets and Panel B is

for New York City. We provide both a longer-term perspective in the top row and zoom in on
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Figure 6: Lease Duration Changes
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the post-2018 period in the bottom row of each panel. Nationally, the NER fell by 13.16% in

2020. Starting in January 2021, the NER on newly-signed leases experienced a sharp reversal

with the NER ending up back at its pre-pandemic level at the end of our sample.

The national average NER dynamics could reflect composition effects, either in terms

of in the markets in which new leases are being signed or in terms of the types of tenants

signing new leases. To control for such selection effects, we remove tenant-industry and

geographical fixed effects. Once fixed effects are removed (solid line), both the decline in

NER in 2020 and the rebound in 2021 become weaker. Much of the recent rebound in NER

in the raw data turns out to be a spatial composition effect.

In NYC, the NER decline on new leases in 2020 is sharper at 15.94%, and the rebound in

2021 and 2022 is much weaker. The measurement in NYC is not sensitive to the removal of

tenant and submarket fixed effects.

Flight to Quality in Building Attributes

The right panels of Figure 7 break down the market-wide NER dynamics by quality segment:

A+, A- (all other class A), in addition to B and C units. We focus on the solid lines, which
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Figure 7: Net Effective Rent on New Leases
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Panel B: NYC
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Source: CompStak. All FE includes state, major/non-major market, industry and renewal FEs. Major markets are defined in footnote 6.
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Figure 8: Building Quality and Changes in Rents

Panel A: By Building Age Panel B: By Building Rent Rank

Notes: The graph shows the changing gradients of building quality and commercial rents, before and after the beginning of the pandemic
for New York City and San Francisco. Quality is measured by building age (Panel A) and the building rent rank: the highest ranking that
any lease in a building had in the previous ten years. Our definition of “A+” buildings corresponds to those in the top ten percentile of
this rent rank. To estimate these specifications, we first residualize all office lease data in San Francisco against: the commencement month
of the lease, a tenant fixed effect, and a submarket fixed effect. We then plot the residuals from that regression (adding back the average
level of rents) separately for pre-pandemic (February 2020 and before, in blue) and the post-pandemic data (March 2020 and after, in red).

remove fixed effects. Nationally, A+ rents on new leases show resilience, rising modestly

between December 2019 and May 2022. Lower-quality office rents, by contrast, see a much

steeper decline over the pandemic. In NYC, A+ rents on new leases show stronger declines

in 2020, but rebound more sharply in 2021 compared to other market segments. Rents on

lower-quality office buildings fall without much of a rebound in 2021.

Figure 8 illustrates the flight-to-quality dimension further by plotting the relationship be-

tween building age and NER in Panel A for New York and San Francisco leases. The NER is

residualized with respect to month, submarket, and tenant fixed effects, and so as to control

for shifting geographic or tenant composition. It shows that the rent-quality gradient steep-

ens substantially for leases signed in March 2020 or later versus before. Rather than sorting

buildings by age, Panel B sorts them by their rent rank, where 0.9 indicates the 90th percentile

of the NER distribution. Again, we find a strong association between building quality and

rents in general in the cross-section of building quality (consistent with the general role for

filtering as in Baum-Snow and Rosenthal (2022)), but a steeper gradient after the pandemic.

The quality attribute becomes more highly valued after the onset of the pandemic.

Table 2 provides detailed regression results of the relationship between building age and
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NER. We control for month and submarket fixed effects (column 1), as well as tenant fixed

effects (column 2), and building fixed effects (column 3). The specification in column 3 with

both tenant and building fixed effects identifies the quality gradient from tenants that sign

multiple leases within the same building at different points in time (at different building

ages), enabling a precise estimation of the association between age and rents. Each year

of aging reduces NERs by $0.067 per sf in that specification. A building that is ten years

older has 2% lower rents relative to the average rent of $34 per sf. Our key test is how

this relationship changes over the pandemic, represented as an interaction term in column

4. We observe that interaction of building age and a post-pandemic indicator variable is

negative and significant, indicating that young buildings become even more valuable after

the pandemic. This specification compares rent outcomes for leases signed in March 2020

and later, relative to leases signed between January 2018 and February 2020. Column 5 uses

log NER and log building age, and shows an additional 2.4% point rent elasticity to age. We

observe that this association is largely driven by shifts in major markets (columns 6 and 7),

and is particularly large in New York and San Francisco (column 8).
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Table 1: Building Quality and Rent

(1) (2) (3) (4) (5) (6) (7) (8)

Building Age (Yrs) -0.101∗∗∗ -0.070∗∗∗ -0.067∗∗ -0.083∗∗∗ -0.088∗∗∗ -0.066∗∗∗ -0.050∗∗∗

(0.015) (0.011) (0.030) (0.015) (0.016) (0.014) (0.015)

Building Age × -0.042∗∗∗ -0.005 -0.001 -0.127∗∗∗

Post Pandemic (0.013) (0.011) (0.011) (0.031)

Log Building Age -0.084∗∗∗

(0.007)

Log Building Age × -0.024∗∗∗

Post Pandemic (0.008)

Age × Post × -0.044∗∗∗ -0.020∗∗

Major Market (0.011) (0.009)

Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Submarket FE Yes Yes Yes Yes Yes Yes Yes Yes
Tenant FE No Yes Yes No No No Yes Yes
Building FE No No Yes No No No No No
Sample Full Full Full 2018–2022 2018–2022 2018–2022 2018–2022 2018–2022

SF+NYC
N 374,262 207,764 196,430 93,322 93,238 93,322 37,272 8,128
standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the relationship between firm quality attributes and rent gradients over the pandemic. The left hand side variable
is rents in 2021 dollars, except in column (5) in which the dependent variable is log(rents). The right hand controls always include the
month of lease commencement and submarket fixed effects. Additional controls include a fixed effect for tenant identity (not available for
all leases), as well as a fixed effect for the building. The sample includes all years for columns (1)–(3), and subsets to leases signed from
2018–2021 for columns (4)–(8). Column (8) additionally subsets to San Francisco and New York City. To illustrate the changing premium
on quality, we introduce an interaction with post pandemic from column (4), defined as the time period from March 2020 and afterwards.
Major markets are defined in footnote 6. Standard errors are double clustered at the month of lease commencement and submarket level.

2.5 Connecting Remote Work and Office Demand

Fully Remote Workers

Office demand was greatly impacted over the course of the coronavirus pandemic due to

the health risks of in-person activity. Businesses invested in remote-working technologies,

and both firms and employees become accustomed to new practices of working from home.

To the extent that these reflect durable shifts in worker preference and are accommodated by

firms, we expect to see ongoing reductions in office demand as a consequence. In contrast,

if remote work was mostly a response to pandemic health concerns, a strong rebound seems

more likely.
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To illustrate shifting firm space demands during the pandemic, Figure 9 plots the re-

lationship between the change in leased space between December 2019 and May 2022 by

measuring the change in space at the tenant-level (y-axis) against tenant size, as measured

by the log of total sf of active leases before the pandemic (x-axis). We estimate a strongly

positive relationship (blue line), which suggests that the decline in tenant space demand is

dominated by smaller firms. This is consistent with the idea that small firms are more likely

to be financially constrained (Beck, Demirgüç-Kunt and Maksimovic, 2005), and hence more

sensitive to the cost of commercial leases and more likely to adopt remote work.

Figure 9: Change in Firm Office Demand and Size

Notes: This graph shows the relationship between firm office demand and size. For each tenant in the CompStak data, we measure their
total square footage leased in December 2019, and in May 2022. A measure of 100% indicates the tenant has retained the same amount of
space; a higher number indicates tenant expansion and a smaller number suggests space reductions. We plot this measure, with one dot
per tenant, against the total space demand for that tenant before the pandemic (the log active square feet in December 2019). The blue line
is the linear best fit relationship indicating that smaller firms were more likely to cut down on space.

Job Postings

In order to connect the changes in office demand over the course of the pandemic to shifts

in remote work more directly, we conduct two exercises. First, we use job posting data

from Ladders which allow us to measure the fraction of a firm’s job listings that are for
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fully-remote positions.7 We then estimate the relationship between the change in office de-

mand, measured as the percentage change in active lease space in square feet normalized

by employment growth since January 2020, and the fraction of job postings that are remote.

Tenants will have a more negative change in office demand if they do not renew leases that

come up for renewal during the pandemic, if they renew and take less space, or if they do

not expand space in proportion to their total number of employees. We merge job postings

and tenant data for 135 large tenants.

Table 2 reports the results. The change in office demand is measured over various pe-

riods ranging from the last 3 to the last 24 months (relative to the time of data collection

in February 2022). We find a significant negative relationship at all horizons. Our results

suggest that firms that express a greater remote work preference in job listings have lower

demand for office space. A 10% point increase in the share of remote job postings lowers

office demand by 3.9–4.9% points. This result is consistent with the idea that durable shifts

in remote work are changing the demand for office space.

Hybrid Work

Second, we connect office demand to firms’ remote work schedules. While many employers

have shifted to rely more on fully-remote workers, a large fraction of employers have instead

moved to hybrid work (Bloom, Han and Liang, 2022). Employees are expected to return

to the office for some number of days in the week. The implications of hybrid work for

office demand are less clear than for fully-remote positions because firms will still require

an office presence. That said, firms may have the ability to stagger staff to come into the

office on different days or rearrange the workspace to use it more efficiently (through the

use of techniques such as hot-desking, hoteling, office neighborhoods, and perhaps with the

assistance of software).

7The Ladders data contains a flag indicating whether the position is remote or not.
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Table 2: Remote Listings and Office Demand

(1) (2) (3)

∆ Space ∆ Space ∆ Space

Remote Listings (3 months) -0.392∗∗

(-2.41)

Remote Listings (12 months) -0.492∗∗

(-2.46)

Remote Listings (24 months) -0.468∗∗

(-2.01)

Constant -0.0123 -0.0106 -0.0156

(-0.61) (-0.52) (-0.77)

Observations 135 135 135

R2 0.042 0.044 0.030

t statistics in parentheses.

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variable, ∆ Space, is constructed from CompStak and defined as the square feet (sf) of leases executed post-pandemic

minus the positive part of the difference between sf of leases expired post-pandemic and sf of leases commenced post-pandemic, and

normalized by pre-pandemic active sf. The independent variables measure the ratio of remote job postings for a specific tenant within

a time window since we downloaded the data snapshot from Ladders in February 2022. More specifically, we look at December 2021 to

February 2022, January 2021 to February 2022 and January 2020 to Feb 2022 and check the ratio of tenants’ remote jobs over their total job

postings.

To examine the role of hybrid work on office demand, we hand-classify the remote work-

ing policies for 200 of the largest tenants. We classify firms into whether their back-to-office

plans envision fully in-person activities, hybrid work (some number of days back in the of-

fice), or fully-remote based on public press releases and other public statements. For these

firms, we also classify the number of days anticipated back in the office. While return-to-

office plans remain in flux, our classification provides an estimate of firms’ expected office

plans around the time that they make their space decisions.

The left panel of Figure 10 shows that hybrid work is strongly associated with lower of-

fice space demand. Firm-level office demand drops by 12.5% for hybrid firms, while firms

announcing that workers must return in-person see only minimal change in space demand
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Figure 10: Hybrid Work and Office Demand

Panel A: Work Mode and Office Demand Panel B: Days Required and Office Demand

Notes: This figure plots the relationship between firm space demand and stated back-to-work office plans. We measure firm space demand,
as elsewhere in the paper, by comparing the firm’s total leased square footage in May 2022 against the amount pre-pandemic in December
2019. We then calculate the firm’s back to office plans by classifying the publicly stated policies as of Summer 2022 for the 200 top firms
based on overall space utilization. We sort these into plans that are: fully in person, hybrid (ie, some full-time requirement), and fully
remote. We also assess how many days a week the firm anticipates workers being back in the office: 0 (fully remote positions), 1–3
days/week, and 4–5 days a week (including fully in person requirements).

(this decline is statistically significant in a regression). The decline in space for firms an-

nouncing a fully-remote future show the largest decline in office demand, a 16.2% decline

in square footage. The latter decline is not even larger because tenants have in-place lease

commitments.

We observe similar results when comparing the number of days that firms anticipate

returning back to the office in the right panel. Fully-remote firms (i.e., those that are antici-

pating zero days required back in the office) have the largest decline in office demand, while

firms anticipating 4–5 days back in the office have the smallest. Firms with 1–3 days/week

on-site requirement lie in between those two extremes.

Combined, our results show that office space demand has declined considerably over the

course of the pandemic and that changes in remote work policies appear to be driving this

trend. Firms with more fully-remote positions, or fully-remote work schedules experience

the largest declines in office demand. However, decreases in office demand are still substan-

tial among firms with a hybrid back-to-office plan. These results suggest that even hybrid

work plans pose major disruption to aggregate office demand, with significant implications

for aggregate office values.
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3 Office Valuation Model

How do changes in remote work and the accompanying changes in office rent revenues af-

fect the value of office buildings? To answer this important question, we turn to a structural

valuation model. As in any valuation, we focus on cash flows and discount rates. Conceptu-

ally, the value of a building (or portfolio of buildings or the market overall) is the expected

present discounted value of rent revenues Revt+j minus expenditures Costt+j:

Vt = Et

[
∞

∑
j=1

Mt,t+j
(

Revt+j − Costt+j
)]

= Et

[
∞

∑
j=1

Mt,t+jRevt+j

]
− Et

[
∞

∑
j=1

Mt,t+jCostt+j

]
= VR

t −VC
t (1)

where Mt,t+j is the cumulative stochastic discount factor (SDF) between t and t + j. Vt is

an end-of-period (ex-dividend) price. By value additivity, the value of the building is the

difference between the value of the (positive) rents minus the value of the (positive) costs.

This gets around the issue that the difference between revenues and costs (before-tax net

cash flow) can be negative.

Several real-world complications arise regarding a property’s cash flows which make this

valuation more difficult than the valuation of, say, a stock’s dividend stream. Each building

is a portfolio of leases with different lease terms and maturity dates. Physically identical

buildings therefore have different valuations as a result of different lease structures in place.

The leases are finite, but there is additional rental revenue after the leases mature. After

some initial vacancy, tenant improvements, and concessions (e.g., free rent) the space will

be released at the market rent. Furthermore, the building may not be fully leased, in which

case vacancy creates cash flow shortfalls. Hence, the key sources of risk are vacancy risk and

market rental risk. On the cost side, the operating expenses including the reserve account to

provision for regular capital expenditure or maintenance. A part of the costs is fixed, while

another part is variable (with occupancy). Costs also include leasing commissions, which

are different for new leases and lease renewals. Finally, there is the risk of supply growth.
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The model we propose includes most of these real world features in a tractable way. It can

be used to value an individual building, or a (sub-)market, which is a portfolio of buildings.

The full derivation of the model is in Appendix B. This model should be useful for valuing

income-generating properties in any sector or location. Section 3.3 describes the calibration

of the model, which will focus on the New York City office market.

3.1 Modeling Revenues

The central challenge in modeling leases is incorporating the process of expiration and lease

renewal, at potentially different lease rates. This is important because commercial leases

are long-term in nature, but much shorter in duration than the expected life of the build-

ing. In our model, leases comes due in the current period with probability χ. Under the

law of large numbers, χ is also the share of all leases coming due in a given period in that

building/market. The random arrival of lease expiration absolves us from having to keep

track of the history of past lease executions. Under this assumption, we only need two state

variables to describe the evolution of rental revenues in a building/market: Q̂O
t and R̂O

t .

Let QO
t be the occupied space (in square feet) in a building/market at the end of period

t and QV
t be the vacant space in a building/market at the end of period t. If Qt is the total

size of the building/market, then QV
t = Qt − QO

t . The law of motion for occupied space in

a building/market is:

QO
t+1 = min

{
QO

t (1− χ) + QO
t χsO

t+1(z
′) + (Qt −QO

t )s
V
t+1(z

′), Qt+1

}
.

The first term denotes the space that was occupied at the end of last period which is not up

for renewal. The second term denotes the space that was up for renewal and is renewed for

the same or for less space. Here, 0 ≤ sO
t+1(z

′) ≤ 1 is the share of office space that was up for

renewal which is being renewed in period t + 1. This is a stochastic process whose realized

value depends on the state of the world z′ in period t+ 1. It combines the extensive margin of

renewal (the share of space that gets renewed versus not-renewed) and the intensive margin
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of renewal (the share of space in square feet which is renewed conditional on renewal). The

third term denotes space that was vacant at the end of last period and is being newly rented.

The stochastic process 0 ≤ sV
t+1(z

′) is the share of office space that was vacant which is being

newly rented out in period t + 1 if period t + 1 is in state z′. This term includes the part of

lease expansions that exceeds the original space (renewals for more space). This share is not

bounded from above by 1, to allow for growth in a building/market due to changes in the

supply. The minimum operator guarantees that space occupancy in a building/market is

weakly below available supply. It will not be binding in our calibration.

The growth in available space in a building/market is a stochastic process which de-

pends on the model regime:
Qt+1

Qt
− 1 = ηt+1(z′).

Growth reflects new construction (renovation of a building that adds floor space or new

construction in a market) net of depreciation.

We define the scaled state variable Q̂O
t :

Q̂O
t =

QO
t

Qt

with the law of motion:

Q̂O
t+1(Q̂

O
t , z′) = min

{
Q̂O

t (1− χ) + Q̂O
t χsO

t+1(z
′) + (1− Q̂O

t )s
V
t+1(z

′)

1 + ηt+1(z′)
, 1

}
. (2)

The rent revenue in a building/market in period t + 1 takes the following form:

Revt+1 = QO
t (1− χ)RO

t +
[

QO
t χsO

t+1(z
′) + (Qt −QO

t )s
V
t+1(z

′)
]

Rm
t+1

in which RO
t is the average net effective rent per square foot on existing leases and Rm

t+1

is the market’s net effective rent (NER) per square foot on newly executed leases. The net

effective rent incorporates concessions (free rent) and tenant improvements. We assume that
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all new leases are signed at the market NER. The rent on existing leases is a geometrically-

decaying weighted average of all past market rents, where the weights capture the shares of

outstanding leases signed in each of the prior periods:

RO
t = χ

∞

∑
k=0

(1− χ)kRm
t−k

The law of motion for this second state variable is given by:

RO
t+1 = (1− χ)RO

t + χRm
t+1

We define the state variable R̂O
t :

R̂O
t =

RO
t

Rm
t

.

The growth rate of the market’s NER per square foot is a stochastic process: its value

depends on the aggregate state realization z′ in period t + 1:

Rm
t+1

Rm
t
− 1 = εt+1(z′)

The law of motion for the scaled state variable becomes:

R̂O
t+1(R̂O

t , z′) =
1− χ

1 + εt+1(z′)
R̂O

t + χ (3)

We can now rewrite rent revenue as a function of the scaled state variables. The rent

revenue in a building/market in period t + 1 takes the following form:

Revt+1 = QtR
m
t

{
(1− χ)Q̂O

t R̂O
t +

[
Q̂O

t χsO(z′) + (1− Q̂O
t )s

V(z′)
]
(1 + ε(z′))

}

Define potential rent as the rent revenue based on full occupancy at the prevailing market
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rent: QtRm
t . Denote the rent revenue scaled by last period’s potential rent with a hat:

R̂evt+1(Q̂O
t , R̂O

t , z′) =
Revt+1

QtRm
t

= (1− χ)Q̂O
t R̂O

t +
[

Q̂O
t χsO(z′) + (1− Q̂O

t )s
V(z′)

]
(1 + ε(z′))

Recall the expected present discounted value (PDV) of lease revenues VR
t :

VR
t = Et

[
∞

∑
j=1

Mt,t+jRevt+j

]

Scale this price by potential rent to obtain a price-dividend ratio:

V̂R
t =

VR
t

QtRm
t

The price-dividend ratio of the lease revenue claim solves the Bellman equation:

V̂R
t (Q̂O

t , R̂O
t , z) = ∑

z′
π(z′|z)M(z′|z)

{
R̂evt+1(Q̂O

t , R̂O
t , z′) + (1 + η(z′))(1 + ε(z′))V̂R

t+1(Q̂
O
t+1, R̂O

t+1, z′)
}

(4)

subject to the laws of motion for the scaled state variables (2) and (3).

3.2 Modeling Costs

On the cost side, there are three types of costs: operating expenditures, capital expenditures,

and leasing commissions. Note that tenant improvements and concessions (free rent) are

already reflected on the revenue side since we consider net effective rent as our rent concept.

We fold the per-period equivalent of capital expenditures into the operating expenses, a

common practice (the capital reserve account). These per-period capital expenditures are in-

dependent of building occupancy. Other operating costs that are independent of occupancy

are: property insurance, property taxes, and the fixed part of utilities and maintenance. We

refer to these combined fixed costs per square foot as C f ix
t . The presence of fixed costs acts
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as operational leverage to the asset. Utilities and maintenance also contain a variable com-

ponent that depends on building occupancy. Variable costs per square foot are denoted as

Cvar
t . Finally, leasing commissions (or broker fees) capture costs associated with bringing in

new tenants. When a lease expires, leasing commissions are higher for new leases than for

renewals: LCN > LCR. Commissions are variable costs, proportional to the first-year rental

revenue from the lease.

Adding the costs associated with fixed and variable expenses, along with broker com-

missions, yields an expression for total building costs:

Costt+1 = C f ix
t+1(z

′)Q+QO
t Cvar

t+1(z
′)+

[
QO

t χsO
t+1(z

′)LCR
t+1(z

′) + (Qt −QO
t )s

V
t+1(z

′)LCN
t+1(z

′)
]

Rm
t+1.

We scale costs by lagged potential rent:

Ĉostt+1 =
Costt+1

QtRm
t

= c f ix
t+1(z

′) + Q̂O
t cvar

t+1(z
′) +

[
Q̂O

t χsO
t+1(z

′)LCR
t+1(z

′) + (1− Q̂O
t )s

V
t+1(z

′)LCN
t+1(z

′)
]
(1 + ε(z′))

where cost per square foot to market rent per square foot ratios are defined as:

c f ix
t+1(z

′) =
C f ix

t+1(z
′)

Rm
t

and cvar
t+1(z

′) =
Cvar

t+1(z
′)

Rm
t

.

Note that Ĉostt+1 only depends on Q̂O
t and on z′, not on R̂O

t .

Recall the expected PDV of costs VC
t :

VC
t = Et

[
∞

∑
j=1

Mt,t+jCostt+j

]
.

We scale this price by potential rent to obtain a price-dividend ratio:

V̂C
t =

VC
t

Q̄tRm
t

.
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The price-dividend ratio of the building cost claim solves the Bellman equation:

V̂C
t (Q̂O

t , z) = ∑
z′

π(z′|z)M(z′|z)
{

Ĉostt+1(Q̂O
t , z′) + (1 + η(z′))(1 + ε(z′))V̂C

t+1(Q̂
O
t+1, z′)

}
(5)

subject to the law of motion for the scaled state variable in (2).

Bellman equations (4) and (5) have closed-form solutions spelled out in Appendix B.

3.3 Calibration

Since we are interested in understanding how the value of office is affected by remote work,

we want to calibrate the model to the entire stock of office. While risk and return are likely

to vary across space, we focus here on New York City: America’s largest office market. One

key parameter will be identified from the A+ segment of the NYC office market, so we also

need a calibration for that segment of the NYC office market. We also repeat the calibration

for two more cities: San Francisco and Austin. The former is affected even more severely by

remote work than NYC, while the latter is affected less severely.

3.3.1 States and State Transition Probabilities

The state variable z follows a Markov Chain which can take on four values: expansion (E),

recession (R), WFH expansion (WFH-E), WFH recession (WFH-R). Here, WFH stands for a

world where a lot of work is done remotely or in hybrid format. Before 2020, the world was

oscillating between the E and R states.8

The model is calibrated at an annual frequency. We decompose the 4× 4 annual state

transition probability matrix as the Kronecker product of two 2× 2 transition probabilities.

The first matrix governs the dynamics between expansions and recessions. The second one

governs the dynamics between no-WFH and WFH states. These two components are as-

8We can think of the two non-WFH states as states where there was a small amount of remote work. Amer-
ican Time Use Survey data for 2017 put the fraction of remote work at around 5%.
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sumed to be independent:

π(z′|z) = πBC(z′|z)⊗ πWFH(z′|z).

We calibrate expansions and recessions to the observed frequency of NBER recessions in

the 1926–2019 data, and the average length of a recession. Recessions are shorter-lived than

expansions. This pins down the 2× 2 matrix πBC(z′|z).

πBC =


E R

E 0.877 0.123

R 0.581 0.419


The WFH transition matrix is a key object in our valuation exercise. The no-WFH state

captures an environment in which remote work is rare, while the WFH state captures an

environment in which remote work is common. We set the probability of entering in the

WFH state from the no-WFH state equal to q = 5%, to capture the idea that a transition

to mass adoption of remote work was unlikely before 2020. The second parameter is the

probability of remaining in the WFH state conditional on having entered it, which we label p.

The latter governs the persistence of remote work, and it is a key parameter of interest in the

paper. We will infer the value of p from the observed change in class A+ office valuations at

the onset of the pandemic, as measured from office REIT data, and perform robustness with

respect to this parameter. As explained in detail below, this calibration delivers p = 0.8176.

These two parameters pin down πWFH(z′|z):

πWFH =


No WFH WFH

No WFH 1− q q

WFH 1− p p

 =


No WFH WFH

No WFH 0.95 0.05

WFH 0.1824 0.8176



32



3.3.2 State Prices

The one-period SDF takes the form M(z′|z). We decompose this SDF into a pre-WFH SDF

and a WFH shifter:

M(z′|z) = MBC(z′|z)⊗ MWFH(z′|z).

We choose MBC(z′|z) to match the risk-free rate and the equity risk premium in both

expansions and recessions. First, we match the risk-free rate, conditional on being in a given

state:

R f
t (z) =

(
∑
z′

πBC(z′|z)MBC(z′|z)
)−1

.

We average the observed 3-month T-bill rate (in excess of inflation) in expansions and reces-

sions using pre-2020 data. Second, we match the average return on equity conditional on

each pair (z, z′). That is, we want the conditional Euler equations for the aggregate stock

market return Retmkt be satisfied for each state z = E, R:

1 =

(
∑
z′

πBC(z′|z)MBC(z′|z)Retmkt(z′|z)
)

Combined, the equations for the risk-free rate and the equity return provide four equations

in four unknowns, and hence pin down MBC(z′|z):

MBC =


E R

E 0.761 2.639

R 0.262 1.917


The model matches the observed long-term average real risk-free rate of 1.5%. It implies

a higher real risk-free rate in recessions than in expansions. The model also matches the

historical average equity return of 9.5%. The equity risk premium is 8.0% unconditionally,

and substantially higher in recessions (13.8%) than in expansions (6.9%).

The SDF component MWFH(z′|z) governs how the risk associated with working from

home is priced. It is chosen to price the returns on a portfolio of stocks that goes long
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companies that benefit from remote work and short companies that are exposed to remote

work. We exclude real estate stocks from the portfolio on purpose. Appendix A.2 contains

the details of the WFH factor construction. We call this portfolio the WFH equity factor.

We use data from the period December 2014–December 2019 to measure the conditional

expected return Retw f h(z′ = no WFH|z = No WFH). The WFH equity factor is exposed to

stock and bond market risk, as captured by the first two terms below, as well as to WFH risk,

as captured by the last term:

Retw f h(z′ = No WFH|z = No WFH) = βmktλmkt + βbondλbond + λw f h.

We estimate the (conditional) stock and bond betas in the December 2014–December 2019

period. Appendices A.4 and A.5 show how we pin down the (conditional) market prices

of risk for the WFH equity risk factor, and for the stock and bond risk factors, respectively.

Given our value of λw f h = −7.0%, we find Retw f h(z′ = no WFH|z = No WFH) = −6.42%.

We use the data from December 2019 to December 2020 to measure the conditional ex-

pected return Retw f h(z′ = WFH|z = No WFH). Since we only observe one such transition

in our sample, we are forced to take this simpler approach. This results in Retw f h(z′ =

WFH|z = No WFH) = 30.84%.

Given that we have no data on the transition from the WFH to the no-WFH state and

only 1.5 annual observations on the return conditional on remaining in the WFH state, we

opt to assume instead that the second row of MWFH, conditional on z = No WFH, is equal

to the first row, conditional on z = No WFH.

We normalize the SDF entry MWFH(No WFH|No WFH) = 1. This then leaves us with

one equation in one unknown. We set MWFH(WFH|No WFH) to price the WFH equity risk

factor return correctly for z = No WFH:

1 =

(
∑
z′

πWFH(z′|z)MWFH(z′|z)Retw f h(z′|z)
)

.
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Finally, since we want the risk-free rate to be fully determined by MBC(z′|z) and unaf-

fected by MWFH, we scale each row of MWFH,unscaled such that E[MWFH|z] is equal to 1 for

each state z:

MWFH,unscaled =


No WFH WFH

No WFH 1 1.696

WFH 1 1.696

, MWFH =


No WFH WFH

No WFH 0.966 1.639

WFH 0.627 1.080


The model considers the WFH state (second column) to be a worse state of the world—with

a higher market price of risk—as the no-WFH state (first column). Assets such as offices,

that have lower returns in that state of the world, are therefore riskier.

In sum, the asset pricing model pins down the risk-free rate and contains two priced

aggregate risk factors: an equity market factor and a remote work factor.

3.3.3 Office Cash Flows for All NYC

Since we are interested in valuing the entire commercial office stock in New York City (the

market), our main calibration is for the entire office stock. Below, we also consider a second

calibration to the A+ segment, as well as separate calibrations for other office markets. The

calibration algorithm is detailed in Appendix C.

We set the lease expiration parameter at χ = 0.14. This delivers a lease duration of 7.40

years, matching the CompStak average office lease term in the New York City data. Table 3

lists the remaining parameters, which vary by state.

Table 3: Calibration for All NYC

Variable Symbol E R WFH-E WFH-R
Market NER growth ε 0.0544 -0.1251 0.0334 -0.1699
Supply growth η -0.0152 -0.0158 -0.0407 -0.0413
Lease renewal share sO 0.8259 0.2897 0.2748 0.0964
New leasing share sV 0.1838 0.3350 0.0612 0.1115
Fixed cost/rent ratio c f ix 0.2000 0.2000 0.2000 0.2000
Variable cost/rent ratio cvar 0.2300 0.2300 0.2300 0.2300
Leasing commission new LCN 0.3000 0.3000 0.2400 0.2400
Leasing commission renewals LCR 0.1500 0.1500 0.1200 0.1200
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Market NER growth ε in expansions and recessions comes from the January 2000 to De-

cember 2019 CompStak data.9 NER is strongly pro-cyclical. Market NER growth in the

remote work state comes from the December 2019 to May 2022 CompStak data. Market

NER growth was -16.99% from December 2019 to December 2020 (a WFH-R episode), and

+3.34% per year from December 2020 to May 2022 (1.5 WFH-E years).

Supply growth η(z) incorporates new construction net of depreciation and reductions in

office space due to conversion to alternative use. The values for supply growth for expan-

sion and recession periods are calculated from CompStak based on the year of construction

of all office buildings. New construction is 1.18% in expansions and 1.12% in recessions.

We subtract a 2.70% depreciation rate, a realistic number for office property, from the new

construction numbers to arrive at the net supply growth η reported in the table.10 Supply

growth is acyclical because of the long construction lags for office properties.

The values for supply growth in WFH-R and WFH-E periods are calculated by down-

scaling E and R supply growth by a fixed amount ∆η. The value for ∆η is set such that

the model has long-run growth in potential gross rent of zero, given all other parameters.

This keeps the model stationary. The calibration has the intuitive feature that supply growth

is much lower in the remote work states compared to the no-WFH states, capturing the

response of developers to the reduced demand for office as well as conversion of office to

alternative uses such as housing.

The parameters sO(E), sO(R), sV(E), sV(R) govern office demand across the business cy-

cle in the non-WFH states. We pin down these four parameters to match four moments of

the NYC contractual vacancy rate over the period 1987.Q1–2019.Q4, plotted in panel B of

Figure 3. Those moments are the mean, the standard deviation, the maximum, and the min-

imum. The resulting lease renewal share for existing leases that are up for renewal, sO, is

9Since NBER business cycles in this period (and before) are shorter than commercial real estate (CRE) leas-
ing cycles, we use the latter to determine the values for annual NER growth in expansions and recessions.
Strict adherence to NBER dates would result in office NER growth that is far too similar across expansions and
recessions, and make the large fluctuations in rent growth observed in the data highly unlikely events from
the perspective of the model.

10Our depreciation estimate corresponds closely to the 39 years of allowable depreciation expense for non-
residential commercial real estate assets for tax purposes.
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strongly pro-cyclical. The new leasing share for vacant space, sV , is counter-cyclical, simply

because there is much less vacant space available for lease in expansions. This calibration

ensures that our model matches both the average vacancy rate of NYC office as well as the

amplitude of the leasing cycle, which reflects cyclical tenant demand for office.

The parameters sO and sV in the WFH states are assumed to be proportional to their

no-WFH counterparts:

si
z,w f h = δ · si

z, z = E, R, i = O, V. (6)

We estimate δ to best fit the dynamics of the office occupancy rate over the nine quarters from

2020.Q1–2022.Q1. Appendix C explains the details. The resulting value is δ = 0.33 , which

indicates a large downward shift in office demand in the WFH state. This shift is consistent

with the evidence on the large decline in new leasing activity, documented in Figure 5.

The fixed costs and variable costs are assumed to be acyclical, making net operating

income (revenue minus cost) more cyclical than revenues. Leasing commissions are also

acyclical, and around 4.3% per year on leases that last an average of 7 years, for a total

commission of 30% on a new lease. Leasing commissions on renewals of existing leases are

set half as large as commissions on new leases. Leasing commissions are assumed to go

down by 20% in the WFH state to reflect additional competition for brokerage business in a

world where office demand is weak.

3.3.4 Office Cash Flows for A+ Properties in NYC

Next, we calibrate the model to A+ buildings of New York City. We use the leases on the

subset of A+ buildings to get parameter estimates for the A+ NYC office sector. The cali-

bration approach parallels that for All NYC, and is detailed in Appendix C. χ is set to be

0.14 to match the slightly higher average lease duration of 8.20 years of A+ leases in NYC.

Table 4 lists the remaining parameter estimates for the A+ universe. The cost parameters are

assumed to be the same as for the market as a whole.
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Table 4: Calibration for NYC A+

Variable Symbol E R WFH-E WFH-R
Market NER growth ε 0.0482 -0.1212 0.0272 -0.0472
Supply growth η -0.0155 -0.0081 -0.0410 -0.0336
Lease renewal share sO 0.8432 0.5668 0.5361 0.3604
New leasing share sV 0.1160 0.1893 0.0738 0.1204

3.4 Identifying the Persistence of Work From Home

A key parameter in the calibration is p, which governs the persistence of remote work. We

identify this parameter as follows. We assume that the economy transitioned from the no-

WFH expansion state (the E state) in 2019 to the WFH state and a recession (the WFH-R

state) in 2020. We compute the model-implied return on the NYC A+ office market in this

transition, using the A+ calibration described above:

(
V̂A+(Q̂O

20, R̂O
20, WFHR)

V̂A+(Q̂O
19, R̂O

19, E)

)(
Q20Rm

20

Q19Rm
19

)
+

 N̂OI
A+

(Q̂O
20, R̂O

20, WFHR)

V̂A+(Q̂O
19, R̂O

19, E)

 = (1− 22.75%).

Figure 11 plots this model-implied realized return on A+ office in this transition, the left-

hand side of the equation above, for a range of values of p.11 Since the office return in this

transition varies strongly with p, this moment is well-suited to identify this parameter.

In order to pick the relevant point on this curve, we turn to the REIT data. REITS invest

in class A+ office properties. The three NYC-centric office REITs, (SL Green, Vornado, and

Empire State Realty Trust), experienced a value-weighted return of -36.16% between De-

cember 2019 and December 2020. After unlevering this equity return, the asset return was

-22.75%.12 The model matches this decline for a value of p = 0.82. With this key parameter

identified, we can return to the calibration for the full NYC office market and calculate the

11As the equation shows, this return depends also on the state pair (Q̂O
t , R̂O

t ) for 2019 and 2020, respectively.
We obtain these by feeding in the sequence of annual aggregate shocks (expansions and recessions) from 1926
to 2019 obtained from the NBER recession chronology into the laws of motion of the states under the A+
calibration, which gives the 2019 values. For the 2020 values, we apply the law of motion for the state variables
once more, assuming that the state transitioned from E to WFH-R.

12Unlevering is done based on leverage ratio and cost of debt data from NAREIT.
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Figure 11: Determining p by Matching Realized Return of A+ Market

change in its value due to remote work.13

4 Office Valuation Results

4.1 Key Model Outcomes

Table 5 presents the model solution for the “All NYC” office calibration. The model delivers

a reasonable unconditional average cap rate of 7.74% for the overall NYC office market. The

cap rate is 9.73% in recessions and 7.45% in expansions.14

13We chose to calibrate to the full-year 2020 REIT return since the model is annual. Alternatively, one could
use this calibration strategy to calibrate to the REIT return measured over at different periods. The observed
office REIT returns were more negative when measured over a shorter period from February 2020–April 2020,
and also when measured over the longer period from December 2019–May 2022. This makes our results con-
servative. One could also use our procedure to update the implied persistence parameter over time.

14The hedonic-adjusted cap rate for Manhattan Office averaged 5.3% over the period 2001–19 (Real Capital
Analytics data), and model predicts 5.0% average cap rate for the same period. Cap rates were higher before
2001. Longer, national data from CBRE put the average office cap rate at 8%. Since our model’s steady state
pertains to a longer period than 2001–19, the higher average is a good feature. Also, our data pertains to more
than Manhattan. Cap rates are higher in the other boroughs than in Manhattan. RCA has no office cap rates
for the outer boroughs. Finally, our cap rate pertains to the entire office stock and removes depreciation, which
lowers the growth rate and increases the cap rate by 2.7% points. The model-implied cap rate on a building
where cash-flow growth is not reduced by depreciation is therefore 5.0% rather than 7.7%. The RCA data also
indicate higher cap rates in recessions (6.0% in 2001, 2008, 2009) than in expansions (5.2% for 2002–2007 and
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In a Gordon Growth Model with constant expected NOI growth rate g and a constant

discount rate r, the cap rate c = r − g. Our Markov Chain model features time-varying

expected growth and time-varying expected office returns, so this relationship does not hold.

It is nevertheless useful to look at the two components of the cap rate. The model implies

an expected return on NYC office of 7.70% and an office risk premium of 6.21%. This is

naturally lower than the equity risk premium of 8.06% since an unlevered office property

is less risky that the aggregate stock market (which is a levered investment). The office risk

premium is substantially higher in recessions (10.16%) than in expansions (5.19%).

Table 5: Model Solution for NYC All Calibration

Statistic Uncond E R WFHE WFHR
R f 0.0149 0.0084 0.0467 0.0084 0.0467

Equity E[Ret]− 1 0.0955 0.0773 0.1846 0.0746 0.1815
Equity RP = E[Ret]− 1− R f 0.0806 0.0690 0.1379 0.0662 0.1348

Cap rate 0.0774 0.0745 0.0973 0.0676 0.0999
Office E[Ret]− 1 0.0770 0.0603 0.1484 0.0684 0.1455

Office RP = E[Ret]− 1− R f 0.0621 0.0519 0.1016 0.0600 0.0987
E [gt] -0.0007 -0.0186 0.1256 -0.0565 0.1102

Vacancy rate = 1− Q̂O 0.1500 0.1053 0.1600 0.2768 0.2865
R̂ev 0.7876 0.7995 0.9067 0.6479 0.8087
Ĉost 0.4138 0.4259 0.4141 0.3777 0.3755

N̂OI = R̂ev− Ĉost 0.3738 0.3735 0.4926 0.2702 0.4331

V̂R 8.4713 8.9948 8.1383 7.1768 6.7796
V̂C 3.7269 4.0427 3.1483 3.2731 2.5389

V̂ = V̂R − V̂C 4.7444 4.9521 4.9901 3.9037 4.2407

Expected NOI growth is close to zero (-0.07% per year) unconditionally. This number

is in real terms and already incorporates that the office stock depreciates at 2.70% per year

(so it is 2.63% before depreciation). Expected cash flow growth is higher in recessions than

in expansions since recession states imply a high likelihood of transitioning to a better eco-

nomic state going forward. The opposite is true of realized NOI growth rates in a transition

from expansions to recessions, which are negative in the model (not reported).

2010–2019).
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The next part of the table shows that vacancy rates are 15% on average, higher in reces-

sions than expansions by 5.47% points, and much higher conditional on being (and remain-

ing) in the remote work states, around 27.9%.

The last part of the table shows the value of the building, scaled by potential rent, and

broken down into the PDV of revenues minus PDV of costs. The typical NYC office trades

for a multiple of 4.74 times potential gross rent unconditionally according to our calibration.

The average valuation ratio of office properties in the no-WFH expansion state of 4.95 is

16.78% higher than the value of 4.24 in the WFH-R state. Appendix Figure 22 shows the

valuation ratio for office V̂ conditional on expansion, recession, WFH-expansion and WFH-

recession for NYC.

4.2 The Effect of WFH on Office Values

4.2.1 Entire Office Stock

To assess the effect of remote work on office values, we let the economy undergo the same

transition as the one we considered for A+ office when calibrating the parameter p, namely

from an expansion in the no-WFH state in 2019 to a WFH-R state in 2020. We feed in the

observed history of expansions and recessions from 1926-2019 to arrive at the value for the

endogenous state variables (Q̂O
19, R̂O

19) using the laws of motion for the states (2) and (3)

under the “All NYC” calibration. The model captures the decade-long expansion before

the Covid-19 pandemic. We then apply the law of motion once more to obtain (Q̂O
20, R̂O

20)

assuming the economy transitioned from E to WFH-R between 2019 and 2020.

The realized growth rate of potential gross rent in this transition is -20.42% in the model.

The change in the scaled valuation ratio is -30.63%. Therefore, the overall value of the NYC

office stock in this transition falls by 44.80%:

(
V̂(Q̂O

20, R̂O
20, WFHR)

V̂(Q̂O
19, R̂O

19, E)

)(
Q20Rm

20

Q19Rm
19

)
= (1− 30.63%) · (1− 20.42%) = (1− 44.80%)
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Put differently, if the entire office stock of NYC had been publicly listed, its value would have

fallen by 44.80% in 2020. This same decline was 27.13% for the A+ office sector, illustrating

the relative safety of A+ office.

To understand the longer-run consequences of remote work, we conduct the following

simulation exercise. In the first period of the transition, from 2019 to 2020, the economy

goes from the E to the WFH-R state. In the second year, from 2020 to 2021, the economy

transitions from WFH-R to WFH-E. After 2021 (from 2022 onward), we let the economy

evolve stochastically according to its laws of motion governed by π. Since there are many

possible paths for the evolution of the state, Figures 12 and 13 show fan charts where darker

blue colors indicate more likely future paths for the economy. The solid line indicates the

mean path. The red line plots the average path conditional on the economy remaining in the

WFH state every year until 2029. The probability of this event occurring is 19.97% according

to the model.

The top left panel of Figure 12 shows the occupancy rate dynamics from the model simu-

lation. The model captures a substantial decline in occupancy from a high value of 95.08% in

2019 to an average value of 80% in 2022. Hence the model essentially matches the observed

occupancy rate, which was 78.5% in 2022.Q2. Since long-term leases continue to roll off and

renew at low rates as long as the economy is in the WFH state, the decline in occupancy

is protracted. Should the economy remain in the WFH state until 2029, occupancy would

eventually fall below 65% even after accounting for the supply response.15 Lease revenues,

in the top right panel, reflect the protracted decline in occupancy and the gradual repricing

of existing leases at lower market rents. The model predicts a decline in active lease rev-

enues (QORO) of 17.46% between 2019 and 2021, which is close to the observed decline in

active lease revenues in the CompStak data for New York City of 16.06% between December

2019 and May 2022. Lease revenues go down 28.47% by 2029 along the average path. Total

lease revenue falls by much more for the red line, reflecting additionally the faster reduction

15Recall that supply growth in the WFH state is 2.55% points lower per year in the WFH than in the no-WFH
states. This captures reduced construction as well as conversion of office to alternative use.
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Figure 12: Key Moments Distributions, Normalized to 100 in Dec 2019

Notes: The graph shows the evolution of the valuation ratio V̂ for a transition from expansion in 2019 to WFH-R in 2020 and WFH-E in
2021. From 2022 onward, the state evolves stochastically. The shaded areas show percentiles of the distribution of simulated paths, with
the darkest color indicating the 40–60 percentile range, and the lightest color the 10–90 percentile range.

in the overall quantity of office floor space.

The bottom left panel shows that NOI falls by less than revenues since costs also decline

in occupancy. The bottom right panel shows that office cap rates were below 5.76% in 2019

in the model, after a decade-long expansion that increased occupancy and rents. Cap rates

then increase in 2020, fall back in 2021 as the economy shifts from recession to expansion,

and then gradually stabilize toward their unconditional mean of 7.74%.

The combination of declining cash flows and rising cap rates results in a substantial

change in the value of office Vt, shown in Figure 13. The graph illustrates a mean path

that sees no recovery. Remote work is a near-permanent shock. Ten years after the transi-

tion, office values remain at levels that are 39.18% below the valuation in 2019. Along some

sample paths, the economy returns to the no-WFH state and sees increases in occupancy

rates (Q̂O), rent revenues, and NOI. Along other sample paths, the economy remains in the
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WFH state (WFH-E or WFH-R) for a long period, and office valuations continue to fall. For

example, conditioning on remaining in the WFH state for at least 10 years (red line), office

valuation are 59.86% lower in 2029 than in 2019.

Figure 13: Office Valuation Distribution for NYC, Normalized to 100 in Dec 2019

Notes: The graph shows the evolution of the office value V for a transition from expansion in 2019 to WFH-R in 2020 and WFH-E in 2021.
From 2022 onward, the state evolves stochastically. The shaded areas show percentiles of the distribution of simulated paths, with the
darkest color indicating the 40–60 percentile range, and the lightest color the 10–90 percentile range.

A second key message from the valuation exercise is that there is substantial uncertainty

around the mean path. This uncertainty is driven both by the future state of the econ-

omy: the medium-frequency fluctuations between recession and expansion as well as by

the lower-frequency uncertainty about the future evolution of remote work. Office valua-

tions are subject to WFH risk.

4.2.2 Flight To Quality

The previous results referred to the entire NYC office stock. We now redo the simulations

for the A+ segment, which has its own cash-flow parameters. We define the A+ as in Section

2.16 The results for cap rates, valuation ratios, and vacancy rates in the A+ office segment

are reported in Appendix D. They show lower cap rates and lower expected returns in the

A+ segment, consistent with the lower risk of this segment.

16Buildings which contain an expensive lease—defined as higher than the 90th percentile NER for the quar-
ter and submarket—enter the A+ segment, and remain there for ten years.
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Figure 14 revisits the transition graph for office values. It shows substantially smaller

value reductions both in the short- and in the long-run. The mean path has office values

down by 20.67% in 2029 compared to 2019. In the scenario where the economy remains

in the WFH state until at least 2029, the decline in A+ office values is 35.28%. The better

performance is due to the stronger rent growth for A+ in the WFH states, and a lower risk

premium for A+ office especially in the WFH state. On the flip side, the performance of the

complement of A+, A-/B/C-class office is strictly worse than the overall market. Its initial

value decline is -68.98% compared to -44.80% for all office.

Figure 14: Office Valuation Distribution for NYC A+, Normalized to 100 in Dec 2019

Notes: The graph shows the evolution of the A+ office value V for a transition from expansion in 2019 to WFH-R in 2020 and WFH-E in
2021. From 2022 onward, the state evolves stochastically. The shaded areas show percentiles of the distribution of simulated paths, with
the darkest color indicating the 40–60 percentile range, and the lightest color the 10–90 percentile range.

4.2.3 Term Structure of Valuations

We can decompose the (change in) office value into the contribution from each of the future

cash flows. Appendix B.4 explains the procedure. Figure 15 plots the share of the total value

of office that comes from each of the first 20 years of cash flows. The lines are downward

sloping as cash flows in the near term are more valuable than cash flows farther in the future

due to discounting. Each line refers to a different current state for the economy. Interestingly,

in expansions (such as 2019) the contribution of the nearest-term cash flows is much smaller
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than in the WFH-R state (such as 2020). For the share of short-term in total cash flows to rise

(in present-value) between 2019 and 2020, the value of the cash flows in the farther future

must falls by more than in the near future. This occurs because rents (and NOI) in the short-

term are largely locked in given the long-term nature of leases. Investors would be willing

to pay a premium for buildings that have a lot of long-term pre-pandemic leases in place.

This pattern is unusual, compared to the equity markets, where van Binsbergen, Brandt

and Koijen (2012) find that the share of short-maturity equity cash flows falls in the mild

recession of 2001, indicating an expected rebound in the near term, and stays flat in the deep

recession of 2008, indicating a near-permanent shock to cash flows. Our results therefore

suggest that the locked-in nature of commercial leases results in a different term structure

of cash flow shocks in commercial real estate compared to other asset classes. In turn, this

suggests that the shock to commercial office as a result of remote work may play out over

an extended horizon.

Figure 15: Decomposing Office Values by Horizon
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4.2.4 Robustness to Persistence of Remote Work

To assess how sensitive our headline value reduction number is, we explore alternative val-

ues for the key parameter p. Figure 16 plots the difference in office values (V) between the

model with no remote work in December 2019 and the model with remote work in Decem-
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ber 2020. The vertical dashed line indicates our benchmark model with p = 0.82, which

produces a 44.80% valuation decline in the transition. This same decline is around 30.31%

for a value of p that is half as large as our benchmark.

Figure 16: Change in Valuation with Different p for All NYC

4.3 Other Office markets and Aggregate Impact

4.3.1 San Francisco and Austin

Appendix E repeats the calibration exercise for San Francisco (SF) and Austin and reports

the resulting valuation moments. Figure 17 below shows the main fan chart for the valuation

of the stock of SF office (left panel) and Austin office (right panel). The short-run (long-run)

declines in office values are 54.43% (42.94%) for SF and 23.19% (-1.12%) for Austin. The

former are larger than for NYC, due to the more cyclical nature of the SF office sector and

its larger WFH exposure. This is possibly driven by SF’s larger exposure to tenants from the

technology sector who have embraced remote work. Austin’s valuation effects are smaller

than NYC due to its milder office cycles and smaller exposure to the WFH shock. Adjusted

for market coverage, the total office value destruction is $19.53 billion in SF ten years from

now, while Austin does not have long-term value destruction.
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Figure 17: Office Valuation Distribution, Normalized to 100 in Dec 2019

(a) San Francisco (b) Austin

Notes: The graph shows the evolution of the office value V for a transition from expansion in 2019 to WFH-R in 2020 and WFH-E in 2021.
From 2022 onward, the state evolves stochastically. The shaded areas show percentiles of the distribution of simulated paths, with the
darkest color indicating the 40–60 percentile range, and the lightest color the 10–90 percentile range.

4.3.2 Aggregate Impact

Table 6 compiles statistics on the top-20 U.S. office markets. It reports the quantity of active

leases (in sf) in December 2019 (column 1), the percent change in active lease revenue be-

tween December 2019 and May 2022 (column 2), and the change in the quantity (column 3)

and NER (column 4) of newly-signed leases over the same period. These statistics are based

on the CompStak data and show that the decline in leasing activity is widespread. NYC is

not an outlier. The first two rows in the bottom panel compare the top-20 office markets to

all 105 office markets in the data, and again show similar changes.

Column (5) calculates the change in office values over the first two years of the pandemic

(from December 2019 to December 2021), expressed in December 2021 dollars. It combines

the size of the market in column (1), the change in lease revenues reported in column (2),

and the change in the value-to-revenue ratio from the model. For NYC, San Francisco,

and Austin, we calibrated the model separately, delivering a valuation ratio change that

is market-specific. The two-year value destruction is $47.5 billion for NYC, $14.6 billion for

San Francisco, and $2.2 billion for Austin. For the other 17 large office markets, we use the

market-specific size and leasing revenue change in columns (1) and (2) and combine them

with the valuation ratio change for NYC to arrive at column (5). Summed across the top-20
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Table 6: Cross-Sectional Results For Top 20 Markets

(1) (2) (3) (4) (5) (6) (7)
State Market Active SF (mi) Lease Rev Chg New SF Chg NER Chg Value Chg Coverage (%) Value Chg Scaled

NY New York 287.36 -16.06 -53.94 -10.21 -47.52 73.58 -64.58
CA San Francisco 61.25 -15.40 -69.26 -16.24 -14.61 62.14 -23.51
TX Austin 26.60 -10.49 -89.05 5.17 -2.22 54.54 -4.07

DC Washington DC 94.57 -23.52 -75.94 -12.67 -12.88 98.81 -13.03
CA Los Angeles 74.32 -23.92 -86.21 -24.85 -9.44 42.83 -22.04
MA Boston 55.51 -13.66 -76.63 -12.78 -7.07 35.33 -20.01
IL Chicago 84.41 -15.81 -88.39 -5.21 -4.87 43.25 -11.26
TX Dallas 47.54 -15.87 -85.21 3.40 -3.14 26.60 -11.80
CA Orange County 38.47 -22.03 -60.55 -6.62 -3.27 47.36 -6.90
CA San Diego 29.86 -15.95 -78.89 -15.58 -2.84 42.11 -6.74
VA Arlington 26.99 -26.96 -85.91 -4.51 -3.29 36.10 -9.11
GA Atlanta 37.25 -11.48 -84.11 -19.45 -2.47 31.33 -7.88
TX Houston 42.11 -25.51 -58.87 -24.70 -3.20 28.63 -11.18
CA San Jose 22.33 -16.45 -83.69 -13.55 -2.54 11.39 -22.30
CA Palo Alto & Sunnyvale 13.93 5.33 18.38 -6.59 -1.33 36.10 -3.68
CO Denver 29.82 -18.53 -79.08 -14.55 -1.97 29.78 -6.62
PA Philadelphia 26.86 -20.08 -77.84 5.37 -1.88 23.24 -8.09
NC Charlotte 22.98 -1.99 -82.65 -6.29 -1.18 47.54 -2.48
NJ North Jersey 16.61 -11.36 -71.84 7.60 -1.33 18.29 -7.27
CA Oakland 8.76 0.54 -80.66 -13.54 -0.76 9.01 -8.43

Top 20 (Compstak) 1047.56 -16.76 -71.86 -5.26 -127.82 41.26 -271.02
Other markets (Compstak) 772.17 -17.21 -81.92 7.99 -51.73 36.10 -143.31
U.S. (Compstak) 1819.73 -16.89 -76.59 2.45 -179.55 38.87 -414.33

Notes: The table reports the quantity of active leases pre-pandemic (in million sf), the change in active leasing revenue (in % of pre-
pandemic leasing revenue), the change in newly signed leases (% of pre-pandemic newly signed sf), the change in the net effective rent per
sf on newly-signed leases (in % of pre-pandemic market NER), and the change in valuation (in 2021 December dollars) for top 20 markets
and for all 105 markets in CompStak combined (last two rows). Pre-pandemic active space in column (1) is calculated in December 2019.
The changes in columns (2)-(4) are measured between December 2019 and May 2022. The value change in column (5) measures the change
in the total value of office in dollars between the end of 2019 and the end of 2021. It combines the change in the value-to-revenue ratio over
the first two years of the pandemic from the model calibration with the size of the market in column (1) and the drop in leasing revenue in
column (2). The value changes for New York, San Francisco, and Austin in the top panel are based on full calibrations of the model to each
of these cities separately, while the change in the valuation-to-revenue ratio for the other 17 top-20 markets in the middle panel is based
on the change in the valuation ratio from the New York City calibration. The aggregate numbers in columns (4) for the top-20 market
and national NER changes are adjusted by submarket FEs to remove composition effects. Column (6) is the CompStak coverage ratio,
measured as the ratio of pre-pandemic active leased space in CompStak and active leased space in Cushman & Wakefield data. Column
(7) divides column (5) by the coverage ratio in column (6).

markets, we obtain a $127.8 billion value loss. Extending the analysis to the remaining 85

office markets, we find an additional $51.7 billion in value destruction for a total of $179.6

billion across all 105 markets in the Compstak data.

CompStak does not provide universal coverage. Based on Cushman and Wakefield re-

ports, we are able to obtain a December 2019 coverage ratio estimate for 18 of the top-20

markets, shown in column (6). A coverage ratio of 36.1% for the remaining 87 markets

(=105-18) reconciles the total U.S. office inventory in CompStak to that in Cushman & Wake-

field. To obtain our aggregate value impact statistic in column (7), we divide column (5) by

column (6). We arrive at an aggregate $414.3 billion loss in office values nationwide over the

2019–2021 period. This number is close to the aggregate impact numbers reported in the in-

troduction, which pertained to the short-run (2019–2020) and long-run (2019–2029) changes
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and used the same scaling-up procedure.

5 Discussion and Conclusion

The real estate sector provides a unique vantage point to study the large social shifts in the

wake of the Covid-19 pandemic. We estimate a 44.80% decline in the value of New York

City’s office stock at the outset of the pandemic. We estimate that remote work is likely to

persist and result in long-run office valuations that are 39.18% below pre-pandemic levels.

The numbers for NYC are not an outlier; we find similar effects across many of the largest

office markets. Our novel commercial real estate valuation model is suitable for calibration

to office markets in other locations and other commercial real estate sectors.

These valuation changes are large, but since about 80% of the office stock is privately-held

and private transactions have been few and far between (and represent a heavily selected

sample), it has been difficult to directly observe the valuation changes in the market place.

One exception is office REIT stocks, whose (unlevered) valuations the model matches both

in 2020 and in 2022. Other market indicators that have turned bearish are short interest (as

a share of equity float) in office REIT stocks and the prices of CMBX tranches rated BBB−.

Specifically, tranches in more recent CMBX vintages, which have a larger share of office

collateral than earlier vintages, have experienced larger price declines (Figure 18).

Our results have important implications for future work practices. Firms and employees

have invested considerably to advance remote work possibilities. This has enabled ma-

jor changes in the locations where individuals work and live. Real estate markets provide

important financial signals which can help assess how society perceives the net benefit of

remote work.

Trends in office occupancy have prompted discussion on the merits of conversion of of-

fice, either from A-/B/C to A+ office or to alternative use such as multi-family. The former

conversion could make sense in light of the flight to quality and the likely dearth of new of-

fice construction for years to come. The latter conversion makes sense in light of the lack of
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Figure 18: Price of CMBX Insurance
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Notes: The graph shows prices for the Markit CMBX index of credit default insurance for BBB- tranches in various CMBS deals. A price
of 60 implies that a pool without early prepayments or defaults requires an upfront payment of roughly $40 per $100 original notional
to initiate a trade purchasing protection against default, implying a 40%6– expected loss. The different lines separate different vintages.
CMBX series 6–9 were relatively heavy in retail exposure relative to office (ie, series 7 has only 18% office exposure). By contrast CMBX
series 10–13 have 31% office concentration on average.

affordable housing in large cities, but often runs into issues relating to the structural feasibil-

ity, zoning restrictions, and return on investment. Older buildings tend to be more amenable

to apartment conversion. Whether and how these conversions take place will have an impor-

tant impact on urban design. Given the negative externalities associated with office vacancy,

there may be a role for local governments to subsidize the conversion.

Finally, the decline in office values and the surrounding CBD retail properties, whose

lease revenues have been hit at least as hard as office, has important implications for local

public finances. For example, the share of real estate taxes in NYC’s budget was 53% in

2020, 24% of which comes from office and retail property taxes.17 Given budget balance

requirements, the fiscal hole left by declining CBD office and retail tax revenues would need

to be plugged by raising tax rates or cutting government spending. Both would affect the

attractiveness of the city as a place of residence and work. These dynamics risk activating a

fiscal doom loop. With more people being able to separate the location of work and home,

17An additional 3% of tax revenue comes from a tax on real estate tenants.
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the migration elasticity to local tax rates and amenities may be larger than in the past. Future

research should explore these implications and study the role for federal fiscal policy.
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A Internet Appendix: Asset Pricing Model to Infer Expected

Returns

We develop a simple model to help understand how expected returns (risk premia) on office

properties were affected during the pandemic.

A.1 Model for Expected Returns

We propose the following model for the expected log return on office REITS ro
t :

xt ≡ Et[ro
t+1] = r f

t + βm
t λm + βb

t λb + β
w f h
t λw f h (7)

Office REITS are exposed to three sources of risk: aggregate stock market risk, aggregate

bond market risk, and the systematic risk associated with remote work. In addition, their

expected returns reflect the evolution of short-term nominal bond yields r f
t . To capture the

changes in the underlying risk structure during the pandemic, we allow the exposures of

office REITS to vary over time.

A.2 Constructing a WFH Equity Risk Factor

We form a portfolio (Working from Home Index) that goes long stocks which benefit from

remote work, and short stocks which suffer from the move to working-from-home. This

entails long positions in the technology sector, health care sector, and pharmaceutical com-

panies developing vaccine candidates and short positions in the transportation sector, en-

tertainment sector, and hotel sector. The WFH index composition can be found in Table 7.

Several variations on the factor construction, such as excluding entertainment stocks or just

going long technology stocks and short transportation stocks, give similar results.

The WFH risk factor is a monthly rebalanced, long-short market capitalization weighted

basket of stocks. On the last working day r of each month, which we call the rebalance day,
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each stock i in the long leg is assigned a weight wi,l,r and each stock j in the short leg is

assigned a weight wj,s,r

wi,l,r =
Si,r−1

∑k∈cl,r
Sk,r−1

; wj,s,t =
Sj,r−1

∑k∈cs,r Sk,r−1

Where Sk,r−1 is the market capitalization of stock k on day r− 1, the working day immedi-

ately preceding rebalance day r, and cl,r and cs,r are the constituents in long and short legs

respectively for rebalance date r. Further, we impose weight caps of 10% on each stock in

the long leg and 20% on each stock in the short leg. The remaining weights are redistributed

among remaining stocks of that leg in the same proportion above, i.e. proportional to their

market capitalization, such that:

∑
k∈cl,r

wk,l,r = 1; ∑
k∈cs,r

wk,s,r = 1

Once weights are assigned, daily returns of the long and short leg are calculated as follows:

Rl,t = ∑
k∈cl,rt

wk,l,rt

(
Pk,t

Pk,t−1
− 1
)

Rs,t = ∑
k∈cs,rt

wk,s,rt

(
Pk,t

Pk,t−1
− 1
)

Where Rl,t and Rs,t are the returns of the long and short legs of the Index and Pk,t is the price

of stock i on day t. wk,x,rt is the weight of stock k in leg x on date t, if t is a rebalance date and

the weight of stock k in leg x on the rebalance date immediately preceding date t otherwise.

The daily return Rt on the working from Index on date t is then given by:

Rt = Rl,t − Rs,t
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The level of the Working from home index on date t, WFHt is then given by:

WFHt = WFHt−1(1 + Rt); WFH0 = 100

We start the WFH time series in 2015 since the composition of the WFH index is relatively

stable after that date. Prior to 2015, many of the companies in the long or short leg were not

trading, such as Zoom. Several perturbations on the WFH index construction deliver similar

results. Figure 19 plots the WFH index constructed from weekly and monthly returns. Below

we use the monthly return series. The figure cumulates the WFH index returns starting from

100 at the start of 2015.

Figure 19: Working From Home Risk Factor
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Before the pandemic, the WFH factor has modestly positive returns. It then spikes up

50% when the pandemic hits and large parts of the economy transition to remote work.

Companies supporting remote work practices (Zoom, Peloton, etc.) flourish, while compa-

nies that require travel of physical proximity sell off (cruise lines, hotels, etc.). The WFH

factor spikes up when the pandemic intensifies. It drops sharply when there is news about

the development of a vaccine, such as in November 2020, or at the start of 2021. Naturally,

the average realized return of the WFH factor during the pandemic is strongly positive.
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Table 7: Composition of WFH Index

Panel A: Long Positions

Ticker Name Leg Sector
PFE Pfizer Inc Long Vaccine Candidates
MRNA Moderna Inc Long Vaccine Candidates
BNTX Biontech Se Long Vaccine Candidates
JNJ Johnson & Johnson Long Vaccine Candidates
AZN Astrazeneca Plc Long Vaccine Candidates
NVAX Novavax Inc Long Vaccine Candidates
REGN Regeneron Pharmaceuticals Long Healthcare/Biopharma
GILD Gilead Sciences Inc Long Healthcare/Biopharma
SRNE Sorrento Therapeutics Inc Long Healthcare/Biopharma
AMGN Amgen Inc Long Healthcare/Biopharma
NFLX Netflix Inc Long Information Technology
GOOGL Alphabet Inc Long Information Technology
FB Meta Platforms Inc Long Information Technology
AMZN Amazon.Com Inc Long Information Technology
MSFT Microsoft Corp Long Information Technology
CTXS Citrix Systems Inc Long Information Technology
PRGS Progress Software Corp Long Information Technology
TEAM Atlassian Corporation Inc Long Information Technology
NTNX Nutanix Inc Long Information Technology
ZM Zoom Video Communications Long Communication
VZ Verizon Communications Inc Long Communication
ATVI Activision Blizzard Inc Long Communication
NTDOF Nintendo Ltd Long Communication
EA Electronic Arts Inc Long Communication
CSCO Cisco Systems Inc Long Communication
MTCH Match Group Inc Long Communication
EGHT 8X8 Inc Long Communication
VG Vg Corp Long Communication
PANW Palo Alto Networks Inc Long Communication
PTON Peloton Interactive Inc Long Virtual Healthcare
TDOC Teladoc Health Inc Long Virtual Healthcare
VMW Vmware Inc Long Cloud Technologies
INSG Inseeog Inc Long Cloud Technologies
ZS Zscalar Inc Long Cloud Technologies
DBX Dropbox Long Cloud Technologies
NTAP Netapp Inc Long Cloud Technologies
OKTA Okta Corp Long Cybersecurity
FTNT Fortinet Inc Long Cybersecurity
DOCU Docusign Long Online Document Mgmt
BOX Box Inc Long Online Document Mgmt
UPLD Upland Software Inc Long Online Document Mgmt
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Panel B: Short Positions

DAL Delta Air Lines Inc Short Transporation
UAL United Airlines Holdings Inc Short Transporation
AAL American Airlines Group Inc Short Transporation
LUV Southwest Airlines Co Short Transporation
CCL Carnival Corp Short Transporation
NCLH Norwegian Cruise Line Holdin Short Transporation
UNP Union Pacific Corp Short Transporation
HLT Hilton Worldwide Holdings In Short Hotels
MAR Marriott International Short Hotels
H Hyatt Hotels Corp Short Hotels
IHG Intercontinental Hotels Short Hotels
SIX Six Flags Entertainment Corp Short Entertainment
EB Eventbrite Inc Short Entertainment
LYV Live Nation Entertainment In Short Entertainment
WYNN Wynn Resorts Ltd Short Entertainment
LVS Las Vegas Sands Corp Short Entertainment
CZR Caesars Entertainment Inc Short Entertainment

A.3 WFH Risk Exposure

To show that WFH risk emerged in full force during the pandemic, we estimate time-varying

betas from 36-month rolling-window regressions for monthly office REIT excess returns:

ro
t+1 − r f

t = α + βm
t (r

m
t+1 − r f

t ) + βb
t (r

b
t+1 − r f

t ) + β
w f h
t rw f h

t+1 + et+1 (8)

Figure 20 shows the estimated betas for office REITS. The patterns in the stock and bond

betas of office REITS in the three-factor model (blue line) are similar to those in the two-

factor model without the WFH factor (orange line) before the pandemic. However, omission

of the WFH factor leads one to overstate the stock market beta during the pandemic (top left

panel). The reverse is true for the bond beta in the top right panel.

The WFH beta in the bottom left panel is close to zero prior to the pandemic in February

2020, an exposure estimated over the 36-month window from March 2018 through February

2020. The βw f h for Office REITS then starts a precipitous decline to around -0.5. It remains

strongly negative until the end of our sample in December 2021, ending at -0.3 in December
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2021. The bottom-right panel shows that the R2 improved during the pandemic due to the

inclusion of the WFH factor.

Figure 20: Risk Exposures of Office REITs During Covid with WFH
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A.4 WFH Risk Price

We estimate the market prices of risk on the WFH factor, λw f h, using the cross-section of 22

individual office REITs listed in Table 8.
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Table 8: List of Office REITS

Office REIT Ticker

Alexandria Real Estate Equities, Inc. ARE

Brandywine Realty Trust BDN

Boston Properties, Inc. BXP

CIM Commercial Trust Corp CMCT

Cousins Properties CUZ

Columbia Property Trust Inc. CXP

Easterly Government Properties DEA

Equity Commonwealth EQC

Empire State Realty Trust ESRT

Franklin Street Properties Corp. FSP

Highwoods Properties, Inc. HIW

Hudson Pacific Properties, Inc. HPP

Kilroy Realty Corporation KRC

Corporate Office Properties Trust OFC

Office Properties Income Trust OPI

Piedmont Office Realty Trust, Inc. PDM

Paramount Group, Inc. PGRE

SL Green Realty Corp SLG

Vornado Realty Trust VNO

Douglas Emmett, Inc. DEI

City Office REIT, Inc. CIO

New York City REIT, Inc. NYC

We use a two-stage Fama-MacBeth procedure. In the first stage using the time-series,

we estimate 36-month rolling-window regressions of each REIT’s return on the three factor

returns; i.e., we estimate equation (8) for each REIT separately. In the second cross-sectional

step, we regress the realized return each month on the betas for that month. The market

price of risk estimates are the average of the monthly slope estimates of the second step. We

use only the months prior to the onset of the pandemic (December 2014–December 2019)
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when computing this average. Since the WFH index saw unusually high realizations during

the pandemic, inclusion of the pandemic months would lead one to confuse realized with

expected returns, while in fact the two are negatively correlated. We obtain λ̂w f h = −7.0%

annualized (t-stat is -0.52 but the sample is short to reliably estimate this coefficient).18

The negative market price of risk for WFH risk means that states of the world where

the WFH risk factor was large and positive are bad states of the world. This is intuitive, as

those are periods where the coronavirus pandemic surges. Conversely, negative returns to

WFH, such as Nov 8, 2020 when the vaccine discovery news first broke, are good states of

the world.

A.5 Expected Returns

For the risk prices on stocks and bond, we use the sample average of the estimated risk

premia in the post-1994 period: λm = 7.81% and λb = 2.91%. For the WFH risk price we

use λw f h = −7.0%, as estimated above. We combine the three time-varying betas from

Figure 20 with the market price of risk estimates to form the expected return on office REITS

as per equation (7). Figure 21 plots the resulting expected return. While the contribution

from stocks and bond market risk shrinks over the course of the pandemic, by virtue of the

declining stock and bond betas, the contribution from the WFH risk exposure (in purple) is

substantial. WFH risk contributes about 2–3% points to the expected return on office during

the pandemic.

The expected return on office REITs shrinks from 12.86% pre-pandemic (December 2014–

December 2019) to 10.79% during the pandemic (December 2019–December 2021), a decline

of 207 basis points. In December 2021, the expected return is up to 11.7%.

18Repeating the exercise with weekly instead of monthly return data and the 52-week rolling window betas,
we obtain λ̂w f h = −10.2% (t-stat is -0.84).
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Figure 21: Expected Return of Office REITs During Covid
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B Model Derivation

This section contains the full derivation of the model in Section 3. The goal is to solve the

following equation:

Vt = Et

[
∞

∑
j=1

Mt,t+j
(

Revt+j − Costt+j
)]

= Et

[
∞

∑
j=1

Mt,t+jRevt+j

]
− Et

[
∞

∑
j=1

Mt,t+jCostt+j

]
= VR

t −VC
t .

First, we solve the revenue side, i.e., for VR
t

B.1 Revenue.

Reproducing the equation for the law of motion for occupied space, QO
t+1 below:

QO
t+1(Q

O
t , z′) = min{QO

t (1− χ) + QO
t χsO

t+1(z
′) + (Q̄t −QO

t )s
V
t+1(z

′), Q̄t+1}

From the stochastic process of the growth of the total space in the building we get:

Q̄t+1

Q̄
− 1 = ηt+1(z′) ⇒ Q̄t+1 = Q̄t(1 + ηt+1(z′))

and the scaled state variable Q̂O
t , we can be rearranged as

Q̂O
t =

QO
t

Q̄t
⇒ QO

t = Q̂O
t Q̄t.

To convert QO
t+1(Q

O
t , z′) as a function of scaled variables, QO

t+1(Q̂t, z′), we substitute equa-

tions for Q̄t+1 and QO
t ,

Q̂O
t+1 = min{Q̂O

t Q̄t(1− χ) + Q̂O
t Q̄tχsO

t+1(z
′) + (Q̄t − Q̂O

t Q̄t)sV
t+1(z

′), Q̄t(1 + ηt+1(z′))}

Q̂O
t+1 = min{

Q̂O
t (1− χ) + Q̂O

t χsO
t+1(z

′) + (1− Q̂O
t )s

V
t+1(z

′))

1 + ηt+1(z′)
, 1.}
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Next, the rent revenue in the building/market in period t + 1 is,

Revt+1(QO
t , RO

t , z′) = QO
t (1− χ)RO

t +
[

QO
t χsO

t+1(z
′) + (Q̄t −QO

t )s
V
t+1(z

′)
]

Rm
t+1.

RO
t is the average net effective rent per sf on existing leases, and Rm

t+1 is the market net

effective rent per sf on newly executed leases. RO
t is a geometrically-decaying weighted

average of all past market rents,

RO
t = χ

∞

∑
k=0

(1− χ)kRm
t−k.

Similarly, we can write RO
t+1 as,

RO
t+1 = χ

∞

∑
j=0

(1− χ)kRm
t+1−k

RO
t+1 = χRm

t+1 + χ(1− χ)Rm
t + χ(1− χ)2Rm

t−1 + χ(1− χ)3Rm
t−2 + · · ·

RO
t+1 = χRm

t+1 + (1− χ)
[
χRm

t + χ(1− χ)Rm
t−1 + χ(1− χ)2Rm

t−2 + · · ·
]

RO
t+1 = (1− χ)RO

t + χRm
t+1.

The growth rate of the market’s NER per sqft is a stochastic process, which follows the

following law of motion,

Rm
t+1

Rm
t
− 1 = εt+1(z′) ⇒ Rm

t+1 = Rm
t (1 + εt+1(z′)).

We define the state variable R̂O
t as,

R̂O
t =

RO
t

Rm
t

.
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Next, we want to find the law of motion for the scaled state variable R̂O
t+1:

R̂O
t+1 =

RO
t+1

Rm
t+1

R̂O
t+1 =

(1− χ)RO
t + χRm

t+1
Rm

t+1

R̂O
t+1 =

(1− χ)RO
t

Rm
t+1

+ χ

R̂O
t+1 =

(1− χ)R̂O
t Rm

t
Rm

t+1
+ χ

R̂O
t+1 =

(1− χ)R̂O
t

1 + εt+1(z′)
+ χ.

We define scaled revenues as

R̂evt+1(Q̂O
t , R̂O

t , z′) =
Revt+1

Q̄tRm
t

.

Rewriting the equation for Revt+1(QO
t , RO

t , z′) in terms of Rt+1(Q̂O
t , R̂O

t , z′):

Revt+1(Q̂O
t , R̂O

t , z′) = Q̂O
t Q̄t(1− χ)R̂O

t Rm
t +

[
Q̂O

t Q̄tχsO
t+1(z

′) + (Q̄t − Q̂O
t Q̄t)sV

t+1(z
′)
]

Rm
t (1 + εt+1(z′))

Revt+1(Q̂O
t , R̂O

t , z′) = Q̄tRm
t

[
Q̂O

t (1− χ)R̂O
t +

[
Q̂O

t χsO
t+1(z

′) + (1− Q̂O
t )s

V
t+1(z

′)
]
(1 + εt+1(z′))

]
.

Scaled Revenue R̂evt+1 can be written as

R̂evt+1(Q̂O
t , R̂O

t , z′) = Q̂O
t (1− χ)R̂O

t +
[

Q̂O
t χsO

t+1(z
′) + (1− Q̂O

t )s
V
t+1(z

′).
]
(1 + εt+1(z′))

The expected PDV of revenues is written as

VR
t = Et

[ ∞

∑
j=1

Mt,t+jRevt+j

]
.
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The scaled version of revenues can be written as:

V̂R
t =

VR
t

QtRm
t

,

which solves the following Bellman equation:

V̂R
t (Q̂O

t , R̂O
t , z) = ∑

z′
π(z′|z)M(z′|z)

[
R̂evt+1(Q̂O

t , R̂O
t , z′) + (1 + η(z′))(1 + ε(z′))V̂R

t+1(Q̂
O
t+1, R̂O

t+1, z′)
]
.

Finally, we get VR
t by

VR
t = V̂R

t (Q̂O
t , R̂O

t , z)QtR
m
t .

B.2 Costs

The building costs are written as:

Costt+1 = C f ix
t+1(z

′)Q+QO
t Cvar

t+1(z
′)+

[
QO

t χsO
t+1(z

′)LCR
t+1(z

′) + (Qt −QO
t )s

V
t+1(z

′)LCN
t+1(z

′)
]

Rm
t+1.

Substituting for Rm
t+1 and QO

t , we get,

Costt+1 = C f ix
t+1(z

′)Q + Q̂O
t Q̄Cvar

t+1(z
′)+[

Q̂O
t Q̄χsO

t+1(z
′)LCR

t+1(z
′) + (Q̄− Q̂O

t Q̄)sV
t+1(z

′)LCN
t+1(z

′)
]

Rm
t (1 + εt+1(z′)).

We define scaled costs as:

Ĉost =
Costt+1

Q̄tRm
t

.

Therefore, we have:

Ĉostt+1(Q̂O
t , z′) = c f ix

t+1(z
′) + Q̂O

t cvar
t+1(z

′)+[
Q̂O

t χsO
t+1(z

′)LCR
t+1(z

′) + (1− Q̂O
t )s

V
t+1(z

′)LCN
t+1(z

′)
]
(1 + ε(z′)),
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where

c f ix
t+1(z

′) =
C f ix

t+1(z
′)

Rm
t

cvar
t+1(z

′) =
Cvar

t+1(z
′)

Rm
t

.

The expected PDV of costs is written as:

VC
t = Et

[ ∞

∑
j=1

Mt,t+jCostt+j

]
.

The scaled version is:

V̂C
t =

VC
t

QtRm
t

.

which solves the Bellman equation

V̂C
t (Q̂O

t , z) = ∑
z′

π(z′|z)M(z′|z)
{

Ĉostt+1(Q̂O
t , z′) + (1 + η(z′)(1 + ε(z′))V̂C

t+1(Q̂
O
t+1, z′)

}

Finally, we get VC
t by

VC
t = V̂C

t (Q̂O
t , z)QtR

m
t .

B.3 Closed-form solutions

First, we define matrix notations for parameters:

14x1 =

[
1, 1, 1, 1

]′

E4x4 =

[
ε4x1, ε4x1, ε4x1, ε4x1

]′

H4x4 =

[
η4x1, η4x1, η4x1, η4x1

]′

SO
4x4 =

[
sO

4x1, sO
4x1, sO

4x1, sO
4x1

]′
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SV
4x4 =

[
sV

4x1, sV
4x1, sV

4x1, sV
4x1.

]′

B.3.1 Cost Valuation

We first short hand the expression of Ĉostt+1(Q̂O
t , z′), which is a linear function w.r.t. Q̂O

t , as:

Ĉostt+1(Q̂O
t , z′) = a(z′) + b(z′) · Q̂O

t

where

a(z′) = c f ix
t+1(z

′) + (1 + ε(z′)) · sV
t+1(z

′)LCN
t+1(z

′),

b(z′) = cvar
t+1(z

′) +
(
1 + ε(z′)

)
·
[
χsO

t+1(z
′)LCR

t+1(z
′)− sV

t+1(z
′)LCN

t+1(z
′).
]

Then, we take the derivative (w.r.t. Q̂O
t ) of cost valuation Bellman equation:

∂V̂C
t

∂Q̂O
t
(Q̂O

t , z) = ∑
z′

π(z′|z)M(z′|z)
{

b(z′) + (1 + η(z′))(1 + ε(z′))
∂V̂C

t+1

∂Q̂O
t
(Q̂O

t+1, z′)

}

= ∑
z′

π(z′|z)M(z′|z)
{

b(z′) + (1 + ε(z′))(1− χ + χsO
t+1(z

′)− sV
t+1(z

′))
∂V̂C

t+1

∂Q̂O
t+1

(Q̂O
t+1, z′)

}
.

Notice that the instantaneous reward term, b(z′), is independent to Q̂O
t . Thus, ∂V̂C

t
∂Q̂O

t
(Q̂O

t , z) is

only a function of z by checking the valuation in a infinite sum form:

∂V̂C
t

∂Q̂O
t
(Q̂O

t , z) =
∞

∑
τ=1

Et [M(zt+τ|z) · b(zt+τ)] .

Thus, by taking integral of Q̂O
t , we can conclude that V̂C is a linear function w.r.t. Q̂O

t :

V̂C
4x1 = aC

4x1(z) + bC
4x1(z) · Q̂O

t
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where19

bC
4x1(z4x1) =

(
I − π4x4 ◦M4x4 ◦ (1 + E4x4) ◦

(
1− χ + χSO

4x4 − SV
4x4

))−1

4x4
·

(π4x4 ◦M4x4)4x4 ·
(

cvar
4x1 + (1 + ε4x1) ◦

(
χsO

4x1 ◦ LCR
4x1 − sV

4x1 ◦ LCN
4x1

))
4x1

.

Then, we look back the original valuation function of cost, and equation becomes a linear

equation for the only unknown, aC, and we solve it using the inverse method:

aC
4x1(z4x1) = (I − π4x4 ◦M4x4 ◦ (1 + E4x4) ◦ (1 + H4x4))

−1
4x4 ·

(π4x4 ◦M4x4)4x4 ·
(

c f ix
4x1 + (1 + ε4x1) ◦

(
sV

4x1 ◦ LCN
4x1 + bC

4x1 ◦ sV
4x1

))
4x1

.

B.3.2 Revenue Valuation

The revenue valuation problem is very similar to the cost valuation problem, but now the

valuation function depends on both Q̂O
t and R̂O

t . So we first look at the Bellman equation for
∂2V̂R

t
∂Q̂O

t ∂R̂O
t

and find it is independent to Q̂O
t or R̂O

t :

∂2V̂R
t

∂Q̂O
t ∂R̂O

t
= dR(z) (9)

where
dR

4x1(z4x1) =
(

I − π4x4 ◦M4x4 ◦ (1− χ) ◦
(

1− χ + χSO
4x4 − SV

4x4

))−1

4x4
·

(π4x4 ◦M4x4)4x4 · (1− χ · 14x1)4x1 .

Next, we integrate equation (9) by Q̂O
t :

∂V̂R
t

∂R̂O
t
= cR(R̂O

t , z) + dR(z) · Q̂O
t .

19We use ◦ to represent element-wise multiplication for metrics, and · for matrix dot product.
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Notice that the instantaneous reward term for the Bellman equation for ∂V̂R
t

∂R̂O
t

is independent

to R̂O
t :

∂R̂evt+1

∂R̂O
t

= (1− χ) · Q̂O
t . (10)

Thus, we can conclude:

cR(R̂O
t , z) = cR(z),

and we can solve cR(z) in this linear system:

cR
4x1(z4x1) = (I − π4x4 ◦M4x4 ◦ (1 + H4x4) ◦ (1− χ))−1

4x4 ·

(π4x4 ◦M4x4)4x4 ·
(
(1− χ) ◦ sV

4x1 ◦ dR
4x1

)
4x1

.

Following the same logic, by taking integral w.r.t. R̂O
t in equation (9) and check the indepen-

dence of instantaneous reward:

∂V̂R
t

∂Q̂O
t
= bR(z) + dR(z) · R̂O

t (11)

where

bR
4x1(z4x1) =

(
I − π4x4 ◦M4x4 ◦ (1 + E4x4) ◦

(
1− χ + χSO

4x4 − SV
4x4

))−1

4x4
·

(π4x4 ◦M4x4)4x4 ·
(
(1 + ε4x1) ◦

(
(χsO

4x1 − sV
4x1) ◦ (1 + χdR

4x1) + (1− χ)χdR
4x1

))
4x1

.

Then, we integrate equation (10) w.r.t. R̂O
t and equation (11) w.r.t. Q̂O

t , we get:

V̂R
t = aR(R̂O

t , z) + c(z) · R̂O
t + d(z) · Q̂O

t · R̂O
t

= aQ(Q̂O
t , z) + b(z) · Q̂O

t + d(z) · Q̂O
t · R̂O

t .

By comparing terms, we can conclude that

V̂R
t = aR(z) + bR(z) · Q̂O

t + cR(z) · R̂O
t + dR(z) · Q̂O

t · R̂O
t
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and solve the intercept term in the linear system:

aR
4x1(z4x1) = (I − π4x4 ◦M4x4 ◦ (1 + E4x4) ◦ (1 + H4x4))

−1
4x4 ·

(π4x4 ◦M4x4)4x4 ·
(
(1 + ε4x1) ◦

(
sV

4x1 ◦ (1 + bR
4x1 + χdR

4x1) + χ(1 + η4x1) ◦ cR
4x1

))
4x1

.

B.4 Strip Decomposition

The price of a property is the expected PDV of its future cash-flows. By value additivity, this

is also the sum of prices of each cash-flow strip:

Vt = V(1)
t + V(2)

t + · · · =
∞

∑
j=1

V(j)
t =

∞

∑
j=1

VR,(j)
t −

∞

∑
j=1

VC,(j)
t .

The last equality expresses the price of each NOI strip as the difference between the corre-

sponding revenue strip and cost strip, again using value additivity.

The revenue strips can be priced recursively:

VR,(j)
t = Et

[
Mt,t+jV

R,(j−1)
t+1

]

starting from

VR,(1)
t = Et [Mt,t+1Revt+1] .

Scaling by potential gross revenue

V̂R,(j)
t =

VR,(j)
t

QtRm
t
= Et

[
Mt,t+jV̂

R,(j−1)
t+1 (1 + εt+1)(1 + ηt+1)

]

starting from

V̂R,(1)
t = Et

[
Mt,t+1R̂evt+1

]
since

Qt+1Rm
t+1

QtRm
t

= (1 + εt+1)(1 + ηt+1).
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There is a closed-form expression for each V̂R,(j)
t that can be established using the same

procedure we used above to obtain the closed-form solution for the entire claim’s scaled

valuation ratio V̂R
t .

V̂R,(j)
t = aR,(j)(z) + bR,(j)(z) · Q̂O

t + cR,(j)(z) · R̂O
t + dR,(j)(z) · Q̂O

t · R̂O
t ,

for suitably-defined coefficients aR,(j)(z), bR,(j)(z), cR,(j)(z), and dR,(j)(z).

The logic is similar for the scaled price of the cost strips.

V̂C,(j)
t = aC,(j)(z) + bC,(j)(z) · Q̂O

t ,

for suitably-defined coefficients aC,(j)(z) and bC,(j)(z).

C Calibration Algorithm

The following describes the steps in the calibration algorithm for the universe of NYC of-

fice buildings (All NYC) and the subset of A+ buildings (NYC A+). We set the depreciation

to 2.7% in both calibrations, a realistic annual depreciation rate for commercial office. The

calibration for All NYC takes the persistence parameter of the WFH state, p, as given. This

parameter is pinned down from the A+ calibration. Conversely, the calibration for NYC A+

takes the parameter ∆η as given. This parameter is pinned down from the All NYC calibra-

tion. Hence, the two calibrations are interdependent: they solve a fixed-point problem.

C.1 All NYC, given p

1. Keep only office buildings and exclude subleases in the CompStak data set of leases

for NYC.

2. Calculate the average lease term for all leases in NYC. Set χ equal to the reciprocal.

3. Estimate ε from data:
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(a) To estimate ε(E) and ε(R), first calculate sf-weighted NER for each month, and

take the 6-month moving average. Use data from January 2000 (start of Comp-

Stak) until December 2019.

(b) If more than 6 months of the 1-year window falls in recession, then the year is

considered to be a recession; otherwise it is considered to be an expansion. Use

the leasing cycle definition instead of the business cycle.

(c) Compute the annual growth rate of the six-month moving average, and take the

average separately for expansions and recessions.

(d) Estimate ε(WFHR) as the realized NER growth between December 2019 and De-

cember 2020, and ε(WFHE) as the annualized realized rent growth between De-

cember 2020 and May 2022.

(e) Since the values for ε(E) and ε(R) are determined based on the leasing cycle rather

than the business cycle, adjust all four ε(z) parameters by a constant so that the

unconditional average NER growth in the model, which uses the Markov chain

π(z′|z) estimated on the business cycle, equals the sample average NER growth.

4. Estimate η(E) and η(R) from data:

(a) Compute the growth rate in floor space in year t as the newly constructed office

square feet in year t relative to the total square feet of office space built before year

t for each year from 1970–2019. This uses the full history of construction years in

our CompStak dataset.

(b) Year t is a recession when more than six months of that year is in recession.

(c) We take the average the construction growth rate across expansions and reces-

sions.

(d) Finally, we subtract the rate of depreciation to arrive at η(E) and η(R)

5. Set η(WFHE) = η(E) + ∆η and η(WFHR) = η(R) + ∆η. Find the ∆η such that the
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long-run growth rate of potential rent in the All NYC is zero:

∑
z

π(z)(1 + ε(z))(1 + η(z)) = 1,

where π(z) is the 4× 1 ergodic distribution of the 4× 4 Markov Chain π(z′|z).

6. Estimate the four parameters
{

sO(E), sO(R), sV(E), sV(R)
}

to match the following four

moments in quarterly Manhattan office occupancy rate data for from 1987.Q1 to 2020.Q1:

(a) empirical mean

(b) empirical standard deviation

(c) empirical min - 0.5%

(d) empirical max + 0.5%

7. Assume that the four parameters
{

sO(WFHE), sO(WFHR), sV(WFHE), sV(WFHR)
}

are shifted by a common factor δ relative to their no-WFH counterparts: s{V,O}(WFH) =

δ · s{V,O}(no −WFH). Estimate the parameter δ to best fit the dynamics of the office

occupancy rate in the nine quarters from 2020.Q2–2022.Q2. These dynamics are given

by the model:

Q̂O
t+1(Q̂

O
t , z′) =

sV
t+1(z

′)

1 + ηt+1(z′)
+ Q̂O

t ·
1− χ + χsO

t+1(z
′)− sV

t+1(z
′)

1 + ηt+1(z′)

Simulate the law of motion for occupancy from 1930 until 2019, under the observed

sequence of expansions and recessions, to arrive at the initial condition for Q̂O in

2020.Q1. Next, we simulate the occupancy process forward for the next nine quar-

ters assuming that the first four quarters are WFH-R observations and the last five are

WFH-E. We find the δ that minimizes the distance between the model and the data.
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C.2 NYC A+, given ∆η

The calibration for the A+ office cash flows is based on the subset of leases in A+ buildings.

It follows the same steps as outlined above for All NYC, with the following modifications:

3.(d) The observed value for ε(WFHE) in step 3(d) is implausible.20 We set ε(WFHE, A+) =

ε(WFHE, All)− ε(E, All) + ε(E, A+). This preserves the features that A+ market rent

growth is less cyclical than All NYC rent growth and that A+ market rent growth in

WFH-E is lower than in E.

5. The NYC A+ calibration takes ∆η from the All NYC calibration.

6. We use data from NAREIT on office sector occupancy from 2000.Q1 to 2020.Q1 to cali-

brate
{

sO(E), sO(R), sV(E), sV(R)
}

. We target a minimum occupancy rate equal to the

empirical minimum—6.5%—because the A+ occupancy data is missing the 1990s, the

worst historical period for office occupancy.

8. Given all other parameters, find p to match the observed realized return on NYC-

centric office REITS between December 31, 2019 and December 31, 2020, after adjusting

for leverage. See the discussion in Section 3.4.

Figure 22 shows the valuation ratio for office V̂ conditional on expansion, recession,

WFH-expansion and WFH-recession for the All NYC calibration. The x-axis plots the grid

for Q̂O and the y-axis shows the grid for R̂O. Office valuation ratios are increasing in both

occupancy Q̂O and rent premium R̂O.

D Results for NYC A+ Market

Appendix Table 9 shows the model solution for the A+ calibration. The model delivers a

lower cap rate for A+ NYC office, due to the lower riskiness of A+ cash flows. Class A+ has

20This is not surprising. The data are based on one realization from a transition from WFH-R to WFH-E,
which may not be a good measure of the average rent growth conditional on being in WFH-E.
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Figure 22: V̂ for All NYC Market by States
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lower vacancy levels than the market as a whole, on average as well as in the WFH states.

Appendix Figure 23 shows the valuation ratio V̂ in each state as a function of occupancy and

rent state variables.
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Table 9: Model Solution for NYC All Calibration

Statistic Uncond E R WFHE WFHR
Cap rate 0.0656 0.0623 0.0828 0.0625 0.0748

Office E[Ret]− 1 0.0645 0.0516 0.1346 0.0459 0.1184
Office RP = E[Ret]− 1− R f 0.0496 0.0432 0.0879 0.0375 0.0716

E [gt] -0.0024 -0.0179 0.0989 -0.0289 0.0213

Vacancy rate = 1− Q̂O 0.0983 0.0819 0.1220 0.1278 0.1553
R̂ev 0.8228 0.8158 0.9340 0.7658 0.8069
Ĉost 0.4228 0.4279 0.4183 0.4114 0.4050

N̂OI = R̂ev− Ĉost 0.3994 0.3874 0.5151 0.3539 0.4013

V̂R 10.7146 11.0337 10.0413 10.3574 9.3590
V̂C 4.7105 4.9033 3.9135 4.7601 4.0601

V̂ = V̂R − V̂C 6.0041 6.1304 6.1278 5.5973 5.2988
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Figure 23: V̂ for NYC A+ Market by States
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E Calibration to Other Markets

We repeat the calibration procedure discussed in the main text and in Appendix C for San

Francisco and Austin. We use CompStak data to measure market rent growth, ε, before

and during the pandemic. We also use Compstak data to measure pre-pandemic office con-

struction rates (η is the construction minus the depreciation rate). Like in the NYC cali-

bration, construction rates during the pandemic (WFHR and WFHE) are set equal to their

pre-pandemic counterparts (R and E) minus an adjustment factor. The adjustment factor for

SF (Austin) corrects the NYC adjustment factor for differences between SF (Austin) and NYC

in the pandemic-minus-pre-pandemic construction rate change obtained from the Cushman

& Wakefield inventory data. Due to the incompleteness of building coverage in Compstak,

estimation of η for San Francisco and Austin starts from 1980. We use contractual occupancy

rate data from Cushman and Wakefield to calibrate sO and sV before and during the pan-

demic. We leave the office depreciation rate and the operational cost parameters the same

as in the NYC calibration. Naturally, we assume that the dynamics of the aggregate state

variable π(z′, z) are common across markets, as well as the market prices of risk M(z′, z).

Table 10 shows the calibrated parameters for San Francisco and 11 shows those for Austin.

Table 12 and 13 show the main moments for San Francisco and Austin, respectively. The SF

office market is riskier than the NYC market, featuring a rent cycle of greater amplitude

which translates into a higher risk premium and cap rate. The opposite is true for Austin.

Figure 24 plots fan charts for occupancy rates, revenues, NOI and cap rates for San Francisco

and Austin.

Table 10: Calibration for San Francisco

Variable Symbol E R WFH-E WFH-R
Market NER growth ε 0.1346 -0.2130 -0.0050 -0.2001
Supply growth η -0.0192 -0.0101 -0.0487 -0.0396
Lease renewal share sO 0.8500 0.6766 0.3541 0.2819
New leasing share sV 0.2369 0.1948 0.0987 0.0812
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Table 11: Calibration for Austin

Variable Symbol E R WFH-E WFH-R
Market NER growth ε 0.0372 -0.0546 0.0674 -0.0634
Supply growth η 0.0002 0.0076 -0.0071 0.0003
Lease renewal share sO 0.9215 0.9215 0.6115 0.6115
New leasing share sV 0.2030 0.1000 0.1347 0.0663

Table 12: Model Solution for San Francisco Calibration

Statistic Uncond E R WFHE WFHR
Cap rate 0.0913 0.0801 0.1320 0.0922 0.1333

Office E[Ret]− 1 0.1258 0.1028 0.2383 0.1058 0.2063
Office RP = E[Ret]− 1− R f 0.1109 0.0944 0.1916 0.0974 0.1596

E [gt] 0.0285 -0.0007 0.2245 -0.0281 0.0838

Vacancy rate = 1− Q̂O 0.1546 0.0992 0.1568 0.3148 0.3462
R̂ev 0.7735 0.7692 0.9612 0.6475 0.7572
Ĉost 0.4230 0.4390 0.4237 0.3760 0.3671

N̂OI = R̂ev− Ĉost 0.3505 0.3302 0.5375 0.2715 0.3901

V̂R 7.2999 8.0135 6.6782 5.6732 4.9550
V̂C 3.4976 3.9494 2.6910 2.7723 2.0816

V̂ = V̂R − V̂C 3.8023 4.0641 3.9872 2.9009 2.8734

Table 13: Model Solution for Austin Calibration

Statistic Uncond E R WFHE WFHR
Cap rate 0.0446 0.0449 0.0562 0.0341 0.0465

Office E[Ret]− 1 0.0743 0.0534 0.1500 0.0685 0.1844
Office RP = E[Ret]− 1− R f 0.0594 0.0450 0.1033 0.0602 0.1376

E [gt] 0.0273 0.0248 0.0658 -0.0050 0.0827

Vacancy rate = 1− Q̂O 0.1493 0.1126 0.1384 0.2619 0.2907
R̂ev 0.8000 0.8325 0.8669 0.6531 0.6903
Ĉost 0.4254 0.4360 0.4287 0.3930 0.3845

N̂OI = R̂ev− Ĉost 0.3746 0.3965 0.4382 0.2601 0.3057

V̂R 17.1823 17.9455 15.4817 16.4288 13.7847
V̂C 8.8143 9.1314 7.7056 8.8433 7.2517

V̂ = V̂R − V̂C 8.3680 8.8141 7.7761 7.5855 6.5330
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Figure 24: Fan Charts for San Francisco and Austin

(a) San Francisco: Occupancy (b) Austin: Occupancy

(c) San Francisco: Revenue (d) Austin: Revenue

(e) San Francisco: NOI (f) Austin: NOI

(g) San Francisco: Cap Rate (h) Austin: Cap Rate
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