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Abstract

This paper studies the implications of energy prices today for energy efficiency and climate
policy in the future. If adjustment costs mediate manufacturing plants’ responses to increases
in energy prices, incumbents may be limited in their ability to re-optimize energy-inefficient
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that manufacturing plants pay in their first year of operations are important determinants of
long-run energy intensity. Plants that open when the prices of electricity and fossil fuel inputs
into electricity are low consume more energy throughout their lifetime, regardless of current
electricity prices. We then estimate that the productivity of energy inputs is persistently
lower for plants that open when electricity is cheap, and these differences in relative input
productivities can fully explain the effects of entry-year electricity prices on subsequent energy
intensity. We discuss how this “technology lock-in” increases the emissions costs of delayed
action on carbon policy.
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1 Introduction

Does the lack of carbon pricing today mediate the effectiveness of carbon pricing in the future?

Abundant fossil fuel resources priced below their social cost have set industrial economies on a path

of energy-inefficient development and rising anthropogenic carbon emissions. Current global energy

infrastructure comprises tens of trillions of dollars of assets and reflects two centuries of technolog-

ical innovation—and approximately 80% of energy produced comes from burning fossil fuels that

contribute to climate change (Seto et al., 2016). Climate change impacts such as extreme tempera-

tures, hurricanes, and wildfires are now causing billions of dollars of economic damage annually, but

carbon pricing policies intended to curb greenhouse gas emissions continue to face global opposition.

In the United States, over fifty carbon pricing bills have been introduced by Congress in the last

three decades; none has passed. Jurisdictions that have successfully implemented carbon pricing

schemes, such as the European Union and Canada, struggle to set prices that fully internalize the

social costs of energy consumption. Some policymakers have despaired at the political feasibility of

such reforms, instead proposing alternative policies such as clean energy subsidies and technology

standards (Shearer and Nace, 2010).

In the absence of such policies, global energy usage is projected to increase by more than 50%

by mid-century. The largest consumer of this energy is the industrial sector, and the durable nature

of capital means that many energy-inefficient manufacturing plants that open when energy is dirty

and cheap will contribute to global emissions for many years (EIA, 2019). The increasing trend in

energy usage is even steeper in developing countries such as India and China, which are opening

the equivalent of one new coal power plant every week (Myllyvirta and Shearer, 2021). Carbon

emissions from existing coal power plants are already 150% higher than permissible in optimistic

climate scenarios that limit global temperature increases to 2 degrees Celsius above pre-industrial

levels—even before accounting for planned construction (Shearer and Nace, 2010).

This paper quantifies the extent to which the energy prices that manufacturing plants pay in

their first year of operations determine their future energy usage and the outcomes of subsequent

climate policy. When a plant enters the market, it chooses a combination of factor inputs to use

in production based on entry-year prices and beliefs about future prices. We explore the extent

to which these initial prices have persistent effects on long-run energy usage, which we refer to as

“technology lock-in”, and mechanisms for these effects. If adjustment costs mediate responsiveness

to changes in input prices, incumbent plants may be limited in their ability to re-optimize their
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energy usage when energy prices increase. Such a constrained response could cause low energy

prices today to undermine the effectiveness of future carbon pricing policies, and also increase the

importance of technology subsidies to encourage turnover of energy-inefficient capital.

The first part of this paper provides empirical evidence of technology lock-in. We assess how

both initial and contemporaneous electricity prices affect manufacturing plants’ energy intensity,

defined as energy use per dollar of revenue. We measure plants’ energy intensities and input

prices using restricted-access microdata from the U.S. Census of Manufactures (CMF) and the

Annual Survey of Manufacturing (ASM) for the years 1976 to 2011. Since electricity prices may be

correlated with other shocks to manufacturing plants’ input demands, we use shift-share instruments

to isolate plausibly exogenous price variation (Bartik, 1991; Goldsmith-Pinkham et al., 2020). The

instruments exploit national changes in coal, natural gas, and petroleum prices, weighted by each

state’s use of these fuels to generate electricity in a base year (Ganapati et al., 2020). As an

alternative measure of lock-in, we also directly examine how the prevailing prices of these fuels

in plants’ entry year affect subsequent energy intensity. We show that the results are robust to

estimation using alternative energy intensity definitions, different data subsamples, and different

energy data sources.

Motivated by this empirical evidence, the second part of the paper explores the extent to which

this lock-in arises due to differences in production technologies chosen at entry and due to capital

adjustment costs. To do so, we estimate the parameters of plants’ production technologies and

the relative productivities of different manufacturing inputs at entry and in subsequent years. The

model allows us to quantify the efficiency of plants’ energy inputs relative to labor in each year of

operations. Using these estimates, we assess whether entry-year electricity prices lead to different

productivity biases toward specific inputs and whether any differences persist over time.

These analyses yield two primary results. First, technology lock-in is important in manufac-

turing production. We show that plants’ entry-year electricity prices are significant determinants

of current energy intensity, even conditional on current prices. While energy intensity declines

when contemporaneous electricity prices increase, we estimate an initial electricity price elasticity

of approximately -0.20—about 25% of the elasticity with respect to current electricity prices. In

addition, we show that the entry-year prices of fuel inputs into electricity generation themselves

have persistent effects on manufacturing energy intensity. Separate analysis of the contributions of

the prices of different raw fuels reveals that entry-year coal and petroleum prices continue to be

important determinants of energy use. Specifically, manufacturing plants established when coal and
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petroleum were cheap are still consistently more energy-intensive. The persistent effect of these fuel

prices on manufacturing energy intensity is surprising because electricity generation in the U.S. is

much less reliant on these fuels today. These findings underscore the long-run effects of development

based on cheap fossil fuel energy and the emissions implications of expansion of fossil fuel power

plants: dirty capital investments undertaken in response to current cheap coal prices around the

world seem likely to lock in higher emissions levels in the future.

This lock-in has the potential to increase emissions if carbon pricing is delayed: entrants who

choose production technologies based on current prices choose dirtier technologies than they oth-

erwise would, and cannot subsequently fully adjust them. We find limited heterogeneous effects of

initial electricity prices by plant age, which suggests that these entry-year prices remain important

throughout a plant’s lifetime. Of course, energy-inefficient plants may close if prices increase sub-

stantially, which motivates using our estimates of plants’ production functions to directly assess the

extent to which plants can adjust their production processes over time.

The second main results show that persistent differences in the relative productivity of energy

inputs appear to explain much of the effect of initial electricity prices on subsequent manufacturing

energy use. We estimate that a 10% increase in entry-year electricity prices increases relative energy

productivity by approximately 3% in subsequent years. Conversely, we find no evidence that entry-

year electricity prices have long-term effects on total factor productivity. These results suggest that

when electricity prices are low, new manufacturing plants chose production technologies that use

energy inputs relatively less efficiently compared with their labor inputs, and this productivity bias

persists even if electricity prices change in the future.

This paper makes three primary contributions to existing literature. First, this paper provides

the first estimate of the importance of entry-year energy prices for industrial energy use in subse-

quent years. In addition to identifying this technology lock-in, we explain how it arises. Previous

“efforts to characterize the types and causes of carbon lock-in, or to quantitatively assess and evalu-

ate its policy implications, have been limited and scattered across a number of different disciplines”

(Seto et al. (2016), p. 425).1 Our findings contribute to a growing literature on how different initial

conditions mediate transitions from dirty to clean energy (i.e., path dependence). Several papers in

this literature use macroeconomic dynamic models and more aggregate data to study incentives to

1In the climate context, the literature refers to technology lock-in as “the inertia of carbon emissions ... associated
with the technologies and infrastructure that indirectly or directly emit CO2”, which is distinct from carbon lock-in
arising from behavioral or institutional constraints more commonly studied by sociologists (Seto et al. (2016), p.427).
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develop clean energy technologies, typically simulating how changes in energy prices affect carbon

emissions through innovation (Acemoglu et al., 2012; Acemoglu et al., 2019; Atkeson and Kehoe,

1999; Fried, 2018; Hassler et al., 2012). Other work uses microdata, particularly from the electricity

sector, to show that initial regulatory structure and fuel mix choices (e.g., coal versus natural gas)

are important determinants of subsequent fuel use (Cullen and Mansur, 2017; Knittel et al., 2015;

Meng, 2021). One paper shows that entrant and incumbent manufacturing plants respond differ-

ently to current energy prices (Linn, 2008). We depart from these studies by quantifying the extent

to which initial energy prices matter after a plant’s entry year and by analyzing the contributions

of initial technology choices to creating this lock-in.

These dynamics are relevant for policy. Current U.S. government proposals earmark over $400

billion for industrial energy efficiency improvements (DNC, 2021). Understanding whether lock-

in exists and how it arises is necessary to predict the outcomes of this suite of policies and to

efficiently design them. Ignoring the dynamic effect of current energy prices on energy use tomorrow

underestimates the benefits of pricing carbon today.

Second, this paper contributes to literature that models the responses of industrial energy use

and productivity to environmental regulation. Research using microdata to study industrial re-

sponses to environmental policy typically analyze the dynamics of one industry (e.g., cement or

electricity) over the long-run (Fowlie et al., 2016; Meng, 2021; Ryan, 2012; Clay et al., 2021) or

use static models to study different contemporaneous effects across many industries (Calel, 2020;

Colmer et al., 2021; Ganapati et al., 2020; Greenstone et al., 2012; Shapiro and Walker, 2018). Our

contribution is to bring these two literatures together to provide a new generalizable explanation

for why some of the dynamic responses arise. Classic “putty-clay” models of capital investment

emphasize that capital adjustment frictions may constrain changes in input mix, but we identify

that productivity differences appear to be at least as important as this more common explanation

for lock-in (Atkeson and Kehoe, 1999). Showing that entry-year electricity prices have persistent ef-

fects on the efficiency of manufacturing inputs requires estimating the relative productivity of these

inputs over time. Commonly used models of manufacturing production functions, notably Cobb-

Douglas, do not allow for complementarity between inputs or factor-specific productivity shocks.

Since these characteristics are necessary for lock-in to arise, studying the causes of persistent ef-

fects of entry-year prices requires extending more general models of production to include energy

(Ackerberg et al., 2015; Demirer, 2020; Doraszelski and Jaumandreu, 2018; Olley and Pakes, 1996).

Finally, we provide a new microfoundation for the rate of decarbonization frequently used in
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standard models of climate-economy interactions. These Integrated Assessment Models (IAMs) are

the basis for calculating the full social cost of carbon emissions and for evaluating national and

international climate policy recommendations. Despite their widespread use in regulatory analyses,

economists have criticized these models for allowing “a great deal of freedom in choosing functional

forms, parameter values, and other inputs” and for “lacking transparency in key underlying as-

sumptions, such as energy resource costs, constraints on technology take-up, and demand responses

to carbon pricing” (Pindyck, 2020, p.863; Gambhir et al., 2019, p.5). Standard models extrapolate

future rates of decarbonization based on past decarbonization trends, which may overestimate at-

tainable emissions reductions resulting from a new carbon price if lock-in is important. We provide

a novel estimate of the response of industrial carbon emissions to emissions constraints assumed in

climate-economy model, which is “the most important calibration for policy purposes” (Nordhaus

and Boyer, 2000, p.44).

The rest of this paper proceeds as follows. Section 2 provides background on energy use in U.S.

manufacturing to contextualize the analysis. Section 3 presents a conceptual framework outlining

how technology lock-in might arise. Section 4 describes the data and Section 5 presents descriptive

statistics and trends in energy use. Section 6 discusses our econometric model for identifying

technology lock-in and Section 7 presents our empirical evidence of it. Section 8 discusses the

implications for climate change policy. Section 9 concludes.

2 Institutional Background

Manufacturing accounts for about one-quarter of total U.S. energy consumption and one-quarter of

total U.S. greenhouse gas emissions. Energy consumption in the industrial sector, which comprises

manufacturing, mining, construction, and agriculture, is increasing both in absolute terms and as a

share of total consumption, and this sector accounts for almost all of the predicted increase in U.S.

energy use in the next decade (EIA, 2015; EPA, 2021). Most manufacturing energy is consumed

as electricity; a subset of manufacturing plants use other sources of energy, such diesel fuel, as

direct inputs. On average during this study’s time period, electricity expenditures account for

approximately 75% of total energy expenditures and 95% of thermal energy consumed (measured

in British thermal units, or BTUs). Only 0.1% of this electricity is produced on-site. By contrast,

manufacturing plants in developing countries such as India are typically more reliant on raw fuel

inputs and on-site generation of electricity (Allcott et al., 2016).
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Although total U.S. manufacturing energy consumption has increased, energy intensity of pro-

duction has declined during the past thirty years. The adoption of more energy-efficient technology

by new manufacturing plants explains some of this decline, while energy prices and energy efficiency

regulation are weakly correlated with energy efficiency improvements in aggregate (Levinson, 2021;

Linn, 2008). Despite recent entrants’ higher energy efficiency, manufacturing energy policy typically

does not differentially regulate plants depending on their entry date. Manufacturing energy effi-

ciency is administered by a mix of federal, state, and local governments that usually target specific

industries or technologies. Oregon, for example, offers subsidies for the installation of energy-

efficient manufacturing capital.2 Landmark federal industrial environmental regulations, such as

the Clean Air Act, more commonly target pollution that is the by-product of energy use rather

than targeting energy efficiency directly (NREL, 2009).

The amount and type of energy used depend on plants’ production processes. Primary uses in-

clude powering production machinery and fueling boilers, while secondary uses include heating and

cooling, lighting, on-site transportation, and direct inputs into the finished product (Ganapati et al.,

2020). Improving the energy efficiency of many of these processes requires replacing equipment or

machinery. For example, upgrading an energy-inefficient turbine involves pausing or re-arranging

operations to install an expensive replacement, and such capital adjustment costs create the pos-

sibility for technology lock-in. If energy-inefficient machinery is installed when energy prices are

low, incurring these adjustment costs to replace it may only be worthwhile if energy prices increase

substantially.

Though non-electricity energy sources account for a small portion of direct energy inputs, the

production of the electricity consumed by manufacturing involves important indirect use of raw

fuels. At the start of our sample in 1976, electric utilities in the U.S. generate electricity using

coal (40%), natural gas (12%), petroleum oil (21%), hydro (15%), and other renewable sources.

Natural gas and renewables (e.g., solar) have become more important in the last two decades, with

a reduction in the use of petroleum and, to a lesser extent, coal. Appendix Figure A.2 shows that

the contribution of these different fuel sources to electricity generation varies widely across the

U.S. Electric utilities have distinct regional markets that typically comprise a few states, and in

2011 industrial users paid between 0.04 and 0.28 dollars per kWh for electricity on average (EIA,

2020). Local electricity rates depend on the national prices for prevailing fuel inputs and distances

to procurement sources. In what follows, we exploit variation in the national prices of these raw

2See NREL (2009) for a detailed review of federal, state, and local energy efficiency policies.
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fuels to construct instruments for electricity prices.

3 Conceptual Framework

In this section, we show how technology lock-in operates in a stylized “putty-clay” model of the

manufacturing sector (Atkeson and Kehoe, 1999), to which we introduce the importance of entry-

year input productivities for energy use. We define the energy intensity of a plant as the ratio

of energy inputs to output, E
Y
. If technology lock-in is important, then plants that enter at lower

energy prices will be persistently more energy-intensive today. Concretely, in the empirical analysis

that follows, we measure technology lock-in using the elasticity of current energy intensity with

respect to entry-year energy prices, conditional on current energy prices.

In our model, only new entrants can flexibly choose all inputs without adjustment costs in

response to energy price changes. Incumbent plants can respond to price changes through three

margins. First, they can change their static inputs, such as energy and labor, which are chosen in

each period. Unlike energy and labor, plants’ capital inputs are subject to adjustment costs. The

adjustment of potentially sticky capital stocks is the second margin through which plants adjust

their energy intensity. Finally, plants can enter or exit on the basis of differences in production

technology, including the relative productivity of energy inputs. Changes in energy prices will change

the composition of productivities within entry cohorts, and therefore average energy intensity, as

we will show.3

The first margin of adjustment—static re-optimization—operates in the short-run even for small,

temporary fluctuations in relative prices. The other two margins (i.e., capital adjustment and

selection on productivity) prevent full re-optimization and are sources of technology lock-in. Stylized

facts in the literature suggest that both fixed and convex capital adjustment costs are important

(Cooper and Haltiwanger, 2006; Khan and Thomas, 2008).4 If capital and energy are complementary

in the plant’s production function, incomplete adjustment of capital stocks due to these additional

costs attenuates the response of energy intensity to changes in energy prices, leading to lock-in.

3The energy productivity shocks in our model play a similar role to vintage capital effects in the classic putty-
clay model of Atkeson and Kehoe (1999). Our model weakens the assumption of perfect complementarity between
capital and energy. More importantly, it emphasizes plant-level cross-sectional differences in productivity which arise
through entry and exit decisions, as opposed to differences in the energy efficiency of capital within an individual
plants’ capital stock.

4Specifically, capital investment is characterized by infrequent spikes interspersed with periods of no or minimal
investment. Investment is also slow to respond to large changes in economic fundamentals. These stylized facts
respectively suggest that fixed and convex adjustment costs are important (Khan and Thomas, 2008).
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Some plants may also use production technologies that are more energy-efficient than others,

leading to lock-in based on productivity differences. All else equal, higher productivity of energy

inputs increases plants’ profitability and, by extension, the likelihood that a plant chooses to enter.

This induces selection: if energy is cheap, it is profitable for plants with low energy productivity to

enter. Since entry costs are sunk, these energy-inefficient plants may continue to operate even when

energy prices rise. This generates lock-in by vintage: if energy prices increase, the average new

entrant will have a lower energy intensity than the average incumbent not only because entrants

can flexibly choose their level of capital, but because they have higher energy productivity.

To illustrate how such lock-in might arise, we characterize these three margins of adjustment

in a simple two-period model of myopic manufacturing plants. Appendix A shows that the same

intuitions carry over to a richer multi-period model under a range of assumptions about plant

expectations of future energy prices.

3.1 A Model of Lock-In

For illustration, consider a model where a plant has a constant elasticity of substitution (CES)

production technology:

Y (K,L,E;ωH , ωE) = ωH
(
Kρ + Lρ + (ωEE)ρ

) ν
ρ (1)

where K, L, and E are the quantities of capital, labor and energy inputs, respectively, σ = 1
1−ρ

is

the elasticity of substitution between energy and capital, ν ∈ (0, 1] is a returns to scale parameter,

ωH is Hicks-neutral total factor productivity, and ωE captures the productivity of energy relative

to labor.5 Labor and energy are assumed to be fully flexible static inputs, chosen optimally in each

period. As detailed below, an incumbent plant’s level of capital is only partially flexible due to

non-linear adjustment costs. The relative productivity of energy, ωE, is fixed at entry and is fully

locked in.6

A potential entrant i draws productivity levels ωH
i and ωE

i and chooses capital, labor, and energy

5We estimate a CES production technology rather than the more common Cobb-Douglas function to allow com-
plementarity between inputs and factor-specific productivities. The Cobb-Douglas specification is equivalent to CES
if ρ = 0. In this case, input expenditure shares are fixed and capital stocks do not affect the optimal energy input.
Neither Cobb-Douglas or translog functional forms admit factor-specific productivities.

6In the empirical specification, we allow total factor and energy-specific productivities to evolve over time following
AR(1) processes and prices to be fully flexible. We discuss estimation details in Section 6.2.
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inputs to maximize profits:

max
K,L,E

π(K,L,E;ωH
i , ω

E
i ) = pY (K,L,E;ωH

i , ω
E
i )− rK − wL− pEE

The potential entrant chooses to enter if profits exceed the fixed costs of entry, that is if:

π∗(p, w, r, pE;ω
H
i , ω

E
i ) = pY (K∗, L∗, E∗)− wL∗ − rK∗ − pEE∗ ≥ F

In this equation, L∗ and E∗ solve the static profit maximization problem and F is the fixed entry

cost. We assume that the capital stock K∗ is fully flexible on entry, subject to a linear capital rental

rate r. To simplify notation and isolate the role of changes in the relative price of energy pE in this

example, we set the price of output p, the wage w, and the rental rate of capital r to be equal to

one.

The first channel through which lock-in arises is the selection effect on the productivity of plants

that choose to enter in the first period. Profits are monotonically increasing in energy productivity,

and so the potential entrant’s problem yields a cutoff rule, where all else equal plant i enters if its

energy productivity is sufficiently high (i.e., if ωE
i ≥ ωE

entry(p
E)). The cutoff energy productivity

level, ωE
entry(p

E), determines the distribution of energy productivity ωE
i for plants that entered in

a period with energy price pE. The cohort-average energy productivity is increasing in the initial

energy price pE because the cutoff is increasing in pE.7 If plants’ energy productivity is persistent,

entry-year energy prices will be important determinants of their energy intensity in the future.

Capital adjustment costs provide the second channel through which lock-in arises. Plants that

enter earn their first period profits and continue to the second stage with their current capital stock,

K. At the end of period one, plants observe prices in the next period and choose their capital in

the next period, K ′, to solve:

max
K′

π
∗(K ′; pE ′, ωE

i )− γ0 − r(K ′ −K)− γ1(K
′ −K)2 if K ′ ̸= K

π∗(K; pE ′, ωE
i ) otherwise

Here, π∗(K; pE, ωE) is the maximum profit if capital is fixed at K, given prices and productivity. In

7We can see that ωE
entry(p

E) is increasing in pE because we can write Y in terms of “effective energy”, Ê = ωEE,

and the price of an effective unit of energy will be pE

ωE . This implies that if pE ′ > pE , then the distribution of ωE
i

conditional on entry at price pE ′ first-order stochastic dominates the distribution of ωE
i conditional on entry at price

pE . This, in turn, implies that E[ωE
i | entered at pE ′] > E[ωE

i | entered at pE ].
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addition to the cost of capital r, γ0 and γ1 are fixed and convex adjustment costs, respectively. The

fixed cost of capital adjustment, γ0, implies that it may not be profitable for plants to re-optimize

their capital in response to small energy price changes. The convex adjustment cost, γ1, implies

that while plants may invest in response to larger prices changes, they will only partially close the

gap relative to frictionless entrants because large capital investments are increasingly more costly

than small ones. One implication is that, without policies such as technology subsidies, plants with

both fixed and convex adjustment costs may never reach the optimal level of energy intensity.

Incumbent plants will shut down if their scrap value exceeds their profit: π∗ < S. As with entry,

there is a cutoff value ωE
exit(p

E) such that for a given energy price pE plants with energy productivity

below ωE
exit(p

E) will exit. As the least efficient plants exit, cohort-average energy productivity will

rise as pE increases. However, if scrap values are lower than entry costs, then the exit cutoff energy

productivity ωE
exit(p

E) will be below the entry cutoff ωE
entry(p

E) and incumbents will, on average,

have higher energy intensity than new entrants.

Figure 1 plots simulated current energy intensity as a function of energy prices at entry in

this model. The three downward-sloping lines measure the energy intensity of incumbent plants

relative to the energy intensity of entrants under different assumptions about the structure of capital

adjustment costs. The x-axis plots the price of energy in the first period when incumbents entered,

relative to today’s price. Conditional on current energy prices, entrants today don’t care about

energy prices in the past, and so energy intensity of new entrants is flat and we normalize it to

be one. The downward slope of the energy intensity of incumbents indicates lock-in: plants that

opened when energy was cheap are persistently more energy-intensive today.

This lock-in arises under all three capital adjustment cost scenarios. First, the blue, long-

dashed line plots the magnitude of lock-in for plants which cannot adjust their capital stock. The

only margins of adjustments are changing energy and labor inputs or exiting. This represents an

extreme case of lock-in. Second, the orange, short-dashed line plots lock-in for plants that can

partially adjust capital, subject to both fixed and convex capital adjustment costs. Third, the

green, solid line isolates the energy productivity effect by setting γ0 = γ1 = 0, shutting down

capital adjustment frictions. Even without fixed or convex capital adjustment costs in this third

scenario, the average plant from a low energy price vintage will be more energy-intensive than the

average entrant because lower productivity plants enter at lower prices and only the least productive

ones exit. The gap is due to the difference between the entry cost and the scrap value. At higher

energy prices, it is no longer profitable to open a new energy-intensive plant, but existing plants
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may continue to operate and pollute.

Appendix Figure A.1 shows that the same insights regarding the possibility of lock-in and its

causes carry over to a multi-period framework and under alternative assumptions about plants’

beliefs about future energy prices. In particular, we show that lock-in arises even if entrants know

energy prices will increase in the future. Panel A shows energy intensity of incumbents relative to

entrants assuming that all future energy price changes are known at entry. Here, even with perfect

foresight, discounting of future profits means that incumbents who entered at low energy prices are

still more energy-intensive today than current entrants. This pattern is even more pronounced if

we assume all energy price changes are unanticipated (Panel B). In this opposite extreme scenario,

there is a larger difference between the energy intensity of incumbents who entered at high and

low energy prices (i.e., a steeper slope of energy intensity), for moderate price changes. Under

both sets of assumptions, large price changes drive the least productive plants from the market,

reducing average energy intensity of surviving plants. We discuss the simulation of this dynamic

multi-period model in greater detail in Appendix A. Appendix A also discusses in greater detail the

general conditions under which lock-in of a plant’s production function arises.

3.2 From Theory to Data

In the remainder of the paper, we exploit exogenous variation in initial and current electricity prices

to measure the persistent effect of electricity prices at entry on energy intensity and productivity.

Technology lock-in is important if plants facing the same current electricity prices have system-

atically higher energy intensity if they entered when electricity was less expensive. This overall

estimate of lock-in is analogous to the orange, short-dashed line in Figure 1, which captures lock-in

due to both capital adjustment frictions and persistent energy-specific productivity.

The regressions of energy intensity on electricity prices cannot, by themselves, distinguish be-

tween these two sources of lock-in. To do so, we estimate a structural production function for each

industry and recover annual energy-specific productivity for each plant. These estimates allow us

to assess the contribution of energy productivity differences to creating lock-in, which is captured

by the green, solid line in Figure 1 that shuts off capital adjustment costs. The contribution of cap-

ital adjustment costs is the residual distance between the total lock-in effect and the productivity

effect (i.e., the distance between the orange, short-dashed line and the green, solid line in Figure 1).

By comparing the total lock-in effect to lock-in arising with selection on productivity but without
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capital adjustment costs, we quantify the relative importance of the two lock-in mechanisms.

4 Data

We draw on restricted microdata from the U.S. Census Bureau on manufacturing inputs and outputs

and on energy data from publicly available government sources. Additional data details are in

Appendix B.

4.1 Manufacturing Inputs and Outputs

Our primary data sources are administrative records on annual plant-level inputs and outputs from

the Annual Survey of Manufacturing (ASM) and the Census of Manufactures (CMF) from the

U.S. Census Bureau for the years 1976 to 2011. The CMF is conducted in years ending with 2 or

7 and surveys all manufacturing plants in the United States. The ASM annually surveys plants

in the years between censuses and comprises a nationally representative sample of approximately

50,000 plants per year. These surveys report quantity of electricity purchased and expenditures on

electricity and other energy sources (e.g., diesel fuel) separately. We calculate each plant’s annual

average electricity price as reported total electricity expenditure divided by electricity purchased.8

We measure plants’ annual capital investment using total capital outlays, materials, electricity, and

raw fuels inputs using reported expenditures, and labor inputs using worker hours, available in both

the ASM and CMF.9 The CMF also contains information on plants’ capital stocks, measured as

reported book values of equipment and machinery.10

We supplement these data with the Manufacturing Energy Consumption Survey (MECS) and

the ASM Fuel Trailers. Together with the ASM and CMF, these surveys allow us to calculate

three measures of energy intensity of production: electricity consumed per dollar of revenue, carbon

dioxide (CO2) emissions produced per dollar of revenue, and British thermal units (BTU) of energy

consumed per dollar of revenue. The MECS and ASM Fuel Trailers include a probabilistic sample

of about 15,000 manufacturing plants, for the years 1976-1981 for the ASM Fuel Trailers and for

every three years between 1985 and 1994 and every four years thereafter for the MECS. These more

8We verify the reliability of our calculated average electricity prices by comparing against utilities’ posted industrial
rate schedules, available from the OpenEI rate database, and against state-level electricity prices reported by the
Energy Information Administration.

9We calculate worker hours as plants’ reported production-worker hours times the ratio of total payroll to payroll
for production workers (Baily et al., 1992; Ganapati et al., 2020)

10Appendix C describes how we calculate annual capital stocks implied by ASM investment and depreciation.
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detailed energy surveys provide breakdowns of expenditure on and quantity consumed of raw fuels

that are not available from the ASM and CMF, which report detailed quantity and expenditure

information on electricity but not other energy sources. We calculate plant-level CO2 emissions and

BTU consumption from electricity directly from the ASM and CMF using conversion factors from

the U.S. Energy Information Administration (EIA) and from eGRID, which incorporates the carbon

intensity of each state’s electricity grid. To obtain total CO2 emissions and BTU consumption

including other energy sources where applicable, we use plant-level annual total energy expenditures

times industry-average estimates of energy consumption per dollar of energy expenditures from

the MECS and the ASM Fuel Trailers (Lyubich et al., 2018). We calculate CO2 emissions and

BTU consumption per dollar of energy expenditure by converting energy quantities into common

units using fuel-specific conversion factors from the EIA and the Environmental Protection Agency

(EPA). In years in which neither the ASM Fuel Trailer or the MECS surveys are conducted, we

linearly interpolate these coefficients by six-digit North American Industry Classification System

(NAICS) industry. Estimating total BTU consumption and CO2 emissions allows us to measure

energy intensity using BTU per dollar of revenue and CO2 per dollar of revenue—measures which

incorporate the use of all energy sources in a way that electricity intensity does not.11

Our final source of manufacturing data is the Longitudinal Business Database (LBD). This

census provides information on all plants’ entry year, which we link to the other data sets using

unique plant identifiers. We match plants to their own initial electricity prices using these plant

identifiers if the plant was surveyed in its initial year of operations. If a plant is not observed in

its entry year, we impute its initial electricity price using the average of other contemporaneous

entrants in its state and industry where possible, or simply the same year and state if there are

no other contemporaneous entrants in its industry. A short-coming of the LBD is that any plant

that began operations before the start of the survey (i.e., 1975) is recorded as opening in 1975;

we therefore restrict the sample to plants that enter after 1975, for which we observe their entry

year. Appendix B describes additional restrictions imposed during the cleaning of the data, such as

excluding observations with missing or negative input values. The primary analysis sample includes

approximately 1,294,000 plant-year observations. Throughout, we deflate all monetary values to

2011 dollars using the input- and industry-specific price indices available from the National Bureau

11While measuring energy intensity using CO2 and BTU per dollar of revenue has the benefit of incorporating use of
other energy sources, the more intermittent measurement of their consumption in the MECS and ASM Fuel Trailers
only means that the time series of these energy intensity measures discussed in Section 5 are noisier. Appendix B
provides additional details on the calculation of CO2 and BTU intensities.
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of Economic Research-Census of Economic Studies (NBER-CES) Productivity Database.

4.2 State Energy Use and Fuel Prices

The data on state energy input prices and fuel shares in the electricity sector are from the EIA State

Energy Data System (SEDS) (EIA, 2020). We use these data to calculate average national prices for

coal, natural gas, and petroleum as well as the share of each of these fuels used to generate electricity

in each state. We also draw on state-level measures of electricity prices to assess the validity of our

calculated, plant-level ones. We deflate prices using the average of the energy deflators from the

NBER-CES Database.

5 Trends in Energy Use and Prices

This section reports descriptive statistics and discusses trends in energy intensity and the produc-

tivity of energy relative to labor. We highlight trends in energy intensity using microdata for a

longer time period than previous studies (Linn, 2008; Levinson, 2021; Huntington, 2010; Metcalf,

2008) and estimates of the trend in relative energy productivities based on less aggregated data

(Hassler et al., 2012).

Appendix Table A.1 presents summary averages on manufacturing inputs and outputs sepa-

rately for all industries and excluding industries which use energy sources other than electricity

in important ways (i.e., including only industries for which electricity accounts for at least 70% of

total energy expenditures). Overall, plants consume approximately 0.2 kWh of electricity, 0.1 kg

of CO2, and 0.001 million BTU per dollar of revenue, with about 10% higher energy usage in the

electricity-intensive subsample. On aggregate, current electricity prices are slightly lower than the

prices that plants paid in their entry year.

These summary averages mask important heterogeneity in energy prices over the 1976-2011 time

period. Figure 2 shows that electricity prices paid by the industrial sector vary widely, generally

trending downward until the late 1990s before increasing back to their 1976 level. These changes

in electricity prices track the trends in the prices of raw fuels used to generate electricity, shown

in Appendix Figure A.3. Since 1976, petroleum prices have tripled, while coal and natural gas

prices have risen less steeply over this same time period. These fuel price increases appear to have

contributed to important changes in the mix of fossil fuel mix used to generate electricity. Appendix

15



Figure A.4 shows that the contributions of coal, natural gas, and petroleum to generating electricity

vary substantially across the U.S. at the start of our sample in 1976, while Appendix Figure A.2

shows that this distribution has changed over the past four decades.12 As a plausible consequence of

the rising price of oil, the use of petroleum in electricity generation has declined almost everywhere

and is barely used at all today. Coal use has also declined, though less steeply than oil, while

natural gas generation has increased substantially after the fracking boom in the 2000s.13

Manufacturing energy intensity has also changed in the last four decades. Figure 3.a shows

that aggregate electricity intensity has declined by approximately 30% since 1976, with comparable

changes in CO2 and BTU intensities.14 Some of this reduction is attributable to energy efficiency

improvements, while manufacturing has also shifted toward producing less energy-intensive products

locally and more energy-intensive goods abroad (NAM, 2014). New technologies have also become

more energy-efficient over time (Linn, 2008). Of course, if lock-in is important, then we expect that

some of this decline could also be driven by the exit of more energy-intensive plants that entered

the market at low energy prices.

Conversely, the relative productivity of energy inputs shows no significant trend over most of

this time period. The time series of estimated energy productivity relative to labor productivity,

shown in Figure 3.b, is relatively constant, with a decline beginning in the mid-2000s. This trend

implies similar growth in the productivities of labor and energy inputs over much of this time

period. Meanwhile, the total factor productivity trend in this figure shows that the productivity

of all inputs has more than doubled over this time period. This total factor productivity trend is

consistent with prior work using conducted over shorter time periods using similar data (Greenstone

et al., 2012).

Overall, this discussion highlights that manufacturing plants beginning production in different

years face very different initial electricity prices. We now test whether these price differences have

12Appendix Figure A.5 summarizes the fuel mix changes at the state-level.
13We focus on electricity prices as opposed to composite indices of electricity and any other energy sources used

for two reasons. First, plant-level prices of these inputs are available only approximately every four years, for a
small subset of our full sample. As a result, we almost never observe entry-year prices for energy sources other than
electricity, which requires that a plant is surveyed in the MECS or ASM Fuel Trailers in its entry year. Second,
electricity accounts for over 95% of BTUs of energy consumed on average and therefore captures most energy used.

14Consistent with out results, Linn (2008) and Levinson (2021) document declining energy intensity of manufac-
turing production over approximately half of our time period. Huntington (2010) and Metcalf (2008) additionally
find similar trends using sector- and state-level data, respectively. The CO2 and BTU intensity measures in Figure
3.a are more highly variable since these are surveyed less frequently and on fewer plants than the electricity measures.
In Appendix E, we show that including or excluding periods covered by the different energy surveys (i.e., MECS and
ASM Fuels Trailers) and imputed values in intervening years doesn’t change the results of our analysis below.
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led to persistent differences in energy intensity and productivity.

6 Econometric Model

6.1 Instrumental Variables Analysis

To quantify technology lock-in and its causes, we assess whether the electricity prices that manu-

facturing plants pay in their entry year are important determinants of subsequent energy usage and

relative energy productivity. We estimate the following equation:

yit = β0pit0 + β1pit + αjs + τjtt0 + ϵit (2)

In this equation, yit is an energy outcome for plant i in year t (i.e., the log of energy use per dollar

of revenue E
Rit

or the log of relative energy productivity ωE
it ), pit0 is the log of the average price of

electricity in the year t0 that plant i enters the market, and pit is the log of the average price of

electricity paid by plant i in year t. Industry × state fixed effects αjs control for time-invariant

characteristics common to industry j in a given state s, such as geography, industry × year × entry

year fixed effects τjtt0 control for time-variant changes that affect all plants in a given industry that

entered the market in the same year, such as availability of new technology, and ϵit is the error

term. We cluster standard errors at the state-level throughout and we weight regressions using the

Census sampling weights to obtain estimates that are representative of the entire market.

The main parameter of interest in equation (2) is β0, which measures the effect of initial elec-

tricity prices on current energy intensity or current (relative) energy productivity. The second

parameter of interest, β1, measures the effect of contemporaneous electricity prices on these out-

comes. If technology lock-in is important, we expect initial electricity prices to affect current energy

usage E
Rit

even conditional on current electricity prices (i.e., β0 < 0 in models where energy intensity

is the outcome variable). In addition, if lock-in arises through persistent differences in the relative

productivity of inputs, then we also expect higher initial electricity prices to lead to higher pro-

ductivity of current energy inputs relative to labor inputs ωE
it (i.e., β0 > 0 in models where relative

energy productivity is the outcome variable).

Even conditional on the fixed effects, it is possible that omitted variables or measurement error

could introduce bias into the OLS estimation of the price elasticities β0 and β1. For example,
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textbook reverse causality would arise if unobserved shocks to plants’ aggregate energy demand

(e.g., new demand for certain products) also affect electricity prices, leading to estimates of the price

elasticities that are biased upward (i.e., less negative). In addition, plants’ entry-year electricity

prices are, in some cases, measured with error: if a plant is not surveyed in its entry year, we

approximate its initial electricity price using the average of other entrants in the same state, industry,

and year. As a result, the effect of entry-year prices may be biased toward zero.

To address these concerns, we construct instrumental variables Zst to isolate changes in plants’

electricity prices that are uncorrelated with other shocks to energy intensity. These Bartik-style

shift-share instruments isolate exogenous variation in electricity prices using the interaction of his-

torical state electricity generation shares and current national fuel prices (Ganapati et al., 2020).

Specifically, the instruments are:

Zst = [ρ−s,f,t × σs,f,1976] (3)

where σs,f,1976 is the share of total fuel expenditure of each fuel in electricity generation in state s in

1976, for each fuel f ∈ {coal, natural gas, petroleum oil}, and ρ−s,t,f is the mean of all other states’

log fuel price in year t. The intuition underlying these instruments is that a plant’s electricity price

will be more strongly affected by changes in national fuel prices if the electricity sector in its state is

more dependent on this fuel source.15 Appendix Figure A.3 shows that there is significant variation

in the prices of these fuels between 1976 and 2011, while Appendix Figure A.2 shows that changes

in these prices will differentially affect some states more than others. We find that the instruments

are strong predictors of electricity prices (Table 1).16

The identifying assumption is that plants’ differential exposure to changes in national fuel prices

are uncorrelated with other production shocks, conditional on the variables in the model:

E[Zst × ϵit|αjs, τjtt0 ] = 0 (4)

For example, the inclusion of industry × year × entry year fixed effects controls for annual macroe-

conomic conditions that could affect both plant’s production choices and national fuel prices.17 The

15We focus on electricity generation shares from fossil fuels that are traded in commodity markets, as opposed to
fuels without clearly defined market prices (e.g., hydro and nuclear generation).

16In practice, electricity in the U.S. is distributed within electric power markets that correspond roughly to groups
of states. As a result, variation in fuel generation shares is smaller than suggested by these maps due to intra-regional
trade. Despite this, we still find that our state-level instruments are strongly predictive of plant electricity prices.

17Specifically, industry × year × entry year fixed effects control for e.g., annual shocks that are common to all
cement plants that opened in 1990. The geographic clustering of entrants in specific industries reduces concern
about exposure to state × year variation since our instrument precludes the inclusion of state × year fixed effects.
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identifying assumption would be violated if states’ fuel generation shares in 1976, which determine

exposure to national fuel prices changes, are correlated with other factors that affect plants’ pro-

duction decisions. The availability of skilled labor, for instance, is one such factor that could be

correlated with shocks to plants’ labor demand. We assess the validity of the identifying assump-

tion by examining whether state fuel electricity generation shares are correlated with available state

characteristics related to input use that could suggest other channels through which the instruments

could affect the outcomes of interest (Goldsmith-Pinkham et al., 2020).18 Reassuringly, Appendix

Table A.4 shows no evidence of significant systematic relationships between state fuel shares and

these characteristics, which supports the identifying assumption.19 Appendix D discusses this indi-

rect test of instrumental exogeneity in greater detail.

In equation (2), both current electricity prices pit and initial electricity prices pit0 are potentially

endogenous. We therefore include instruments Zst based on the contemporaneous fuel prices mea-

sured at t as instruments for log current prices pit and Zst0 based on the fuel prices in the year t0

when the plant opened as instruments for log initial prices pit0 . Specifically, the first stage regression

equation for current prices pit is:

pit = γ1Z
coal
−s,t + γ2Z

gas
−s,t + γ3Z

oil
−s,t + γ4Z

coal
−s,t0

+ γ5Z
gas
−s,t0 + γ6Z

oil
−s,t0

+ αjs + τjtt0 + ψit (5)

and the first stage regression equation for initial prices replaces pit0 as the outcome variable.

In some specifications, we also examine whether the importance of initial prices depends on the

plant’s age. To do so, we extend equation (2) by interacting the log of initial electricity prices with

the age of the plant in years:

yit = β0pit0 + β1pit + β3pit0 × ageit + αjs + τjtt0 + ϵit (6)

In these heterogeneous effects models, we also include the interaction of the shift-share instruments

Zst0 with the variable age in the first stage.

Appendix Tables A.7 and A.8 shows that the results are robust to the inclusion of state × year trends.
18Jaeger et al. (2019) highlight the importance of controlling for dynamic adjustments to past shocks when using

Bartik-style instruments for causal inference. Our inclusion of both initial and current electricity prices in the
regression equation (2) addresses this issue.

19Data on state characteristics are from the Federal Reserve Bank of St Louis database (FRED) and the 5 percent
sample of the Integrated Public Use Microdata Series (IPUMS) of US Census Data. We examine the correlation of
fuel shares with state characteristics in 1980, rather than in 1976 when our Bartik weights are measured, because
1980 is the closest year for which American Community Survey data from IPUMS are available.
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6.2 Production Function Estimation

To separately recover plants’ total factor and energy-augmenting productivity shocks, we estimate

a model of plants’ production decisions. We apply approaches measuring labor productivity relative

to other inputs to energy instead (Demirer, 2020; Doraszelski and Jaumandreu, 2018).

As discussed in Section 3, we use a constant elasticity of substitution (CES) production function,

which is sufficiently rich to allow for complementarity between inputs and factor-specific produc-

tivity while remaining empirically tractable. Plant i produces revenue in year t according to:

Yit = exp(ωH
it )
(
βKK

σ−1
σ

it + L
σ−1
σ

it + (exp(ωE
it )Eit)

σ−1
σ

) νσ
σ−1

× exp(ϵit)

where σ and ν are respectively the elasticity of substitution and returns to scale, ωH
it is the Hicks-

neutral total factor productivity, and βK and ωE
it are the productivity of capital and energy inputs

relative to labor inputs, respectively.20 The two productivity shocks ωH
it and ωE

it are known by the

plant when it chooses inputs, whereas ϵit represents unanticipated randomness in the output of the

production process.21

In each period, plants choose their static inputs (i.e., labor Lit and energy Eit), given their

capital stock Kit, productivity draws, and prices to maximize their profits:

max
L,E

pY Y (L,E;Kit, ω
H
it , ω

E
it )− witL− pEitE

where wit and p
E
it are the prices of labor and electricity, respectively. By taking the log of the ratio

of the first-order conditions for profit maximization we obtain the expression:

lit − eit = −σ(wit − pEit) + (1− σ)ωE
it (7)

Given the elasticity of substitution σ, equation (7) allows us to obtain the energy-augmenting

productivity shocks ωE
it from the (log) ratios of static inputs and their prices. Intuitively, if labor

and energy are complementary inputs (i.e. σ < 1), then conditional on prices a higher ratio of labor

to energy inputs implies a higher relative productivity of energy.

20Note that the levels of factor-specific productivities are not separately identifiable from total factor productivity,
so without loss of generality we normalize labor productivity to one and express energy and capital productivities
relative to labor productivity.

21For example, unscheduled maintenance or deviations from anticipated product defect rates could introduce
unanticipated production fluctuations.
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Conditional on knowing ωE
it , we can then recover total factor productivity, ωH

it , from the first-

order condition for energy, given the values for the rest of the production functions’ parameters. As

in Ackerberg et al. (2015), estimation proceeds based on moment conditions formed by the evolution

of these two productivity shocks. We assume that both productivity shocks follow AR(1) processes:

ωH
it = αH + βHω

H
it−1 + ξHit

ωE
it = αE + βEω

E
it−1 + ξEit

where the productivity shocks ξHit and ξEit are unknown by plants at time t − 1, and therefore

uncorrelated with lagged inputs.

We estimate the model separately for each industry as follows. First, we take candidate pa-

rameters of the production technology, θ̃ = (σ, ν, βK), and use these to recover the productivities

ωH
it , ω

E
it from each plants’ input choices in each year. Second, we estimate the parameters of the

AR(1) processes by ordinary least-squares to obtain the productivity innovations ξHit and ξEit . We

then form moments based on these innovations:

E[ξHit Zit] = 0

E[ξEitZit] = 0

where Zit are a set of instruments. The timing of decisions and the Markov structure for produc-

tivity shocks implies that all past input choices are uncorrelated with the productivity innovations

ξHit and ξEit , allowing us to use lagged (log) inputs, lit−1, eit−1, and kit−1, and lagged wage and

electricity prices, wit−1 and pEit−1 as instruments. This forms a total of 10 moments, collected in

the vector g(Xj, θ), where j flattens the time and plant indices. These lagged-input instruments,

and the identifying assumption that past inputs and prices are determined before and do not affect

the unanticipated innovations to productivity, are standard in the production function literature

(Ackerberg et al., 2015; Doraszelski and Jaumandreu, 2018; Olley and Pakes, 1996).22

For each four-digit NAICS industry, we obtain estimates θ̂ and standard errors using the two-

step generalized method of moments (GMM) estimator (Hansen, 1982). We minimize the objective

22Physical productivity can be recovered as a rescaling of revenue productivity given information on prices and
market structure (Allcott et al., 2016). Plant-level microdata on physical outputs are limited in most commonly used
producer survey data (Allcott et al., 2016; Greenstone et al., 2012; Ryan, 2018).
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function:

C(θ, ·) =

(
1

N

N∑
j=1

g(Xj, θ)

)′

Ŵ

(
1

N

N∑
j=1

g(Xj, θ)

)

where g(Xj, θ) are 10x1 vectors defined above and the weight matrix Ŵ is the inverse covariance

matrix obtained using the initial parameters θ̂0 from the minimization of the objective function

using the identity matrix as the weight matrix.

Overall, we find that our estimates of the production function parameters have reasonable signs

and magnitudes and are comparable to estimates in the literature using CES or nested CES func-

tional forms, with or withour energy as a separate input (e.g., Doraszelski and Jaumandreu (2018);

Hassler et al., 2012; Ryan, 2012). Appendix Table A.5 shows that we find that capital, labor, and

energy are strongly complementary; our average estimate of σ is around 0.25.23 Our estimate of

the returns to scale parameter ν, which is around 0.65, is also consistent with estimates from the

literature.24 In what follows, we focus on the our estimated relative energy productivity and total

factor productivity measures (shown in Figure 3), and their relationship with initial and current

energy prices.

7 Results

7.1 Energy Intensity

First, Table 1 shows that weighted national fuel prices are strongly predictive of both entry-year and

current electricity prices, respectively in Columns 1 and 2. These results form a strong first stage

for the instrumental variables analyses. The parameters are the effects of a 1% change in fuel prices

on electricity prices if a state generated 100% of its electricity from this fuel source. Coal prices

are the most important determinant of entry-year electricity prices, and are approximately four to

five times as important as natural gas and petroleum prices (Column 1). If a state generated its

electricity entirely from coal in 1976, then a 10% increase in coal prices in a plant’s entry year would

23There are relatively few estimates of CES production function parameters involving energy inputs. Our results
are comparable to Hassler et al. (2012) and Ryan (2012), who also estimate a strongly complementary relationship
between energy and other inputs.

24Our ν estimates are smaller than Doraszelski and Jaumandreu (2018)’s estimates of around 0.9 in Spanish data,
which can be explained by the fact that our returns to scale parameter combines the effects of returns to scale and
downward-sloping demand that are separately estimated in this other paper. Doraszelski and Jaumandreu (2018) also
explicitly model research and development using data that is unavailable in the U.S., though Ganapati et al. (2020)
show that endogenizing productivity does not appreciably change Cobb-Douglas estimates of U.S. manufacturing
productivity.
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increase its entry-year electricity price by approximately 2.2%. In practice, the state average 1976

coal share is approximately 0.40, and so a 10% increase in coal prices increases electricity prices by

0.9%.25 Reassuringly, fuel prices in the future are not predictive of entry-year electricity prices in

the past, which provides some placebo evidence that it is energy prices in a plant’s entry year that

are important. Initial fuel prices have small effects on current electricity prices, possibly reflecting

some stickiness in electricity prices paid by plants, but current fuel prices become significantly

more important (Column 2). Contemporaneous natural gas prices have the largest effect on current

electricity prices, reflecting the shift toward natural gas electricity generation in recent years shown

in Appendix Figure A.5. Ganapati et al. (2020), who examine the effects of contemporaneous fuel

prices on manufacturing marginal costs, similarly highlight the importance of natural gas as a recent

determinant of manufacturing costs.

Table 2 presents our first evidence of technology lock-in. This table shows that both initial

and current fuel prices have significant effects on current energy intensity. We consider effects on

four different measures of energy intensity. Column 1 measures energy intensity using electricity

consumed (in kWh) per dollar of revenue, which accounts for most energy use by manufacturing

plants. Column 2 focuses on this same measure of energy intensity in “electricity-intensive indus-

tries”, excluding industries that spend more than 30% of total energy expenditures on other sources

of energy. This alternative measure focuses on plants with limited ability to substitute to other

energy sources in response to electricity price changes. Columns 3 and 4 use kg CO2 and million

BTU per dollar revenue as measures of total energy intensity, respectively. These last two measures

include energy from other energy sources and therefore account for changes in energy intensity due

to any substitution between these.

We find consistent results across each of these measures of energy intensity. In all models

in Table 2, the current natural gas price has a larger impact on current energy intensity than

contemporaneous coal or petroleum prices, which is indicative of the recent shift toward natural gas

electricity generation after the fracking boom in the 2000s. The precisely estimated zero effect of

current petroleum oil prices is consistent with the limited use of petroleum in generating electricity

today, shown in Appendix Figure A.2.26 By contrast, despite the declining roles of petroleum and

coal in electricity generation, entry-year coal and petroleum prices have persistent effects on energy

25Appendix Table A.4 shows the 1976 state fuel generation shares that can be used to adjust the parameters in
Table 1 to interpret them as elasticities.

26Comparing Appendix Figures A.2 and A.5 shows that most states generating electricity using petroleum oil in
1976 substantially reduce their use of it by 2011.
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intensity. This is lock-in: the prices of these fossil fuels continue to affect plants’ energy intensity

even after the economy has transitioned to other fuel sources. The elasticity of energy intensity

with respect to entry-year coal prices is more than twice the current natural gas price elasticity

even before accounting for the higher 1976 coal generation share. These results underscore that

the continued expansion of coal power capacity, particularly in developing countries, could lead to

higher manufacturing energy intensity even if these economies eventually transition to cleaner fuel

sources.

This evidence of lock-in is also apparent in both the OLS and instrumental variables analyses

of the effects of initial and current electricity prices on energy intensity (Table 3, Panels A and B

respectively). In both analyses and across our four energy intensity measures, entry-year electricity

prices have significant effects on energy intensity in subsequent years. In our preferred IV specifi-

cations, the initial price elasticity is between -0.14 and -0.35, which is approximately 25% of the

elasticity with respect to current electricity prices. As a result, failing to price carbon in plants’ en-

try year leaves an average of 25% of the energy-reduction benefits on the table. The price effects on

energy intensity measures that include and exclude other fuel sources are similar, plausibly because

electricity comprises approximately 95% of thermal energy consumed on average. We highlight that

the inclusion of industry × year × entry year fixed effects controls for plant vintage within each

industry, so that the estimates comprise the effect of changes in the price of electricity for plants

with the same technologies available to them when they entered.

The initial electricity price elasticity is larger in magnitude in the IV models than in the OLS

models, consistent with measurement error in the entry-year electricity prices that are annual av-

erages across entrants in each industry and state if a plant is not surveyed in its entry year. Such

measurement error biases the estimates against finding evidence that initial electricity prices are

persistent. The elasticity of energy intensity with respect to current electricity prices is about -0.80

(i.e., relatively elastic), suggesting that plants do respond to current electricity price changes in the

presence of lock-in. This estimate is similar in sign, magnitude, and precision in both the OLS and

IV models; current electricity prices are always measured at the plant level and are therefore less

likely to be subject to measurement error in the OLS estimates.27 Appendix Table A.7 shows that

27Our estimated elasticity of energy intensity with respect to current electricity prices is somewhat larger than
estimates in Linn (2008) using different variation based on fixed weight price indices as instruments for energy prices.
Appendix Table F shows that our estimates of the effects of current prices on quantity of electricity purchased, rather
than intensity, are within the range of elasticity estimates in the literature for industrial consumers (Blonz, 2021;
Paul et al., 2009). We are unaware of any estimates of entry-year price elasticities against which to compare ours.
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both our initial and current price elasticities are robust to estimation using different covariates,

data subsamples, and electricity price data sources. We discuss these other estimates in Appendix

E. Since entry decisions may be made before a plant enters, we also show in Appendix Table A.10

that we obtain almost identical estimates if we use the electricity price in the year before a plant

enters.

We find limited evidence that the importance of entry-year electricity prices declines as plants

age, suggesting that lock-in is persistent (Table 6, Columns 1-3). Each additional year of operations

reduces the entry-year price elasticity by 4%, though for most energy intensity measures this small

effect of age is not statistically distinguishable from zero. At this rate, it would take 25 years for

the effect of entry-year prices to fade, which Appendix Table A.3 shows is 10 years longer than the

average plant lifetime of 15 years. Any decline in the average importance of entry-year prices could

be due to plants’ gradual investments in energy efficiency improvements or due to changes in entry

and exit; the IV estimates combine both of these effects for surviving plants, providing an upper

bound on plants’ ability to respond to price changes and mitigate lock-in without ceasing operations.

We turn now to assess the effects of initial electricity prices on the productivity of plants’ inputs to

understand the extent to which capital adjustment costs and underlying technological differences

can explain the persistent effect of electricity prices.

7.2 Productivity

Table 4 begins to show that initial energy prices lead to persistent differences in plants’ production

technologies. This table uses as outcome variables the relative productivity of energy inputs com-

pared with labor inputs and the total factor productivity that we estimate following the procedure

outlined in Section 6.2. Columns 1 and 2 show that both initial and current raw fuels prices have

long-run effects on the energy bias of technological change, for all industries and electricity-intensive

industries respectively. Plants that enter when petroleum or coal prices are high consistently use

their energy inputs more efficiently relative to their labor inputs: a 10% increase in the entry-year

price of one of these raw fuels increases energy productivity by 0.7% and 0.1%, respectively.28 Simi-

larly to our energy intensity results, we find that contemporaneous natural gas prices are important

determinants of relative energy productivity. Conversely, the effects of initial and contemporaneous

fuel prices on total factor productivity are an order of magnitude smaller and are generally statisti-

28Similarly to Table 2, we adjust the energy elasticity estimates in Table 4 by the average 1976 fuel generation
shares in Appendix Table A.4 to arrive at the average weighted elasticity.
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cally indistinguishable from zero: higher entry-year raw fuel prices bias technological change toward

energy relative to labor, but do not affect total factor productivity in meaningful ways.

Turning to the OLS and instrumental variables estimates of the effects of electricity prices on

productivity, we again find evidence of lock-in of plants’ productivity bias (Table 5). Plants that pay

higher electricity prices in their entry year exhibit persistently higher energy productivity relative to

labor productivity, both in the OLS estimates (Panel A) and in the instrumental variables estimates

(Panel B). We again find instrumental variables estimates of the relative energy productivity effects

in that are larger in magnitude than the OLS estimates, consistent with measurement error in initial

electricity prices. Focusing specifically on our preferred instrumental variables estimates, we find

that a 10% increase in entry-year electricity prices increases relative energy productivity by 3%,

with no effect on total factor productivity. Taken together, this pattern of results indicates that

plants that begin operations at higher electricity prices are not only using fewer energy inputs per

dollar of revenue, as we showed above; they are also using these inputs more efficiently.29

The responses of energy-specific productivity to entry-year and current electricity prices is also

evidence of directed technical change. Higher entry-year prices encourage adoption of more energy-

efficient production processes, but contemporaneous energy productivity also improves relative to

other inputs if prices subsequently increase. However, entry-year electricity prices are almost as

important as contemporaneous ones: the elasticities are statistically indistinguishable in Table

5. The overall effect of entry-year electricity prices on relative energy productivity is more than

five times as large as the same increase in coal transport costs on relative coal capital investment

(Meng, 2021) and the effects of air pollution regulation on manufacturing total factor productivity

(Greenstone et al., 2012). These economically meaningful estimates highlight the important role of

higher energy prices and, by extension, carbon pricing policies in directly incentivizing reductions

in energy use.

Our results suggest that persistent differences in the relative productivity of energy inputs chosen

at entry can fully explain why technology lock-in arises. The magnitudes of the relative energy

productivity effects of initial electricity prices are slightly larger and statistically indistinguishable

from the effects on energy intensity in Table 3.30 An implication therefore is that the contribution

29Recall that the energy productivity estimate gives the relative productivity of energy inputs to labor inputs, and
hence alone does not indicate an overall increase in energy productivity.

30The estimates on levels of energy use, rather than intensity, shown in Appendix Table A.6 suggest that much of
the response of energy intensity is in fact driven by changes in energy usage.
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of capital adjustment costs to creating lock-in appears to be comparatively small on average.31

Relative to the model results in Figure 1 and Appendix Figure A.1, our estimate of the effect of

entry-year electricity prices on energy intensity is analogous to slope of the curve showing total

lock-in for plants facing capital adjustment costs (i.e., the short-dashed curve), averaged across

plants. The similar magnitudes of our energy intensity and energy productivity elasticities suggest

that energy intensity and energy productivity respond to changes in entry-year electricity prices

approximately one-for-one, so that the curve measuring the energy intensity of incumbents absent

capital adjustment costs lies very close to the curve measuring total lock-in in these figures (i.e.,

the solid and short-dashed curves, respectively).

In Appendix Table A.6, we also show estimates of the effects of entry-year electricity prices on

quantities of energy inputs consumed, as opposed to energy intensity; we find that these effects

can also be explained by persistent differences in relative productivity, though are somewhat less

precisely estimated than the intensity elasticities. We discuss these estimates in more detail in

Appendix E, and Appendix Table A.8 discusses the robustness of the elasticity estimates to the

use of different covariates, data subsamples, and data sources. The results using these alternative

models are similar in sign, magnitude, and precision to our main estimates, as are estimates that

account for a potential lag between the decision to open and the first year of operations (Appendix

Table A.11).

Similarly to the energy intensity results, we find that the effects of entry-year electricity prices

on relative energy productivity persist throughout a plant’s lifetime. Table 6 shows that there is

limited evidence of a decline in the effects of initial electricity prices as plants age; an additional year

of operations reduces the effect of entry-year electricity prices on relative energy productivity by 2%.

These results indicate significant path dependence in the productivity bias of energy inputs and the

importance of correctly aligning plants’ incentives when they choose their production technologies.

The effects of entry-year electricity prices on energy intensity and energy productivity do not

appear to be driven by any single industry. Appendix Table A.9 examines heterogeneous effects

of entry-year electricity prices on these outcomes for eleven major industry groups (Doraszelski

and Jaumandreu, 2018). Appendix G discusses these heterogeneity results in more detail, but a

31The non-linearity of capital adjustment frictions implies that there may be heterogeneous effects depending on
the size of the price change. The difference between lock-in for a plant facing adjustment costs and for a hypothetical
plant with fully flexible capital is non-monotonic in the price change, and largest for plants which are close to the
threshold at which paying fixed adjustment costs is optimal. This implies that targeted capital adjustment subsidies
are likely to be more effective than ones applied to all firms.
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key take-away is that lock-in appears to be important in all of these industries. These results also

suggest that the effects of entry-year electricity prices are not meaningfully different in industries

that do and do not use fuel feedstocks in important ways.

8 Discussion and Implications for Climate Policy

Overall, we find robust evidence of technology lock-in: entry-year electricity prices are important

determinants of lifetime manufacturing energy use, given plants’ expectations of future prices. It is

worth noting that these lock-in elasticity estimates are agnostic about plants’ beliefs about future

prices, and their interpretation does not require taking a stand on what these beliefs actually are.

Indeed, Appendix Figure A.1 shows that lock-in arises in both extreme cases of perfect foresight

and complete ignorance about future price changes. These simulation results do suggest that com-

mitment to carbon pricing could reduce current energy intensity by correctly aligning plants’ beliefs

about the future path of electricity prices for plausible carbon tax magnitudes; prior research finds

similar anticipation results for other U.S. environmental regulation (Clay et al., 2021). For moder-

ate price changes, energy intensity of incumbents with perfect foresight is below energy intensity of

incumbents who do not anticipate future price changes (Appendix Figures A.1.a v. A.1.b), though

delaying even anticipated carbon pricing creates lock-in due to discounting of higher energy costs

in the future in favor of lower investment costs today. For large, unanticipated price changes, the

most locked-in plants close.

There are at least three reasons why our lock-in estimates may be lower bounds on the effects

of entry-year electricity prices on subsequent energy efficiency. That is, the estimates may under-

estimate the ability of plants to respond to a carbon tax without ceasing operations. The first

reason is related to the closure of the most locked in plants in response to price changes. Our effects

are measured on surviving plants, and therefore exclude the plants that exited (or did not enter)

in response to higher electricity prices. The effects that we estimate combine adjustment through

investment and through entry and exit; if a majority of improvements in average energy efficiency

are due to changes in entry and exit, then this means that the ability of individual plants to adjust

their energy use through investment while operating is more limited than our estimates suggest.

Second, our use of revenue-based total factor productivity measures also understates the effects

of energy prices compared with measures based on quantity produced. Revenue-based productivity

measures are standard in the literature due to limitations of most plant-level data sets, which
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typically do not collect detailed output price and quantity data (Allcott et al., 2016; Ganapati

et al., 2020; Greenstone et al., 2012). When marginal costs rise as energy becomes more expensive,

standard theory predicts that plants with market power will increase prices for their products and

reduce quantities supplied. The revenue-based productivity measures capture any negative effects

of increasing energy costs as well as any positive price change, which could cause us to understate

the effect of electricity prices on total factor productivity.

Third, we investigate the persistent effects of short-run electricity price variation resulting from

year-on-year variation in raw fuels prices. Conversely, a goal of carbon pricing is to implement long-

run increases in electricity prices through policy. The responses to the short-run price variation

that we study are consistent with plants’ basing their best guess of electricity prices tomorrow on

observed electricity prices today (i.e., with plants believing that prices follow a random walk).32

Our lock-in estimates again may understate the energy efficiency effects of sustained commitment

to higher electricity prices because plants may install more energy-efficient technology with the

knowledge that prices may be higher for many years in the future.

The existence and nature of technology lock-in have several meaningful implications for climate

policy. A first key take-away is that delayed action on carbon pricing comes at the expense of

significant energy efficiency gains. Timely implementation of carbon pricing is one policy that

could incentivize early and persistent reductions in industrial energy use. Our elasticity estimates

suggest that a given plant’s energy intensity falls by 2-2.5% through its lifetime for every 10%

increase in entry-year electricity prices. This price increase is roughly equivalent to the change

resulting from a carbon tax on the U.S. electricity sector of 28 $/metric ton CO2, or about half of

estimates of the social cost of carbon used in government policy (Carleton and Greenstone, 2021;

Cleary and Palmer, 2020). The lasting “hysteresis” effect of entry-year prices suggests that such a

carbon tax need not be permanent for reductions in lifetime energy use to occur.

In addition, our results suggest that there appears to be an important role for vintage energy

efficiency regulations. Vintage-differentiated energy efficiency regulations are rarely employed in

manufacturing, but are more common in sectors such as transportation and construction (Jacobsen

and Kotchen, 2013; Levinson, 2021; Stavins, 2006; West et al., 2017). In manufacturing, existing

pollution regulations tend to “grandfather” older plants by exempting them from meeting the latest

32Consistent with this interpretation, we also find that energy intensity and productivity respond similarly to entry-
year electricity prices regardless of whether plants open during increasing or decreasing electricity price regimes, and
that the response to the one-period lag of electricity prices is similar in sign, magnitude, and precision to the main
estimates (Appendix Tables A.10 and A.11).
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standards (Stavins, 2006). By contrast, we show that targeting efficiency mandates or technology

adoption subsidies to manufacturing plants that entered during low energy price regimes could help

reduce persistent differences in energy use created by lock-in.

Finally, the response of energy-specific productivity to entry-year prices suggests that directed

technological change could play an important role in reducing industrial energy use. One possible

way to improve the productivity of energy inputs is through subsidies for energy-specific research

and development, which Casey (2022) shows advance new energy-efficient technologies that reduce

industrial energy use. Given the persistence of entry-year technologies’ energy productivity, creating

new technologies that use energy more productivity and then incentivizing their initial adoption

could reduce plants’ lifetime energy use in important ways.

9 Conclusion

This paper provides new evidence of technology lock-in in the manufacturing sector and analyzes

its causes and consequences. Using 35 years’ worth of U.S. Census microdata, we show two main

ways in which technology lock-in arises. First, we estimate that the prices of fossil fuel inputs into

electricity generation have persistent effects on manufacturing plants’ energy usage—even after the

use of these fuels has declined. Second, we show that the prevailing electricity price in a plant’s

entry year affects their energy usage throughout their lifetime: plants that are established when

electricity prices are low, below the full social cost of energy consumption, consume more energy in

subsequent years. On average, we estimate that at least 25% of the energy reductions benefits from

carbon pricing are lost by failing to implement these policies in a plants’ entry year.

By estimating plant-level total factor productivity and the relative productivity of energy to

labor, we demonstrate that an initial and persistent effect of electricity prices on energy productivity

is a key explanation for this lock-in. Plants may choose not to undertake later energy efficiency

improvements due to capital adjustment costs, but we provide new evidence that their production

functions are also different to begin with. Our results indicate that a 10% increase in entry-year

electricity prices improves the productivity of energy relative to labor by approximately 3% in

subsequent years. Since the analysis focuses on plants that continue to operate and choose to enter

at higher electricity prices, these estimates exclude effects on energy-inefficient plants that cease

operations in response to higher prices. As a result, our estimates plausibly provide a lower bound

on the energy reductions resulting from increasing electricity prices.
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The implications of these results for climate policy are consequential. Ignoring lock-in under-

estimates the benefits of pricing carbon today. In the absence of current commitments to do so,

future policy may have to be more stringent to counteract the current path of energy-inefficient

manufacturing production: small carbon taxes or clean technology subsidies may be insufficient to

incentivize existing plants to reverse sunk and partially irreversible capital investments or otherwise

to exit. Meanwhile, continued expansion of cheap fossil fuel power around the world seems likely

to entrench energy-inefficient technologies and lock in higher emissions levels for many years. A

major push to increase energy efficiency worldwide is a key part of proposals to constrain carbon

emissions to “safe” levels, which will require annual improvements exceeding three times the annual

rate achieved in the last two decades (IEA, 2021). The global trend in increasingly severe natural

disasters suggests that it would be inadvisable to delay further action on climate change policy.
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10 Figures and Tables

Figure 1: Simulated Lock-in
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Notes: This figure shows simulation results for the energy intensity of incumbent manufacturing plants relative to
entrants as a function of their entry-year energy price. The x-axis shows initial energy price as a fraction of the
current price. “Static with exit” shows relative energy intensity in scenarios where plants cannot adjust their capital
stocks after they enter. “Partial capital and exit” shows relative energy intensity in scenarios where incumbents
can re-optimize their capital stock subject to fixed and convex adjustment costs. “Flexible capital and exit” shows
relative energy intensity in scenarios where all inputs can be re-optimized without adjustment costs. Energy intensity
of entrants is normalized to 1.

37



Figure 2: Time Series of Electricity Prices
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Notes: This figure shows the time series of average electricity prices paid by the industrial sector in the United
States. Prices are in 2011 dollars per million British thermal units (BTU).
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Figure 3: Time Series of Energy Intensity and Productivity

Panel A: Energy Intensity Trends

Panel B: Productivity Trends

Notes: This figure shows the time series of average energy intensity (Panel A) and relative energy productivity and
total factor productivity (Panel B) of the manufacturing sector in the United States. Energy intensity is calculated
as electricity consumption (kWh) per dollar of revenue, kg CO2 produced per dollar revenue, and million BTU per
dollar revenue. The productivity of energy inputs is measured relative to labor. Productivities are the authors’
calculations using the estimation procedure outlined in Section 6.2.

39



Table 1: First Stage Effects of Weighted Fuel Prices on Electricity Prices

log(Initial Electricity Pricei,t0) log(Current Electricity Pricei,t)
(1) (2)

Coal Shares,1976 × Current Coal Price−s,t 0.013 0.065*
(0.009) (0.035)

Natural Gas Shares,1976 × Current Gas Price−s,t -0.006* 0.058***
(0.003) (0.012)

Petroleum Shares,1976 × Current Petroleum Price−s,t 0.003 0.012
(0.003) (0.010)

Coal Shares,1976 × Initial Coal Price−s,t0 0.220*** 0.055**
(0.049) (0.023)

Natural Gas Shares,1976 × Initial Gas Price−s,t0 0.056*** 0.011*
(0.012) (0.006)

Petroleum Shares,1976 × Initial Petroleum Price−s,t0 0.036*** 0.019***
(0.012) (0.005)

N 1294000 1294000

Industry × Year × Entry Year Fixed Effects Yes Yes
Industry × State Fixed Effects Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the effects of initial and contemporaneous coal, natural gas, and petroleum prices on the log

of initial and contemporaneous electricity prices. Fuel prices are calculated as the leave-out-mean log price across

states and weighted by the share of each fuel in electricity generation in each state. Electricity prices are measured

in USD per kWh (2011). Regressions are weighted using Census sampling weights. Observation counts are rounded

in accordance with Census disclosure requirements. Standard errors clustered by state are in parentheses.
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Table 2: Reduced Form Effects of Weighted Fuel Prices on Energy Intensity

log(Electricity Intensityi,t) log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t)
Elec-Intensive Industries

(1) (2) (3) (4)
Coal Shares,1976 × Current Coal Price−s,t 0.043 0.055 -0.019 0.073*

(0.031) (0.036) (0.041) (0.039)

Natural Gas Shares,1976 × Current Gas Price−s,t -0.053*** -0.052*** -0.053*** -0.056***
(0.011) (0.012) (0.011) (0.012)

Petroleum Shares,1976 × Current Petroleum Price−s,t -0.000 -0.004 0.001 0.001
(0.009) (0.009) (0.010) (0.010)

Coal Shares,1976 × Initial Coal Price−s,t0 -0.121*** -0.123*** -0.163*** -0.129***
(0.028) (0.031) (0.029) (0.029)

Natural Gas Shares,1976 × Initial Gas Price−s,t0 -0.003 -0.013 0.001 0.002
(0.009) (0.012) (0.008) (0.008)

Petroleum Shares,1976 × Initial Petroleum Price−s,t0 -0.028*** -0.031*** -0.028*** -0.024***
(0.005) (0.006) (0.005) (0.005)

N 1294000 955000 1294000 1294000

Industry × Year × Entry Year Fixed Effects Yes Yes Yes Yes
Industry × State Fixed Effects Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the effects of initial and contemporaneous coal, natural gas, and petroleum prices on the

log of plants’ energy intensity. Electricity intensity is measured in kWh per dollar of revenue, CO2 intensity is kg

CO2 per dollar of revenue, and BTU intensity is BTU per dollar of revenue. Electricity-intensive industries are

industries for which electricity accounts for at least 70% of total energy expenditures. Fuel prices are calculated as

the leave-out-mean log price across states and weighted by the share of each fuel in electricity generation in each state.

Regressions are weighted using Census sampling weights. Observation counts are rounded in accordance with Census

disclosure requirements. All dollar values are in 2011 USD. Standard errors clustered by state are in parentheses.
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Table 3: Effects of Initial and Current Electricity Prices on Energy Intensity

log(Electricity Intensityi,t) log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t)
Elec-Intensive Industries

(1) (2) (3) (4)
Panel A: OLS
log(Current Electricity Pricei,t) -0.851*** -0.831*** -0.824*** -0.807***

(0.012) (0.011) (0.010) (0.009)

log(Initial Electricity Pricei,t0) -0.040*** -0.037*** -0.028*** -0.026**
(0.009) (0.010) (0.010) (0.010)

Panel B: IV
log(Current Electricity Pricei,t) -0.764*** -0.734*** -0.829*** -0.761***

(0.090) (0.104) (0.072) (0.087)

log(Initial Electricity Pricei,t0) -0.165*** -0.232*** -0.289*** -0.144**
(0.051) (0.059) (0.079) (0.059)

K-P F stat 12.1 11.9 12.1 12.1
N 1294000 955000 1294000 1294000

Industry × Year × Entry Year FE Yes Yes Yes Yes
Industry × State FE Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the effects of initial and contemporaneous log electricity prices on the log of plants’ energy

intensity. Models in Panel A are estimated using OLS and models in Panel B are estimated using IV. In IV models,

electricity prices are instrumented using initial and contemporaneous prices for coal, natural gas, and petroleum,

weighted by the share of each fuel in state electricity generation. Electricity prices are measured in dollars per kWh,

electricity intensity is kWh per dollar of revenue, CO2 intensity is kg CO2 per dollar of revenue, and BTU intensity

is BTU per dollar of revenue. Electricity-intensive industries are industries for which electricity accounts for at least

70% of total energy expenditures. Regressions are weighted using Census sampling weights. Observation counts

are rounded in accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard errors

clustered by state are in parentheses.
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Table 4: Reduced Form Effects of Weighted Fuel Prices on Productivity

log(Energy Productivityi,t) log(Energy Productivityi,t) log(TFPi,t) log(TFPi,t)
Elec-Intensive Industries Elec-Intensive Industries

(1) (2) (3) (4)
Coal Shares,1976 × Current Coal Price−s,t -0.088∗ -0.082 -0.035∗∗ -0.034∗

(0.048) (0.051) (0.017) (0.018)

Natural Gas Shares,1976 × Current Gas Price−s,t 0.037∗∗∗ 0.046∗∗∗ 0.012∗∗∗ 0.005
(0.013) (0.012) (0.004) (0.004)

Petroleum Shares,1976 × Current Petroleum Price−s,t 0.008 0.013 -0.010∗∗∗ -0.009∗∗∗

(0.013) (0.012) (0.002) (0.003)

Coal Shares,1976 × Initial Coal Price−s,t0 0.178∗∗∗ 0.171∗∗∗ 0.037∗ 0.041∗

(0.041) (0.044) (0.022) (0.025)

Natural Gas Shares,1976 × Initial Gas Price−s,t0 -0.018 -0.011 0.006∗ 0.011∗∗∗

(0.017) (0.017) (0.004) (0.004)

Petroleum Shares,1976 × Initial Petroleum Price−s,t0 0.035∗∗∗ 0.035∗∗∗ -0.005 -0.002
(0.008) (0.011) (0.005) (0.006)

N 1294000 955000 1294000 955000

Industry × Year × Entry Year Fixed Effects Yes Yes Yes Yes
Industry × State Fixed Effects Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the effects of initial and contemporaneous coal, natural gas, and petroleum prices on the log

of plants’ productivities. Electricity prices are measured in dollars per kWh, energy productivity is the productivity

of electricity relative to labor, and total factor productivity is the productivity common to all manufacturing inputs.

Electricity-intensive industries are industries for which electricity accounts for at least 70% of total energy expendi-

tures. Fuel prices are calculated as the leave-out-mean log price across states and weighted by the share of each fuel

in electricity generation in each state. Regressions are weighted using Census sampling weights. Observation counts

are rounded in accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard errors

clustered by state are in parentheses.
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Table 5: Effects of Initial and Current Electricity Prices on Productivity

log(Energy Productivityi,t) log(Energy Productivityi,t) log(TFPi,t) log(TFPi,t)
Elec-Intensive Industries Elec-Intensive Industries

(1) (2) (3) (4)
Panel A: OLS
log(Current Electricity Pricei,t) 0.881∗∗∗ 0.860∗∗∗ 0.060∗∗∗ 0.060∗∗∗

(0.023) (0.020) (0.007) (0.009)

log(Initial Electricity Pricei,t0) 0.080∗∗∗ 0.093∗∗∗ -0.037∗∗∗ -0.047∗∗∗

(0.019) (0.023) (0.008) (0.012)

Panel B: IV
log(Current Electricity Pricei,t) 0.525∗∗∗ 0.673*** 0.088 -0.017

(0.138) (0.139) (0.127) (0.119)

log(Initial Electricity Pricei,t0) 0.349∗∗∗ 0.319∗∗∗ 0.049 0.124
(0.122) (0.126) (0.077) (0.083)

K-P F stat 12.1 11.9 12.1 11.9
N 1294000 955000 1294000 955000

Industry × Year × Entry Year FE Yes Yes Yes Yes
Industry × State FE Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the effects of initial and contemporaneous log electricity prices on the log of plants’ energy

productivity relative to labor productivity and on the log of plants’ total factor productivity. Models in Panel

A are estimated using OLS and models in Panel B are estimated using IV. In IV models, electricity prices are

instrumented using initial and contemporaneous prices for coal, natural gas, and petroleum, weighted by the share

of each fuel in state electricity generation. Electricity prices are measured in dollars per kWh, energy productivity

is the productivity of electricity relative to labor, and total factor productivity is the productivity common to all

manufacturing inputs. Electricity-intensive industries are industries for which electricity accounts for at least 70% of

total energy expenditures. Regressions are weighted using Census sampling weights. Observation counts are rounded

in accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard errors clustered by

state are in parentheses.
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Table 6: Heterogeneous Effects of Initial Electricity Prices on Energy Intensity and Productivity,
by Plant Age

log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t) log(Energy Productivityi,t) log(TFPi,t)
(1) (2) (3) (4) (5)

log(Current Electricity Pricei,t) -0.871*** -1.136*** -0.903*** 0.739∗∗∗ 0.109
(0.061) (0.097) (0.069) (0.131) (0.096)

log(Initial Electricity Pricei,t0) -0.134** -0.140** -0.076 0.250∗ 0.097
(0.052) (0.061) (0.054) (0.130) (0.095)

log(Initial Electricity Pricei,t0)×Agei,t 0.006** 0.006 0.004 -0.006 -0.010∗∗∗

(0.003) (0.004) (0.004) (0.007) (0.003)

K-P F stat 13.3 13.3 13.3 13.3 13.3
N 1294000 1294000 1294000 1294000 1294000

Industry × Year × Entry Year FE Yes Yes Yes Yes Yes
Industry × State FE Yes Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimated using IV. Electricity prices are instrumented using initial and contemporaneous

prices for coal, natural gas, and petroleum, weighted by the share of each fuel in state electricity generation, and

initial electricity prices × plant age is instrumented using the interaction of the initial weighted fuel prices times age.

Electricity prices are measured in dollars per kWh, electricity intensity is kWh per dollar of revenue, CO2 intensity

is kg CO2 per dollar of revenue, BTU intensity is BTU per dollar of revenue, energy productivity is the productivity

of electricity relative to labor, total factor productivity is the productivity common to all manufacturing inputs, and

plant age is measured in years since entry. Regressions are weighted using Census sampling weights. Observation

counts are rounded in accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard

errors clustered by state are in parentheses.
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Online Appendix

A Multi-period Model Under Alternative Energy Price Ex-

pectations

This section extends the two-period model of myopic plants in Section 3 to include many periods

and alternative expectations about the time path of future energy prices. The results show that the

presence of lock-in does not depend on a particular model of plants’ expectations about future energy

prices. We illustrate the effects of entry-year energy prices on energy intensity in subsequent years

under two polar assumptions about plants’ expectations about future price changes. In the first

scenario, energy price changes are completely unanticipated, in the sense that plants believe that

current prices will persist forever. In the second case, potential entrants have complete knowledge

of future prices. We find that lock-in arises even in this second, perfect foresight case, because

plants discount future price changes relative to current ones in their investment decisions.

As in the model in Section 3, in the multi-period model plants produce output Y using a CES

production function combining capital K, labor L, and energy E according to:

Y (K,L,E;ωH , ωE) = ωH
(
Kρ + Lρ + (ωEE)ρ

) ν
ρ (8)

where ωH is total factor productivity, ωE is energy-specific productivity, ρ is the substitution pa-

rameter, and ν captures returns to scale. In what follows, we assume without loss of generality that

total factor productivity ωH , the output price p, and the wage w are constant and suppress them

in the notation.

In the dynamic multi-period model, plants maximize the expected present discounted value of

future profits, denoted by V , rather than profits π. Otherwise, the plants’ problems are identical

in the multi-period and two-period models. Here, in each period, plants choose inputs to maximize

expected present discounted profits:

V (K, pE, ωE) = max
K′

π̃(K; pE;ωE)− C(K ′ −K) + β[V (K ′, pE ′, ωE)|pE] (9)

where β is the discount rate and π̃ is the solution to the standard static profit maximization problem

46



where static inputs (i.e., labor and energy) are chosen optimally:

max
L,E

Y (K,L,E;ωH , ωE)− pEE − wL

As before, labor and energy are static inputs and capital is a dynamic input with a one-period

time-to-build that evolves according to K ′ = (1 − δ)K + I. Capital adjustment costs C(K ′ −K)

have fixed, constant, and convex components, denoted respectively by γ0, γ1, and γ2. That is, the

cost of investing an amount I = K ′ −K is:

C(I) = 1[I > 0]× (γ0 + γ1I + γ2I
2)

In each period, potential entrants draw an energy productivity shock ωE and observe initial

energy prices pE. Entrants do not pay fixed or convex capital adjustment costs, choosing capital to

maximize V0, the expected present discounted value of profits if they enter:

V0(p
E, ωE) = max

K
π̃(K; pE;ωE)− γ1K + βE

[
V (K, pE ′, ωE)|pE

]
Plants will enter if expected present discounted profits resulting from entry exceed the fixed costs

of entry, F . That is, plants enter if V0(p
E, ωE) > F .

Incumbent plants retain their initial productivity draw and capital stock, observe current prices,

and choose inputs to solve:

V (K, pE, ωE) = max
K′

π̃(K; pE;ωE)− C(K ′ −K) + βE
[
V (K, pE ′, ωE)|pE

]
Incumbent plants will exit if the scrap value of their capital is greater than their expected future

profits, so that V (K, pE, ωE) < γ1K.

In the numerical example, we solve the model assuming, first, that energy price changes come as

a surprise to plants and, second, that energy price changes are perfectly anticipated. We suppose

that the price of energy changes from pE to pE ′ in the second period and model plants’ beliefs about

this price change as:

Pr(pE ′ = 1) = λ

Pr(pE ′ = pE) = 1− λ
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Normalizing p′E = 1 in the second period, λ = 0 then corresponds to perfect surprise and λ = 1 to

perfect foresight.

We analyze the same three capital adjustment cost structures as in Section 3. The extreme

cases bound the role of capital adjustment costs in creating technology lock-in: fixed capital, with

infinite fixed capital adjustment costs γ0, and flexible capital, with no fixed or convex adjustment

costs (i.e., γ0 = γ2 = 0). In the third, more realistic scenario, we allow partial capital adjustment,

with fixed, constant, and convex adjustment costs parameterized as γ0 = 0.1, γ1 = 1, and γ2 = 0.02,

respectively. We draw energy productivity ωE from a uniform distribution U [0, 8] and we set total

factor productivity ωH = 4, returns to scale ν = 0.9, and substitution parameter ν = −2 (i.e.,

complements) for all plants. These parameters are quantitatively similar to our estimates in the

data. In addition, we set the depreciation rate equal to zero, fixed entry cost equal to 4, and

discount rate equal to 0.5 for illustration.33

Appendix Figure A.1 shows the results of these model simulations, highlighting that technology

lock-in arises even if plants have perfect foresight about future energy price changes (Panel A). In a

parallel manner with Section 3, the three downward-sloping lines show the relative energy intensity

of incumbents compared with entrants under three different assumptions about the structure of

capital adjustment costs: fixed capital (blue, long dashed line), partial capital adjustment with

fixed and convex costs (orange, short-dashed line), and flexible capital with no fixed or convex costs

(green, solid line). In all instances, entry-year energy prices are important determinants of relative

energy intensity: for moderate price changes, the average incumbent that entered at a low energy

price is more energy-intensive than the average new entrant. With capital adjustment costs, the

least efficient plants are driven from the market for large enough price changes, leading to a decline

in average energy intensity of remaining incumbents. This effect shows up as a non-monotonicity

in the relationship between incumbents’ energy intensity and the relative price of energy today and

at entry.34 As in Section 3, the difference between incumbents plants capable only of partial capital

adjustment (i.e., the orange, short-dashed line) and fully flexible incumbent plants (i.e., the green,

solid line) measures the contribution of capital adjustment costs to creating lock-in.

Panel B shows that lock-in is larger in the case of unanticipated future price shocks: in compari-

son to the perfect foresight model, the difference between the average energy intensity of incumbents

33With both depreciation and fixed costs of capital adjustment, equilibrium output cycles even with constant prices
as capital stocks decrease until falling sufficiently far from optimal that reinvestment is triggered.

34This non-monotonicity is absent in the illustrative two-period model in Section 3 because all plants close at the
end of two periods.
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and new entrants is larger for moderate relative price changes than in the perfect foresight case. As

in the perfect foresight simulation, for large price changes incumbents start to exit the market in

droves, leading to lower average energy intensity of remaining plants compared with entrants as the

least efficient plants exit. This effect is more pronounced than in the case of perfect foresight since

some of these plants would not have entered had they been able to foresee the price change initially.

The distance between the fully flexible incumbent plants and incumbents plants capable only of

partial capital adjustment shows that the exit of incumbents in response to large price changes is

driven by capital adjustment costs. These results underscore that our estimated effects of prices on

average energy intensity may be lower bounds on the lock-in effect.

We conclude this section with a brief discussion of how insights from this highly stylized example

carry over into more general models. For capital adjustment frictions to generate technology lock-

in, it is sufficient that capital and energy are complements in production. The intuition is that an

increase in energy prices lowers the marginal product per dollar of energy, so that plants’ optimal

energy usage falls. If capital and energy are complements, this decreases the marginal product per

dollar of capital and, by extension, the optimal capital stock. If capital can optimally adjust, this

drives further decreases energy inputs. Incomplete capital adjustment will attenuate the reduction

in energy use, resulting in higher energy intensity than for a fully flexible plant. If capital and

energy are substitutes in production instead, this logic would be reversed and capital adjustment

costs would increase plants’ sensitivity to current price changes. Existing literature typically finds

that capital and energy are complements, consistent with our estimates in Section 6.2 (Hassler et al.,

2012; Ryan, 2018).

For energy productivity differences to create lock-in, we require only selection on productivity at

entry and persistence of initial productivity over time. Partial irreversibility of entry costs or capital

investments is one natural way to generate more intense selection for entrants than incumbents.

Large exit subsidies or buyouts for low energy productivity incumbents might result in a higher

productivity threshold for exit than for entry, which would result in the opposite sign for our

estimated entry-year energy price elasticities.

B Data

This section provides details on data sources and construction of the primary variables.

We impose several sample restrictions on the measures of firms’ inputs and outputs in the
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ASM and CMF to reduce measurement error. These restrictions closely follow those imposed in

other papers using the ASM and CMF (e.g., Ganapati et al., 2020). First, we drop observations

for which electricity prices, electricity intensity, capital investment, revenue, labor costs, materials

costs, electricity expenditures, or raw fuels expenditures are missing or negative. Second, we ex-

clude observations for which electricity prices, revenue, labor costs, materials costs, or electricity

expenditures are equal to 0. Third, we exclude imputed administrative records. Fourth, since some

observations still appear to be errors, we drop outliers that have capital stocks, revenue, labor costs,

materials costs, electricity expenditures, or raw fuels expenditures that exceed 100 times the 99th

percentile of the distribution of these variables. Finally, we exclude observations with electricity

prices that are more than ten times or less than one-tenth of the annual median price.

We calculate annual plant-level electricity prices using plants’ reported electricity expenditures

and purchased quantities from the ASM and CMF, but we do not always observe plants’ initial

energy prices since only a subset of plants are surveyed in their year of entry. We match plants

to their own initial electricity prices using unique plant identifiers where possible. If a plant is

not observed in its first year of operations, then we impute its initial electricity price using the

average of entrants in the same year, state, and six-digit NAICS industry. For a small number of

plants, we use the average of entrants in the same year and state since there are no other entrants

in the same industry in the plants’ state and year. We also use these year × state × industry

(or alternatively year × state) electricity prices to define the electricity prices in the year before

a plant enters because we don’t have plant-level electricity prices available before a plant opens.

We consider that a plant opens during a period of increasing electricity prices if the state average

electricity price in its entry year is greater than in the year prior to its entry.

We use the MECS and ASM Fuels Trailers to calculate measures of energy intensity of production

that include other energy sources in addition to electricity. The ASM and CMF include information

on total expenditures on raw fuels, but don’t include information on how these costs are split

between fuels or what quantities are consumed of each. This breakdown is available in the MECS

every three years 1985-1994 and every four years 1994-2014 and in the ASM Fuels Trailers for the

years 1976-1981. In these surveys, we convert quantities of raw fuels consumed to British thermal

units (BTU) using conversion factors from the EIA and to CO2 using data from the EIA where

possible and from the EPA for crude oil, biomass, blast furnace gas, coke oven gas, waste gas,

and acetylene. We calculate the industry × year BTU and CO2 consumed per dollar of raw fuels

expenditure, weighting by the survey weights provided. Expenditures on raw fuels are deflated to
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2011 dollars using the industry’s annual average energy deflator from the NBER-CES Productivity

Database. We exclude fuels used as feedstocks and process emissions in these calculations (Lyubich

et al., 2018). We also exclude “by product” fuels that aren’t associated with well-defined CO2 and

BTU conversion factors.

We use these industry average measures of energy consumed per dollar of energy expenditures

to calculate the total BTU and CO2 implied by each plant’s raw fuels expenditures in the ASM

and the CMF. To do so, we merge the raw fuels coefficients with the ASM and CMF, and linearly

interpolate the coefficients in the missing years separately for each industry. We replace resulting

negative coefficients by 0 for 1% of observations; in these cases, all energy consumed comes from

electricity. We then calculate the BTU and CO2 embodied in raw fuels as the annual industry

average energy coefficient times expenditure on raw fuels in the ASM and CMF, and we calculate

the BTU and CO2 embodied in electricity consumption at the plant level using quantities reported

in the ASM and MECS. The conversion factors for mWh of electricity to BTU comes from the EIA

and the conversion factors for mWh to kg of CO2 come from the EPA’s eGRID, which includes

separate emissions factors by state that consider the energy mix of each state’s electricity grid.

These estimates of BTU and CO2 embodied in energy inputs allow us to calculate measures of

BTU and CO2 per dollar of revenue; these alternative measures of energy intensity complement our

use of electricity consumed per dollar of revenue in the regression analysis. Since some observations

are obvious outliers, we trim the BTU and CO2 intensities that exceed the 99th percentile of the

distribution of values. Our energy intensities are comparable to estimates in the literature. For

example, the average CO2 intensity of manufacturing that we calculate is within 15% of estimates

from Lyubich et al. (2018) using the same MECS year. Once we account for excluded “by product”

fuels, our estimates of electricity as a share of total thermal energy consumed are also comparable

to industry averages (DOE, 2006).

A final note about this imputation process is that the ASM Fuels Trailers include substantially

less detail than the MECS. Raw fuels are presented at much higher levels of aggregation (e.g.,

aggregate coal consumption, rather than consumption of different types of coal) and several fuels

are grouped into an “others” category, which we exclude. We therefore present results using only

the MECS to impute energy consumption from raw fuels and results using both the MECS and

ASM Fuels Trailers. We find very similar results using both approaches.
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C Imputation of Missing Capital Stocks

Capital stocks are a necessary input into the production function estimation, but unlike other inputs

are not measured every year. Capital stocks are measured in the CMF in years ending in 2 or 7,

and capital investment is measured in both the CMF and, in the intervening years, in the ASM.

To obtain estimates of capital stocks in all years, we first calibrate the depreciation rate δ using

plants which we observe every year between Censuses. Approximately 12,000 plants are surveyed

in the ASM every year between the two most recent Censuses in our sample period (i.e., 2002 and

2007). We iteratively apply the law of motion of capital Ki,t+1 = (1 − δ)Ki,t + Ii,t to back out

the depreciation rate implied by beginning capital stock Ki,t and ending capital stocks Ki,t+1 and

intervening path of investment Ii,t. Specifically, for each plant i we solve:

K2007 = (1− δ)5K2002 + (1− δ)4I2002 + (1− δ)3I2003 + (1− δ)2I2004 + (1− δ)I2005 + I2006 (10)

We calculate the average depreciation rate over all plants.

We then use this depreciation rate to recursively calculate capital stocks in the years between

Censuses using the law of motion of capital combined with observed investment in the ASM. Specif-

ically, for plants surveyed in the years before and after a Census, we obtain their capital stock using

investment from the ASM in those years combined with depreciation. We recursively apply the

same approach to plants observed two years before and after a Census. A small number of capital

stocks are still missing after applying this procedure. We predict these values using the interaction

of (log) total value of shipments with six digit NAICS industry codes. Our results are robust to

excluding these observations as well.

D Bartik Instruments and Identification

This section comprises a more detailed discussion of testing the validity of the identifying assumption

underlying our Bartik-style shift-share instruments.

As Section 6 describes, our instrumental variables analysis uses an exposure design that isolates

plausibly exogenous variation in electricity prices using states’ differential exposure to national

changes in the prices of raw fuels (e.g., coal, natural gas, petroleum), where the weights are the

shares of electricity generated using each of these fuels. Goldsmith-Pinkham et al. (2020) show
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that such a research design requires exogeneity of the shares for the identifying assumption to

hold because the Bartik instrument is numerically equivalent to a GMM estimator using shares as

instruments. As a consequence, our identifying assumption in equation (4) is valid if the state fuel

generation shares are uncorrelated with shocks leading to changes in the energy intensity outcomes.

The potential concern in our setting is centered on whether state fuel generation shares might be

correlated with other shocks to plants’ input mix that affect energy intensity directly, rather than

through electricity prices. For example, if fuel generation shares are correlated with the availability

of skilled labor, then we might be concerned that the instruments are correlated with unobserved

shocks to labor inputs, and thus that the identifying assumption (4) would be violated.

We assess the validity of our research design by analyzing whether state characteristics that could

be correlated with other input shocks also predict state fuel generation shares (Goldsmith-Pinkham

et al., 2020). Appendix Table A.4 reports the results from regressing the shares of electricity

generated using coal, natural gas, and petroleum on state characteristics plausibly related to in-

put availability (e.g., unemployment rate, share college educated) and output demand (e.g., mean

household income). Reassuringly, this now standard test yields no systematic correlation between

the shares and these characteristics, which supports the validity of the research design.35

E Robustness of Instrumental Variables Analysis

E.1 Energy Intensity

Appendix Table A.7 shows that the sign, magnitude, and precision of the main estimates are robust

to the use of different covariates, weightings, and data subsamples. For comparison, Panel A

reproduces the main estimates of lock-in based on equation (2) and shown in Table 3.

Panels B and C show that both initial and current electricity prices elasticities are robust to the

use of different covariates. Panel B presents results that are almost identical using higher-level fixed

effects, which suggests that variation at the year × first year × industry level does not confound the

estimates. Panel C includes state × year time trends, which allow for differential energy efficiency

trends by state over time. The results again are comparable, with a small increase in the magnitude

of the point estimates.

35We report what we consider more conservative estimates of the significance of these correlations that do not
adjust for the multiple hypotheses that we are testing.
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Panel D presents estimates that are not weighted by the Census sampling weights to create a

representative sample. Since the ASM oversamples large plants, these plants are assigned higher

weight in these regressions relative to the main estimates. The initial price elasticity falls by

approximately one-third, suggesting that lock-in is not just driven by large plants, while the sign

and significance are generally unchanged.

Panels E, F, and G show estimates using different subsamples of the data. Panel E linearly

interpolates CO2 and BTU values from the MECS only, rather than the MECS and the ASM

Fuels Trailers. The MECS contains approximately five times as many energy categories as the

ASM Fuel Trailers, but imputing the ASM years using the MECS barely changes the estimated

effect of electricity prices on CO2 and BTU intensities at all (Columns 3 and 4). Panel F excludes

years in which the ASM Fuels Trailers and the MECS are not collected. This skews the analysis

sample toward the early years of the data since the ASM Fuels Trailers were collected every year

between 1976 and 1981, while the MECS is subsequently collected every three or four years. The

lock-in estimates are larger as a result: the effects of entry-year electricity prices on electricity, CO2,

and BTU intensity all increase by approximately one-third. The change in the magnitude of the

parameter estimates is the result of the changing time period, rather than the imputation, since the

electricity intensities are never imputed. The parameter estimates in Panel G, which include only

years where the MECS is collected, skew the data toward later years and are closer to the main

estimates.

Panel H uses state-level average current and initial electricity price data from SEDS, rather

than price estimates calculated from the ASM and CMF. In this case, the initial electricity price

elasticities are slightly larger but statistically indistinguishable from our main estimates, reflecting

the fact that our main measures of initial electricity prices are themselves state × industry × entry

year averages for a majority of plants due to the lack of observed entry years for all. The current

electricity price elasticities are smaller, suggesting that plants respond less to the component of

prices common to all plants in the state and are more highly responsive to changes in their own

price.

E.2 Productivity

Appendix Table A.8 shows alternative estimates of the effects of initial and current electricity

prices on productivity. We analyze the same models as in Appendix Table A.7 using relative energy
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productivity and total factor productivity as outcome variables, and we find again find results

that are consistent with the main estimates in Table 5. We reproduce these results in Panel A of

Appendix Table A.8 for comparison.

Panels B and C use different covariates than the models in the main text. We find estimates

that are similar in sign, magnitude, and precision to the main estimates using higher level fixed

effects (Panel B) and using state × year time trends (Panel C). The magnitude of contemporaneous

electricity prices for relative energy intensity increases slightly with the inclusion of state × year

trends, suggesting that there may be some differential trends in energy productivity between states,

though the estimates are not statistically different from each other. Meanwhile, the entry-year

lock-in estimates of the effects of initial electricity prices on electricity intensity are almost entirely

unchanged, as are the effects of both initial and contemporaneous prices on total factor productivity.

The estimates in Panel D are unweighted by Census sampling weights. As discussed above, the

ASM oversamples large plants; the regression estimates again are similar or, in the case of relative

energy productivity, slightly larger, suggesting again that the lock-in estimates are not driven by

large plants, or by reweighting.

Panels E, F, and G show estimates using different subsamples of the data. Panel E linearly

interpolates CO2 and BTU values from the MECS only, rather than the MECS and the ASM

Fuels Trailers. As discussed above, the MECS contains approximately five times as many energy

categories as the ASM Fuel Trailers, but imputing the ASM years using the MECS barely changes

the estimated effect of electricity prices on CO2 and BTU intensities at all (Columns 3 and 4).

Since the relative energy intensity estimates don’t use imputed CO2 or BTU values, this sample

is equivalent to the main sample for these productivity models, though is different in the case of

Appendix Table A.7.

Panel F excludes years in which the ASM Fuels Trailers and the MECS are not collected. This

skews the analysis sample toward the early years of the data since the ASM Fuels Trailers were

collected every year between 1976 and 1981, while the MECS is subsequently collected every three

or four years. The lock-in estimates again are similar in sign, magnitude, and precision, while

the importance of contemporaneous electricity prices falls slightly, perhaps as a result of fewer

intervening years between the measurement of initial and current prices. This same pattern is

evident in Panel G, which excludes ASM Fuel Trailer years from the Panel F sample, though overall

the results are quantitatively and qualitatively similar in all models.

Panel H uses state-average electricity prices from SEDS in the place of the price estimates based
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on the ASM and CMF. The initial electricity price elasticities for the energy productivity outcomes

are very similar in sign, magntitude, and precision to the main results. These results make sense

given the use of state × industry × entry year average electricity prices for plants for whom we

don’t observe entry year electricity prices. The current electricity price elasticities again are smaller

and less precisely estimated than the main results, reflecting the fact that the state-level average

prices contain substantially less variation than the plant-level current electricity prices. All of the

total factor productivity elasticities are very comparable.

F Electricity Price Effects on Other Manufacturing Out-

comes

This section discuss the effects of initial electricity prices on manufacturing outcomes other than

energy intensity and energy productivity.

Panel A of Appendix Table A.6 reports the effects of initial electricity prices on the amounts

of electricity used, CO2 produced, and BTU consumed, rather than the more standard intensity

amounts measured per dollar of revenue (e.g., Lyubich et al., 2018). These results are similar in

sign and magnitude to the main energy intensity estimates, though in some instances are somewhat

less precisely estimated. These estimates are again consistent with lock-in: plants use a greater

quantity of all of these energy measures when they begin operations in a low energy price year. The

magnitudes of the effects on energy quantities can again be explained by the persistent effect on

relative productivity, shown in Table 5.

Panel B reports effects on other manufacturing inputs. The effects of initial electricity prices

on labor hours, capital outlays, and materials costs (excluding energy) are generally statistically

insignificant, with the exception of a weakly positive effect on capital. These findings suggest that

while initial electricity prices have important effects on future energy inputs, they have a limited

effect on other non-energy inputs. In particular, higher entry-year energy costs appear unlikely to

lead to widespread unemployment, as has been raised as a potentially concerning effect of pricing

carbon.
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G Heterogeneous Lock-In Across Industries

Appendix Table A.9 studies how the effects of entry-year electricity prices differ by industry, for

eleven major industry groups analyzed by Doraszelski and Jaumandreu (2018). The estimates in

this table are based on equation (2) with the addition of a log entry-year electricity price × industry

dummy, where the industry dummy takes the value 1 if a plant is in the industry specified in each of

the panels. The summary statistics in Appendix Table A.2 describes these industry groups in more

detail and shows that they differ in their average energy use. We analyze heterogeneous effects on

our main energy intensity outcomes (i.e., electricity intensity, CO2 intensity, and BTU intensity) in

Columns 1-3 respectively and on relative energy intensity and total factor productivity in Columns

4 and 5.

The main take-away from this analysis is that lock-in is not driven by any one industry group

and appears to exist in all of them. The interaction term in each panel measures the differential

effect of entry-year electricity prices on the energy outcomes in the focal industry in each panel.

This estimate is small in general, imprecisely estimated in most instances, and never negates the

importance of entry-year electricity prices for determining subsequent energy outcomes. By contrast,

in no industry do we find meaningful effects on total factor productivity.
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H Figures and Tables

Figure A.1: Simulated Lock-In Under Alternative Plant Expectations

Panel A: Perfect Foresight About Future Energy Price Changes
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Panel B: Unanticipated Future Energy Price Changes
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Notes: This figure shows simulation results for the energy intensity of incumbent manufacturing plants relative to
entrants as a function of their entry-year energy price. The x-axis shows initial energy price as a fraction of the
current price. Panel A shows energy intensity assuming that plants have perfect foresight regarding future energy
price changes. Panel B shows energy intensity assuming that all energy price changes are unanticipated by plants.
“Fixed capital” shows relative energy intensity in scenarios where plants cannot adjust their capital stocks after they
enter. “Adjustment costs” shows relative energy intensity in scenarios where incumbents can re-optimize their capital
stock subject to fixed and convex adjustment costs. “Flexible capital” shows relative energy intensity in scenarios
where all inputs can be re-optimized without adjustment costs. Energy intensity of entrants is normalized to 1.
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Figure A.2: Time Series of Shares of Fossil Fuels used in Electricity Generation
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Notes: This figure shows the time series of the fraction of British thermal units (BTU) of electricity generated by
coal, natural gas, and petroleum oil in the United States.

Figure A.3: Time Series of Fuel Prices
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Notes: This figure shows the time series of average coal, natural gas, and petroleum oil prices paid by electric utilities.
Prices are in 2011 dollars per million British thermal units (BTU) of fuel.

59



Figure A.4: Share of Electricity Generated by Coal, Natural Gas, and Petroleum Oil in 1976
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Notes: This figure shows the fraction of total British thermal units (BTUs) of electricity generated from coal, natural
gas, and petroleum oil in each state in 1976. Shares need not add up to 1 due to the presence of other fuel sources
(e.g., nuclear, hydro).
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Figure A.5: Change in Share of Electricity Generated by Coal, Natural Gas, and Petroleum Oil,
1976-2011
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Notes: This figure shows the change in the fraction of total British thermal units (BTUs) of electricity generated
from coal, natural gas, and petroleum oil in each state between 1976 and 2011.
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Table A.1: Summary Statistics

All Industries Elec-Intensive Industries
(1) (2)

Current Year 1997 1997
(8.595) (8.540)

Entry Year 1988 1988
(8.894) (8.760)

Plant Age (years) 9.243 9.297
(8.000) (7.997)

Current Electricity Price ($ per kWh) 0.087 0.085
(0.036) (0.034)

Initial Electricity Price ($ per kWh) 0.088 0.088
(0.032) (0.030)

Cost of Purchased Electricity (1000$) 275.4 203.4
(2065) (958)

Quantity of Purchased Electricity (1000 kWh) 4411 3175
(51160) (22430)

Electricity Intensity (kWh per $ revenue) 0.196 0.208
(0.500) (0.500)

CO2 Intensity (kg per $ revenue) 0.122 0.132
(0.469) (0.519)

BTU Intensity (million BTU per $ revenue) 0.001 0.002
(0.006) (0.007)

N 1294000 955000

Notes: This table shows variable means for U.S. manufacturing plants. Electricity-intensive industries are industries

for which electricity accounts for at least 70% of total energy expenditures. Observation counts are rounded in

accordance with Census disclosure requirements. All dollar values are in USD (2011). Standard errors are in

parentheses.
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Table A.2: Industry Group Summary Statistics

Industry Group Name NAICS codes Electricity Intensity CO2 Intensity BTU Intensity N
(1) (2) (3) (4) (5) (6)

Metals and Metal Products 331, 332 0.1683 0.1055 0.0012 254000
(0.4004) (0.3244) (0.0050)

Non-Metallic Minerals 324, 327 0.1563 0.1063 0.0020 100000
(0.3669) (0.3261) (0.0082)

Chemical Products 325, 326 0.3045 0.1669 0.0016 154000
(0.8472) (0.5311) (0.0059)

Agricultural Machinery 333 0.1161 0.0976 0.0013 120000
(0.2287) (0.3736) (0.0068)

Electrical Goods 334, 335 0.4902 0.1624 0.0017 100000
(2.115) (0.7404) (0.0075)

Transportation Goods 336 0.1299 0.0812 0.0009 64000
(0.3192) (0.2612) (0.0040)

Food, Drink, and Tobacco 311, 312 0.1535 0.0935 0.0011 110000
(0.3434) (0.3341) (0.0051)

Textile, Leather, and Shoes 313, 314, 315, 316 0.2539 0.1041 0.0013 117000
(0.4157) (0.2864) (0.0045)

Timber and Furniture 321 0.1666 0.2725 0.0032 139000
(0.3278) (0.9104) (0.0111)

Printing and Paper Products 322, 323 0.1402 0.0578 0.0005 155000
(0.2603) (0.1192) (0.0011)

Miscellaneous Manufacturing 339 0.0988 0.05272 0.0006 76000
(0.2551) (0.2501) (0.0041)

Notes: This table shows average electricity intensity (kWh per dollar revenue), carbon dioxide intensity (kg per dollar

revenue), and BTU intensity (million British Thermal Units (BTU) per dollar revenue) for eleven major industry

groups. NAICS codes are three-digit North American Industry Classification System codes. Observation counts are

rounded in accordance with Census disclosure requirements. All dollar values are in USD (2011). Standard errors

are in parentheses.
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Table A.3: Entry and Exit Summary Statistics

All Industries Elec. Intensive Industries
(1) (2)

Entrant Fraction 0.078 0.077
(0.269) (0.266)

Exit Fraction 0.004 0.004
(0.060) (0.060)

Observations per Plant 4.594 4.466
(4.765) (4.466)

Plant Age 9.243 9.297
(8.00) (7.997)

Age at Exit 14.960 15.010
(9.150) (9.142)

Notes: This table shows summary means for plant entry and exit behavior. Entry and exit fractions

are the shares of total plant-year observations in our sample that are entrants or exiters, respectively.

Plant age and age at exit are measured in years. Column 1 shows means across all industries and column

2 shows means for electricity-intensive industries. Observation counts are rounded in accordance with

Census disclosure requirements. Standard errors are in parentheses.
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Table A.4: Relationship between Fuel Generation Shares and State Characteristics

Coal Share Natural Gas Share Petroleum Share
(1) (2) (3)

Unemployment Rate -0.022 -0.039∗ -0.001
(0.033) (0.022) (0.023)

State Per Capita Income (1000s) 0.005 0.048 0.034
(0.043) (0.029) (0.029)

Mean Household Income (1000s) -0.001 -0.000 0.001
(0.001) (0.001) (0.001)

Share Any College Education -0.030∗ -0.015 0.007
(0.016) (0.011) (0.011)

Share White 0.008 0.001 -0.009∗

(0.007) (0.005) (0.005)

Share Black 0.004 0.003 -0.003
(0.007) (0.005) (0.005)

Population (1000s) -0.004 0.005 0.001
(0.010) (0.007) (0.007)

Household Size 0.506 0.517 -0.215
(0.673) (0.454) (0.458)

Dep. Var. Mean (1980) 0.45 0.12 0.16

Dep. Var. Mean (1976) 0.40 0.12 0.21

R-square 0.266 0.154 0.443
N 51 51 51
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the correlation between state fuel shares in electricity generation and state

characteristics in 1980. Standard errors are in parentheses.
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Table A.5: Estimated Production Function Parameters

All Industries Elec. Intensive Industries
(1) (2)

Returns to scale ν 0.620 0.679
(0.292) (0.256)

Elasticity of substitution σ 0.260 0.237
(0.195) (0.186)

Capital productivity βK 3.411 3.498
(2.200) (2.220)

N 1294000 955000
Notes: This table shows the estimated production function parameters. Column 1 shows mean parameter

estimates across all industries and column 2 shows means for electricity-intensive industries (i.e., industries

for which electricity accounts for at least 70% of total energy expenditures). Observation counts are

rounded in accordance with Census disclosure requirements. Standard errors are in parentheses.
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Table A.6: Effects of Initial and Current Electricity Prices on Manufacturing Outcomes

(1) (2) (3)
Panel A: Energy Inputs (Levels)

log(Quantity Electricityi,t) log(Total CO2i,t) log(Total BTUi,t)
log(Current Electricity Pricei,t) -0.308∗ -0.373∗∗ -0.305∗

(0.170) (0.183) (0.178)

log(Initial Electricity Pricei,t0) -0.240∗ -0.364∗∗∗ -0.218∗

(0.133) (0.112) (0.124)

Panel B: Other Manufacturing Inputs
log(Labor Hoursi,t) log(Materials Costsi,t) log(Capital Investmenti,t)

log(Current Electricity Pricei,t) 0.470∗∗∗ 0.421∗ 0.391
(0.153) (0.239) (0.287)

log(Initial Electricity Pricei,t0) -0.109 -0.136 0.434∗

(0.124) (0.146) (0.247)

K-P F stat 12.1 12.1 12.1
N 1294000 1294000 1294000

Industry × Year × Entry Year FE Yes Yes Yes
Industry × State FE Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimated using IV. Initial and contemporaneous electricity prices are instrumented using

initial and contemporaneous prices for coal, natural gas, and petroleum, weighted by the share of each fuel in state

electricity generation. Electricity prices are measured in dollars per kWh, labor inputs in hours, materials costs

and capital investment in 1000s, quantity of electricity purchased in 1000 kWh, quantity CO2 produced in kg, and

quantity BTU consumed in million BTU. Regressions are weighted using Census sampling weights. Observation

counts are rounded in accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard

errors clustered by state are in parentheses.
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Table A.7: Effects of Initial and Current Electricity Prices on Energy Intensity

log(Electricity Intensityi,t) log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t)
Elec-Intensive Industries

(1) (2) (3) (4)
Panel A: Main Results
log(Current Electricity Pricei,t) -0.764*** -0.734*** -0.829*** -0.761***

(0.090) (0.104) (0.072) (0.087)
log(Initial Electricity Pricei,t0) -0.165*** -0.232*** -0.289*** -0.144**

(0.051) (0.059) (0.079) (0.059)
K-P F stat 12.1 11.9 12.1 12.1
N 1294000 955000 1294000 1294000

Panel B: Year × Industry, First Year × Industry, State × Industry FE
log(Current Electricity Pricei,t) -0.770*** -0.726*** -0.831*** -0.763***

(0.097) (0.106) (0.080) (0.095)
log(Initial Electricity Pricei,t0) -0.178*** -0.226*** -0.319*** -0.186***

(0.051) (0.070) (0.074) (0.057)
K-P F stat 9.7 10.2 9.7 9.7
N 1294000 955000 1294000 1294000

Panel C: State × Year Trends
log(Current Electricity Pricei,t) -0.958*** -1.033*** -1.003*** -1.053***

(0.127) (0.144) (0.081) (0.129)
log(Initial Electricity Pricei,t0) -0.219*** -0.311*** -0.218*** -0.206***

(0.062) (0.075) (0.062) (0.059)
K-P F stat 11.9 11.3 11.9 11.9
N 1294000 955000 1294000 1294000

Panel D: Unweighted
log(Current Electricity Pricei,t) -0.821*** -0.809*** -0.883*** -0.827***

(0.044) (0.044) (0.045) (0.041)
log(Initial Electricity Pricei,t0) -0.109** -0.153** -0.172*** -0.074

(0.052) (0.067) (0.059) (0.045)
K-P F stat 11.6 10.8 11.6 11.6
N 1294000 955000 1294000 1294000

Panel E: Impute CO2, BTU from MECS only
log(Current Electricity Pricei,t) -0.764*** -0.734*** -0.811*** -0.786***

(0.090) (0.104) (0.085) (0.085)
log(Initial Electricity Pricei,t0) -0.165*** -0.232*** -0.193*** -0.152**

(0.051) (0.059) (0.068) (0.063)
K-P F stat 12.1 11.9 12.1 12.1
N 1294000 955000 1294000 1294000

Panel F: Exclude Years with Imputed CO2 and BTU Values
log(Current Electricity Pricei,t) -0.625*** -0.585*** -0.800*** -0.564***

(0.137) (0.161) (0.098) (0.128)
log(Initial Electricity Pricei,t0) -0.368*** -0.451*** -0.715*** -0.256**

(0.091) (0.099) (0.134) (0.106)
K-P F stat 11.1 11.9 11.1 11.1
N 312000 225000 312000 312000

Panel G: MECS Years Only
log(Current Electricity Pricei,t) -0.685*** -0.696*** -0.722*** -0.725***

(0.116) (0.138) (0.107) (0.104)
log(Initial Electricity Pricei,t0) -0.343*** -0.424*** -0.370*** -0.367***

(0.089) (0.125) (0.085) (0.086)
K-P F stat 9.4 10.0 9.4 9.4
N 266000 192000 266000 266000

Panel H: Electricity Prices from SEDS
log(Current Electricity Pricei,t) -0.314*** -0.271** -0.448*** -0.288***

(0.103) (0.117) (0.081) (0.103)
log(Initial Electricity Pricei,t0) -0.234*** -0.278*** -0.295*** -0.231***

(0.041) (0.055) (0.050) (0.041)
K-P F stat 17.6 16.6 17.6 17.6
N 1294000 955000 1294000 1294000
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimated using IV. Initial and contemporaneous electricity prices are instrumented using initial

and contemporaneous prices for coal, natural gas, and petroleum, weighted by the share of each fuel in state electricity

generation. Electricity prices are measured in dollars per kWh, electricity intensity is kWh per dollar of revenue,

CO2 intensity is kg CO2 per dollar of revenue, and BTU intensity is BTU per dollar of revenue. Electricity-intensive

industries are industries for which electricity accounts for at least 70% of total energy expenditures. Except for Panel B,

all models include industry × year × entry year fixed effects and industry × state fixed effects. Panel H uses electricity

prices from the Energy Information Administration’s State Energy Data System (SEDS) rather than from the U.S.

Census Bureau. Regressions are weighted using Census sampling weights unless otherwise noted. Observation counts

are rounded in accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard errors

clustered by state are in parentheses.

68



Table A.8: Effects of Initial and Current Electricity Prices on Productivity

log(Energy Productivityi,t) log(Energy Productivityi,t) log(TFPi,t) log(TFPi,t)
Elec-Intensive Industries Elec-Intensive Industries

(1) (2) (3) (4)
Panel A: Main Results
log(Current Electricity Pricei,t) 0.525∗∗∗ 0.673*** 0.088 -0.017

(0.138) (0.139) (0.127) (0.119)
log(Initial Electricity Pricei,t0) 0.349∗∗∗ 0.319∗∗∗ 0.049 0.124

(0.122) (0.126) (0.077) (0.083)
K-P F stat 12.1 11.9 12.1 11.9
N 1294000 955000 1294000 955000

Panel B: Year × Industry, First Year × Industry, State × Industry FE
log(Current Electricity Pricei,t) 0.512∗∗∗ 0.671∗∗∗ 0.136 0.047

(0.169) (0.150) (0.118) (0.113)
log(Initial Electricity Pricei,t0) 0.330∗∗∗ 0.270∗∗∗ 0.021 0.087

(0.100) (0.115) (0.074) (0.098)
K-P F stat 9.7 10.2 9.7 10.2
N 1294000 955000 1294000 955000

Panel C: State × Year Trends
log(Current Electricity Pricei,t) 0.928∗∗∗ 1.109∗∗∗ 0.040 -0.049

(0.295) (0.289) (0.146) (0.126)
log(Initial Electricity Pricei,t0) 0.322∗∗∗ 0.352∗∗∗ 0.089 0.141

(0.140) (0.156) (0.082) (0.093)
K-P F stat 11.9 11.3 11.9 11.3
N 1294000 955000 1294000 955000

Panel D: Unweighted
log(Current Electricity Pricei,t) 0.465∗∗∗ 0.589∗∗∗ 0.174 0.059

(0.124) (0.123) (0.105) (0.078)
log(Initial Electricity Pricei,t0) 0.425∗∗∗ 0.412∗∗∗ -0.078 0.017

(0.087) (0.092) (0.049) (0.055)
K-P F stat 11.6 10.8 11.6 10.8
N 1294000 955000 1294000 955000

Panel E: Impute CO2, BTU from MECS only
log(Current Electricity Pricei,t) 0.525∗∗∗ 0.673∗∗∗ 0.088 -0.017

(0.138) (0.139) (0.127) (0.119)
log(Initial Electricity Pricei,t0) 0.349∗∗∗ 0.319∗∗∗ 0.049 0.124

(0.122) (0.126) (0.077) (0.083)
K-P F stat 12.1 11.9 12.1 11.9
N 1294000 955000 1294000 955000

Panel F: Exclude Years with Imputed CO2 and BTU Values
log(Current Electricity Pricei,t) 0.413∗∗∗ 0.421∗∗∗ 0.103 0.049

(0.150) (0.188) (0.099) (0.095)
log(Initial Electricity Pricei,t0) 0.376∗∗∗ 0.557∗∗∗ 0.091 0.132

(0.193) (0.186) (0.102) (0.105)
K-P F stat 11.1 11.9 11.1 11.9
N 312000 225000 312000 225000

Panel G: MECS Years Only
log(Current Electricity Pricei,t) 0.411∗∗∗ 0.415∗∗∗ 0.126 0.122

(0.144) (0.162) (0.090) (0.092)
log(Initial Electricity Pricei,t0) 0.503∗∗∗ 0.573∗∗∗ 0.047 0.097

(0.177) (0.193) (0.101) (0.111)
K-P F stat 9.4 10.0 9.4 10.0
N 266000 192000 266000 192000

Panel H: Electricity Prices from SEDS
log(Current Electricity Pricei,t) 0.185 0.249* 0.014 -0.039

(0.119) (0.139) (0.068) (0.066)
log(Initial Electricity Pricei,t0) 0.313*** 0.313*** 0.079 0.116*

(0.089) (0.112) (0.055) (0.064)
K-P F stat 17.6 16.6 17.6 17.6
N 1294000 955000 1294000 1294000
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimated using IV. Initial and contemporaneous electricity prices are instrumented using initial

and contemporaneous prices for coal, natural gas, and petroleum, weighted by the share of each fuel in state electricity

generation. Electricity prices are measured in dollars per kWh, energy productivity is the productivity of electricity

relative to labor, and total factor productivity is the productivity common to all manufacturing inputs. Electricity-

intensive industries are industries for which electricity accounts for at least 70% of total energy expenditures. Except for

Panel B, all models include industry × year × entry year fixed effects and industry × state fixed effects. Panel H uses

electricity prices from the Energy Information Administration’s State Energy Data System (SEDS) rather than from

the U.S. Census Bureau. Regressions are weighted using Census sampling weights unless otherwise noted. Observation

counts are rounded in accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard

errors clustered by state are in parentheses.
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Table A.9: Heterogeneous Effects of Initial Electricity Prices on Energy Intensity by Industry

log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t) log(Energy Productivityi,t) log(TFPi,t)
(1) (2) (3) (4) (5)

Panel A: Metals and Metal Products
log(Current Electricity Pricei,t) -0.770*** -0.838*** -0.768*** 0.543*** 0.091

(0.092) (0.075) (0.090) (0.137) (0.125)
log(Initial Electricity Pricei,t0) -0.140* -0.286** -0.114 0.313* 0.072

(0.071) (0.111) (0.084) (0.159) (0.078)
log(Initial Electricity Pricei,t0)x1[Industryi] -0.024 0.090 -0.049 -0.029 -0.123

(0.203) (0.233) (0.224) (0.309) (0.093)
K-P F stat 8.1 8.1 8.1 8.1 8.1

Panel B: Non-Metallic Minerals
log(Current Electricity Pricei,t) -0.766*** -0.826*** -0.760*** 0.528*** 0.086

(0.091) (0.073) (0.088) (0.136) (0.127)
log(Initial Electricity Pricei,t0) -0.210*** -0.299*** -0.173** 0.393*** 0.040

(0.053) (0.084) (0.072) (0.117) (0.073)
log(Initial Electricity Pricei,t0)x1[Industryi] 0.496** 0.091 0.300 -0.529 0.106

(0.239) (0.309) (0.323) (0.517) (0.258)
K-P F stat 10.7 10.7 10.7 10.7 10.7

Panel C: Chemical Products
log(Current Electricity Pricei,t) -0.759*** -0.825*** -0.756*** 0.517*** 0.089

(0.088) (0.072) (0.086) (0.143) (0.127)
log(Initial Electricity Pricei,t0) -0.138** -0.260*** -0.112* 0.344*** 0.053

(0.060) (0.082) (0.064) (0.116) (0.078)
log(Initial Electricity Pricei,t0)x1[Industryi] -0.318 -0.323 -0.383 0.026 -0.021

(0.293) (0.304) (0.294) (0.545) (0.164)
K-P F stat 11.7 11.7 11.7 11.7 11.7

Panel D: Agricultural Machinery
log(Current Electricity Pricei,t) -0.764*** -0.834*** -0.765*** 0.525*** 0.086

(0.090) (0.072) (0.087) (0.137) (0.126)
log(Initial Electricity Pricei,t0) -0.166*** -0.295*** -0.159** 0.384*** 0.043

(0.054) (0.078) (0.060) (0.130) (0.079)
log(Initial Electricity Pricei,t0)x1[Industryi] 0.005 0.202 0.345 -0.640 0.156

(0.206) (0.226) (0.215) (0.420) (0.257)
K-P F stat 11.3 11.3 11.3 11.3 11.3

Panel E: Electrical Goods
log(Current Electricity Pricei,t) -0.766*** -0.830*** -0.762*** 0.528*** 0.086

(0.090) (0.072) (0.087) (0.138) (0.127)
log(Initial Electricity Pricei,t0) -0.160*** -0.288*** -0.142** 0.335*** 0.046

(0.051) (0.080) (0.059) (0.124) (0.077)
log(Initial Electricity Pricei,t0)x1[Industryi] -0.055 0.025 -0.011 0.199 0.136

(0.178) (0.173) (0.174) (0.256) (0.209)
K-P F stat 8.7 8.7 8.7 8.7 8.7

Panel F: Transportation Goods
log(Current Electricity Pricei,t) -0.764*** -0.828*** -0.760*** 0.534*** 0.084

(0.090) (0.073) (0.088) (0.137) (0.127)
log(Initial Electricity Pricei,t0) -0.162*** -0.280*** -0.146** 0.338** 0.050

(0.052) (0.080) (0.060) (0.132) (0.078)
log(Initial Electricity Pricei,t0)x1[Industryi] -0.065 -0.220 0.028 0.153 0.027

(0.175) (0.177) (0.175) (0.456) (0.124)
K-P F stat 8.5 8.5 8.5 8.5 8.5

Panel G: Food, Drink, and Tobacco
log(Current Electricity Pricei,t) -0.770*** -0.837*** -0.767*** 0.537*** 0.093

(0.087) (0.070) (0.084) (0.139) (0.124)
log(Initial Electricity Pricei,t0) -0.171*** -0.288*** -0.145** 0.392*** 0.020

(0.056) (0.079) (0.061) (0.125) (0.081)
log(Initial Electricity Pricei,t0)x1[Industryi] 0.094 0.030 0.029 -0.682 0.373**

(0.186) (0.190) (0.170) (0.614) (0.170)
K-P F stat 12.6 12.6 12.6 12.6 12.6

(Continued on Next Page)
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Table A.9: Heterogeneous Effects of Initial Electricity Prices on Energy Intensity by Industry,
Continued

log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t) log(Energy Productivityi,t) log(TFPi,t)
(1) (2) (3) (4) (5)

(Continued from Previous Page)

Panel H: Textile, Leather, and Shoes
log(Current Electricity Pricei,t) -0.780*** -0.843*** -0.778*** 0.525*** 0.097

(0.086) (0.071) (0.083) (0.137) (0.123)
log(Initial Electricity Pricei,t0) -0.168*** -0.286*** -0.149** 0.294** 0.072

(0.054) (0.079) (0.059) (0.130) (0.085)
log(Initial Electricity Pricei,t0)x1[Industryi] -0.151 -0.180 -0.089 0.896 -0.215

(0.199) (0.220) (0.184) (0.552) (0.288)
K-P F stat 8.5 8.5 8.5 8.5 8.5

Panel I: Timber and Furniture
log(Current Electricity Pricei,t) -0.762*** -0.830*** -0.760*** 0.526*** 0.087

(0.089) (0.071) (0.088) (0.138) (0.126)
log(Initial Electricity Pricei,t0) -0.172*** -0.296*** -0.145** 0.388*** 0.063

(0.048) (0.078) (0.056) (0.132) (0.070)
log(Initial Electricity Pricei,t0)x1[Industryi] 0.053 0.069 -0.002 -0.377 -0.122

(0.147) (0.172) (0.159) (0.275) (0.170)
K-P F stat 8.5 8.5 8.5 8.5 8.5

Panel J: Printing and Paper Products
log(Current Electricity Pricei,t) -0.778*** -0.840*** -0.773*** 0.549*** 0.093

(0.085) (0.069) (0.082) (0.138) (0.125)
log(Initial Electricity Pricei,t0) -0.174** -0.312*** -0.165** 0.318** 0.033

(0.068) (0.080) (0.064) (0.139) (0.078)
log(Initial Electricity Pricei,t0)x1[Industryi] 0.175 0.262 0.246 0.088 0.096

(0.232) (0.242) (0.233) (0.457) (0.165)
K-P F stat 9.2 9.2 9.2 9.2 9.2

Panel K: Miscellaneous Manufacturing
log(Current Electricity Pricei,t) -0.762*** -0.827*** -0.760*** 0.523*** 0.086

(0.090) (0.072) (0.087) (0.139) (0.128)
log(Initial Electricity Pricei,t0) -0.133** -0.263*** -0.113* 0.299** 0.049

(0.050) (0.079) (0.058) (0.129) (0.080)
log(Initial Electricity Pricei,t0)x1[Industryi] -0.510** -0.420* -0.498** 0.817 -0.016

(0.250) (0.246) (0.244) (0.503) (0.248)
K-P F stat 12.8 12.8 12.8 12.8 12.8
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimated using IV (N=1294000). Initial and contemporaneous electricity prices are instru-

mented using initial and contemporaneous prices for coal, natural gas, and petroleum, weighted by the share of each

fuel in state electricity generation. The interaction of initial electricity prices with the industry indicator is instru-

mented using the interactions of the same instruments with the industry indicator. Electricity prices are measured

in dollars per kWh, electricity intensity is kWh per dollar of revenue, CO2 intensity is kg CO2 per dollar of revenue,

BTU intensity is BTU per dollar of revenue, energy productivity is the productivity of electricity relative to labor,

and total factor productivity is the productivity common to all manufacturing inputs. All models include industry

× year × entry year fixed effects and industry × state fixed effects. Regressions are weighted using Census sampling

weights unless otherwise noted. Observation counts are rounded in accordance with Census disclosure requirements.

All dollar values are in 2011 USD. Standard errors clustered by state are in parentheses.
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Table A.10: Dynamic Effects of Electricity Prices on Energy Intensity

log(Electricity Intensityi,t) log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t)
Elec-Intensive Industries

(1) (2) (3) (4)
Panel A: Lagged Initial Electricity Prices
log(Current Electricity Pricei,t) -0.770*** -0.740*** -0.916*** -0.782***

(0.096) (0.119) (0.078) (0.093)

log(Lag1 Initial Electricity Pricei,t0) -0.178*** -0.238*** -0.167*** -0.120**
(0.054) (0.066) (0.062) (0.050)

K-P F stat 12.3 12.0 12.3 12.3
N 1294000 955000 1294000 1294000

Panel B: Increasing v. Decreasing Electricity Prices
log(Current Electricity Pricei,t) -0.765*** -0.728*** -0.845*** -0.764***

(0.094) (0.110) (0.075) (0.093)

log(Initial Electricity Pricei,t0) -0.156*** -0.226*** -0.279*** -0.136**
(0.050) (0.057) (0.077) (0.056)

log(Initial Electricity Pricei,t0)x1[Increasings,t] -0.003* -0.003 -0.002 -0.002
(0.002) (0.002) (0.002) (0.002)

K-P F stat 14.0 13.1 14.0 14.0
N 1294000 955000 1294000 1294000

Industry × Year × Entry Year FE Yes Yes Yes Yes
Industry × State FE Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimates using IV. Panel A shows the effects of contemporaneous log electricity prices and log

prices in the year prior to entry on the log of plants’ energy intensity. Panel B shows the effects of contemporaneous

log electricity prices and the differential effects of entry-year electricity prices depending on if a plant opens when

prices are increasing or decreasing. Electricity prices are instrumented using initial and contemporaneous prices

for coal, natural gas, and petroleum, weighted by the share of each fuel in state electricity generation, and the

interaction of initial prices with the increasing indicator is instrumented with the interaction of weighted initial

fuel prices with the increasing indicator. Electricity prices are measured in dollars per kWh, electricity intensity is

kWh per dollar of revenue, CO2 intensity is kg CO2 per dollar of revenue, and BTU intensity is BTU per dollar

of revenue. Electricity-intensive industries are industries for which electricity accounts for at least 70% of total

energy expenditures. Regressions are weighted using Census sampling weights. Observation counts are rounded in

accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard errors clustered by

state are in parentheses.
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Table A.11: Dynamic Effects of Electricity Prices on Productivity

log(Energy Productivityi,t) log(Energy Productivityi,t) log(TFPi,t) log(TFPi,t)
Elec-Intensive Industries Elec-Intensive Industries

(1) (2) (3) (4)
Panel A: Lagged Initial Electricity Prices
log(Current Electricity Pricei,t) 0.589*** 0.758*** 0.125 0.026

(0.150) (0.143) (0.121) (0.111)

log(Lag1 Initial Electricity Pricei,t0) 0.264** 0.150 -0.020 0.036
(0.110) (0.110) (0.057) (0.061)

K-P F stat 12.3 12.0 12.3 12.0
N 1294000 955000 1294000 955000

Panel B: Increasing v. Decreasing Electricity Prices
log(Current Electricity Pricei,t) 0.533*** 0.663*** 0.086 -0.019

(0.133) (0.142) (0.119) (0.111)

log(Initial Electricity Pricei,t0) 0.318** 0.303** 0.058 0.133
(0.126) (0.130) (0.075) (0.083)

log(Initial Electricity Pricei,t0)x1[Increasings,t] 0.010*** 0.008** -0.003** -0.004**
(0.003) (0.003) (0.001) (0.002)

K-P F stat 14.0 13.1 14.0 13.1
N 1294000 955000 1294000 955000

Industry × Year × Entry Year FE Yes Yes Yes Yes
Industry × State FE Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimates using IV. Panel A shows the effects of contemporaneous log electricity prices and

log prices in the year prior to entry on the log of plants’ energy productivity relative to labor productivity and on

the log of plants’ total factor productivity. Panel B shows the effects of contemporaneous log electricity prices and

the differential effects of entry-year electricity prices depending on if a plant opens when prices are increasing or

decreasing. Electricity prices are instrumented using initial and contemporaneous prices for coal, natural gas, and

petroleum, weighted by the share of each fuel in state electricity generation, and the interaction of initial prices with

the increasing indicator is instrumented with the interaction of weighted initial fuel prices with the increasing indica-

tor. Electricity prices are measured in dollars per kWh, energy productivity is the productivity of electricity relative

to labor, and total factor productivity is the productivity common to all manufacturing inputs. Electricity-intensive

industries are industries for which electricity accounts for at least 70% of total energy expenditures. Regressions

are weighted using Census sampling weights. Observation counts are rounded in accordance with Census disclosure

requirements. All dollar values are in 2011 USD. Standard errors clustered by state are in parentheses.
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