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Abstract

We develop an asymptotic theory of adversarial estimators (‘A-estimators’).
They generalize maximum-likelihood-type estimators (‘M-estimators’) as their
average objective is maximized by some parameters and minimized by others.
This class subsumes the continuous-updating Generalized Method of Moments,
Generative Adversarial Networks and more recent proposals in machine learn-
ing and econometrics. In these examples, researchers state which aspects of the
problem may in principle be used for estimation, and an adversary learns how
to emphasize them optimally. We derive the convergence rates of A-estimators
under pointwise and partial identification, and the normality of functionals of
their parameters. Unknown functions may be approximated via sieves such
as deep neural networks, for which we provide simplified low-level conditions.
As a corollary, we obtain the normality of neural-net M-estimators, overcom-
ing technical issues previously identified by the literature. Our theory yields
novel results about a variety of A-estimators, providing intuition and formal
justification for their success in recent applications.

1 Introduction

Although it is not always obvious, nearly all population parameters that are estimated

in econometrics and machine learning can be written as the solution of so-called

saddle-point or adversarial objectives of the form:

θ∗ = argmin
θ∈Θ

max
λ∈Λ

El(θ, λ, Y ) (1.1)

where l is a known loss function, Y is a random variable and Θ,Λ are parameter

spaces, containing the unknown parameter of interest θ∗ and nuisance λ. We examine

the natural estimator θ̂n that approximately solves the empirical Nash condition:

Enl(θ̂n, λ̂n, Y ) ≤ inf
θ∈Θn

Enl(θ, λ̂n, Y ) + η̃n (1.2)

Enl(θ̂n, λ̂n, Y ) ≥ sup
λ∈Λn

Enl(θ̂n, λ, Y )− ηn (1.3)
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which replaces the expectation E of the population objective 1.1 with the aver-

age of n iid samples, En. We search for the estimators over so-called sieve spaces

θ̂n, λ̂n ∈ Θn,Λn (Grenander [1981]), which approximate the full parameter spaces

Θn,Λn ⊂ Θ,Λ and grow with the sample size n. These could be neural networks for

example, growing in depth and width. The sequences η̃n, ηn = oP(1) accommodate

numerical procedures which only yield approximate Nash equilibria. This class of

A-estimators (A for adversarial) strictly generalizes so-called M-estimators (M for

maximum likelihood-type), which are obtained by fixing Λ to be singleton.

A-Estimators have become a workhorse of econometrics and causal inference long

before the advent of deep learning. Hansen et al. [1996]’s continuous-updating Gen-

eralized Methods of Moments (GMM), which looks for θ satisfying E[m(θ, Y )] = 0

for some known function m(θ, Y ), can be written as:

inf
θ
En [m(θ, Y )]En [m(θ, Y )m(θ, Y )′]

−1
En [m(θ, Y )]

= inf
θ
sup
λ

En

[
m(θ, Y )′λ− (m(θ, Y )′λ)2/4

]

and is therefore an A-estimator, but not an M-estimator. In statistics, an earlier ex-

ample consists of the Empirical Likelihood (EL) approach pioneered in Cosslett [1981],

Owen [1988, 1990], Qin and Lawless [1994]. Subsequently, EL was unified with GMM

into the Generalized Empirical Likelihood (GEL) framework (Newey and Smith [2004]),

also subsuming the exponential-tilting estimator (Imbens et al. [1998]), for example.

All GEL estimators are A-estimators, but their adversarial formulation was rarely

salient. However, some of their benefits may be owed directly to their adversarial

objective: the adversary λ automatically detects which moment violations are most

informative at a given parameter guess, adaptively guiding the estimation towards an

efficient solution. This contrasts with earlier estimators which weighted the moments

in a way that depended on choices of the researcher: the weights of Pearson’s Method-

of-Moments were manually set by the researcher (implicitly), resulting in inefficient

root-n asymptotics. Two-step GMM (Hansen [1982]) required choosing a first-step

estimator to compute the weights, yielding inefficient higher-order asymptotics (see

Newey and Smith [2004]). Formally, the optimal weights are nuisance parameters,

and as we will see in Section 3.2, estimating them via an adversary ensures that θ̂n

is robust to estimation errors in these nuisance parameters.
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A key invention which put a spotlight on adversarial objectives in recent years were

Generative Adversarial Networks, or GANs (Goodfellow et al. [2014]). They search

for a generative model Y ∼ Pθ for which no adversary λ(Y ) ∈ (0, 1) (called ‘critic’ or

‘discriminator’) could tell apart the generated data from n real samples:

inf
Pθ

sup
λ(·)∈(0,1)

EPθ
log λ(Y ) + En log(1− λ(Y ))

The objective contains the log-likelihood of a binary classifier λ(Y ) discriminating

between an equal number of real and generated samples. As we show in Section

2.1, this directly measures the Jensen-Shannon divergence between Pθ and Pn. As

of today, versions of this objective are key to state-of-the-art image generation, see

e.g. Jabbar et al. [2022] for a recent survey. An analogy to human-generated images

makes this unsurprising: it is much easier to tell apart a photo from an image drawn

by a human, than it is to draw a realistic image, or to define what makes a drawing

realistic. This intuition motivates the objective: train the generator until its critic

has nothing more to criticize. The ingenuity is that the researcher need not define

a meaningful measure of ‘realism’ of a piece of data anymore. Instead, this measure

is learned by the adversary. It is clear that the utility of this idea extends beyond

image generation: in Imitation Learning, a sub-field of Robotics, it has been used to

teach human behavior to artificial agents without requiring hand-crafted measures of

‘humanness’ (Ho and Ermon [2016]). In Econometrics, where new causal inference

methods can usually only be benchmarked on simulated data sets, Athey et al. [2019]

used the objective to limit the impact of researcher’s subjective choices by requiring

simulations to be indistinguishable from real data. Kaji et al. [2020] proposed to use

the objective to estimate structural economic models which produce realistic data be-

yond the set of features that would otherwise be manually specified by the researcher.

More generally, other adversarial objectives have proven useful beyond fitting models

to data. In Reinforcement Learning, a sub-field of Robotics where agents indepen-

dently discover strategies to reach predefined goals without copying prior examples,

Dai et al. [2018] proposed an A-estimator in which the adversary detects and penal-

izes any systematic deviation from optimal behavior. Cotter et al. [2019] proposed an

estimator which extends a standard ML objective by an adversary imposing fairness
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constraints across sub-populations. More recently, research in econometrics estab-

lished A-estimators as a natural framework for integrating machine learning methods

into causal inference, where quantities of interest are frequently identified by a contin-

uum of restrictions. Chernozhukov et al. [2020] propose to estimate Riesz representers

of causal parameters directly, via an adversary enforcing the restrictions identifying

the Riesz representer. Estimating Riesz representers is key to obtaining well-behaved

estimates of causal parameters in the presence of nuisance functions, and can also

be useful for estimating asymptotic variances, e.g. Chen et al. [2019]. Another line

of research develops novel adversarial objectives to estimate causal parameters from

conditional moment restrictions, which naturally arise from causal assumptions (e.g.

the instrumental variable setting), and are usually more informative than any finite

set of unconditional moment restrictions. In this line of research, the adversary can

be viewed as adaptively finding the unconditional moment restriction which is most

violated at the current parameter guess, among infinitely many which are implied by

the conditional moment restriction. The key works are Lewis and Syrgkanis [2018],

Dikkala et al. [2020] and Bennett et al. [2019b], Bennett and Kallus [2020]. Metzger

[2022] propose a semi-parametrically efficient generalization of GEL to the conditional

case via adversarial networks, containing Bennett and Kallus [2020] as a special case.

In summary, a recurring theme of adversarial objectives is that instead of manually

defining which specific features of the data are important for a model to capture,

the researcher’s role is restricted to stating a general principle which should be sat-

isfied by all features of the correct model, and the adversary adaptively focuses the

estimation on the model’s features which violate this principle the most. Over the

course of the paper, we will encounter further interesting connections between various

A-estimators, such as their Neyman orthogonality, their information-theoretic foun-

dation via f-Divergences, and their ties to Lagrangian Duality.

Despite their popularity, we are not aware of a unified statistical theory of A-estimators.

For some individual estimators, consistency (Bennett et al. [2019b]) and convergence

rate results (Dikkala et al. [2020], Singh et al. [2018], Liang [2021], Belomestny et al.

[2021]) were obtained, but normality results are limited to parametric θ, either in

Kernel settings (Bennett and Kallus [2020]) or leaving high-level assumptions about

neural networks unverified (Kaji et al. [2020]). This can be attributed to two main
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obstacles: the theory of M-estimation does not apply to A-estimators, and the argu-

ments from which the former is built up are insufficient to e.g. obtain the required

uniform convergence of the adversary. The second issue is that adversarial objectives

are most popular in the context of (deep) neural networks, whose statistical analysis

(particularly their asymptotic normality) is complicated, e.g. due to their non-convex

sieve space. Even in M-estimation settings, it was not clear whether known, high-level

conditions for normality could be verified for neural networks (cf. the Conclusion of

Shen et al. [2019]). We therefore make three separate contributions:

1. We characterize the general class of A-estimators, and show that a wide range

of estimators proposed in econometrics and machine learning fall into this class.

We point out desirable characteristics shared between A-estimators, which help

explain their recent success in practice.

2. We develop a unified statistical theory of A-estimators, yielding their consis-

tency, convergence rates (both under point- and partial identification), and

asymptotic normality of functionals of their parameters. We provide high-

level conditions for arbitrary sieves, as well as low-level conditions for semi-

parametric settings with neural networks, to simplify verification in practice.

3. We extend the theory of neural network M-estimators (as a special case). Our

convergence rates hold uniformly over families of losses, allow more general

losses than Farrell et al. [2018] and attain a reduced curse-of-dimensionality

which Nakada and Imaizumi [2020], Bauer et al. [2019] observed in regression

settings with lower-dimensional structures. To the best of our knowledge, we

provide the first normality result for functionals of deep neural networks which

does not rely on Neyman-orthogonality or unverified high-level assumptions.

The remainder of the paper is structured as follows. In Section 2, we review five

different A-estimators proposed in the econometrics and machine learning literatures.

We present our general statistical theory of A-estimators in Section 3 and apply it in

Section 4 to derive novel results about the examples of Section 2. We conclude by re-

capping the similar role adversaries play across all examples, providing intuition which

types of problems may generally benefit from adversarial formulations. Appendix C

and Online Appendix D contain the proofs omitted in Sections 3 and 4, respectively.
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2 Examples

2.1 Minimum f-Divergence

A powerful class of estimation objectives asymptotically minimize an f -divergence

Df(Pθ‖P) between the distribution of the data Y ∼ P = Pθ∗ and the distribution of

some model Pθ, θ ∈ Θn with support Y . This class, introduced by Nowozin et al.

[2016], subsumes GANs (Goodfellow et al. [2014]), and many follow ups such as

Mao et al. [2017], Tao et al. [2018]. For a continuous, proper convex function f :

R 7→ R satisfying f(1) = 0, the f -divergence is defined as Df(Pθ‖P) = EP[f(
dPθ(Y )
dP(Y )

)],

where dPθ(Y )
dP(Y )

denotes the Radon-Nikodym derivative of Pθ with respect to P (=likeli-

hood ratio), which we assume exists for all θ ∈ Θ. Notably, Df(Pθ‖P) admits a useful

dual representation:

Df (Pθ‖P) := EPf

(
dPθ(Y )

dP(Y )

)
= sup

λ:Y→R

EPθ
[λ(Y )]− EP[f∗(λ(Y ))] (2.1)

where f∗(t) := supλ∈R λt − f(λ) denotes the convex conjugate of f . The equality

above follows from f = (f∗)∗. Various choices
1 for f are presented in Table 2.1. This

duality is useful because the right-hand side suggests a finite-sample analog which

does not depend on unknown quantities: we obtain an A-estimator for θ∗ by letting

l(θ, λ, Y ) = EPθ
[λ(Y )]− f∗(λ(Y )) (2.2)

and solving for θ̂n, λ̂n satisfying the Nash condition 1.2,1.3 in En[l(θ, λ, Y )]. Normal-

izing f(t)← f(t)−f ′(1)(t−1)
f ′′(1)

without loss of generality2, assuming the second derivative

f ′′ exists, the function λ attaining the supremum in 2.1 at some θ is λθ∗ = f ′(dPθ

dP
). The

adversary λ̂n therefore estimates this transformed likelihood ratio at the current guess

for θ̂n, and the Nash-equilibrium corresponds to the case where it is approximately

constant, i.e. the distribution Pθ̂n
is close to that of the data. Notably, En[l(θ, λ, Y )]

can be evaluated using only samples from the two distributions3. This is crucial for

1None of the objectives are unique: f(t)← f(t) + c(t− 1) for any c yields the same divergence,
but changes the expressions. Note that we may also swap EPθ

and En, which yields valid objectives
for the respective “reverse” f -divergences.

2This implies f ′(1) = 0, f ′′(1) = 1 and f∗(0) = 0, f ′

∗
(0) = f ′′

∗
(0) = 1, which merely re-scales the

divergence 2.1 by a factor of 1/f ′′(1)
3Note that we neither require explicit knowledge of Pθ nor infinitely many samples from Pθ at a

given n: it suffices to draw m ≻ n2 Monte Carlo samples from Pθ and solve for the corresponding
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GANs, where Pθ is only implicitly defined via a push-forward mapping parametrized

by a neural net. As proposed by Kaji et al. [2020], this also makes it a drop-in al-

ternative to the Simulated Method of Moments, which similarly estimates economic

models from data they generate, but matches only a finite set of moments instead of

the full distribution.

Name f(t) f∗(t) , domain Generative Adversarial Objective for θ
Total Variation |t− 1|/2 t, for |t| ≤ 1

2
sup|λ|≤ 1

2
EPθ

λ(Y )− Enλ(Y )

KL Divergence t log t et−1 supλ∈R 1 + EPθ
λ(Y )− Ene

λ(Y )

Reverse KL − log t − log(−te), for t ≤ 0 supλ≤0 1 + EPθ
λ(Y ) + En log(−λ(Y ))

χ2 Divergence (t− 1)2 t + t2/4 supλ∈R EPθ
λ(Y )− En [λ(Y ) + λ(Y )2/4]

Squared Hellinger (
√
t− 1)2 t

1−t
, for t ≤ 1 supλ≤1 EPθ

λ(Y )− En

[
λ(Y )

1−λ(Y )

]

rescaled JS (GAN) t log t− (1 + t) log(1 + t) − log(1− et), for t < 0 suplogλ<0 EPθ
log λ(Y ) + En log(1− λ(Y ))

Table 1: Various adversarial f -divergence objectives. f∗(t) =∞ outside the domain.

2.2 Generalized Empirical Likelihood

Our next example is a class of A-estimators that was proposed long before the recent

success of adversarial objectives in deep learning. In econometrics, many important

parameters θ∗ are identified by a moment restriction of the form:

E[m(Y, θ)] = 0 ⇐⇒ θ = θ∗

for some known, possibly vector-valued function m(Y, θ). In the Introduction, we

presented the continuous-updating GMM objective (Hansen et al. [1996]) for esti-

mating θ∗, a workhorse for causal inference in econometrics. In this section, we

review the more general class of Generalized Empirical Likelihood (GEL) estimators

(Newey and Smith [2004]), which solve the constrained minimization problem:

inf
P̄,θ∈Θ

Df(P̄‖Pn) s.t. EP̄[m(Y, θ)] = 0

That is, they seek for a parameter θ and a corresponding population distribution

P̄ that is as close as possible to the sample Pn, subject to satisfying the moment

finite sample saddle point. The resulting Monte Carlo approximation error for the expectation EPθ
is

then of order
√
m

−1
= n−1 and can thus be accounted for by letting η̃n, ηn = OP(n

−1) in equations
1.2,1.3, which has no impact on our asymptotic results.
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constraint EP̄[m(Y, θ)] = 0. At this high level, it is worth noting that GEL optimizes

the same target as the objective in Section 2.1, which imposes P̄ = Pθ instead of a

moment constraint. Glossing over some details, we can obtain a tractable estimator

in this setting by concentrating out P̄ from the corresponding Lagrangian:

inf
P̄,θ∈Θ

sup
λ∈Rdim(m)

Df(P̄‖Pn)− λ′EP̄[m(Y, θ)] = inf
θ∈Θ

sup
λ∈Rdim(m)

En [−f∗ (λ′m(Y, θ))] (2.3)

Which again uses the convex conjugate f∗ of f (see example 2.1). For a formal

proof of this equivalence, see e.g. Imbens et al. [1998]. It is easy to see that GEL

is an A-estimator with l(θ, λ, Y ) = −f∗(λ′m(Y, θ)) where Λn = R
dim(m) and Θn is

the parameter space of the economic model. A particularly popular version of this

objective corresponds to the case Df = χ2, where Table 2.1 tells us that f(t) = (t−1)2
and f∗(t) = t+ t2/4. In this case, we can analytically solve for the optimal adversary

given θ. Substituting it in, we get the continuous-updating GMM objective presented

in the introduction:

sup
λ∈Rdim(m)

En [−f∗ (λ′m(Y, θ))] = En [m(Y, θ)]′ En [m(Y, θ)m(Y, θ)′]
−1

En [m(Y, θ)]

2.3 Off-Policy Reinforcement Learning

Next, we review the Smoothed Bellman Error Embedding (SBEED) algorithm intro-

duced by Dai et al. [2018], a popular off-policy learning method in robotics. Off-policy

learning aims to learn the optimal policy for an agent from data that was generated

under an entirely different policy regime. This problem is not limited to robotics:

since it was identified in the monetary policy context by Lucas [1976], it became a

primary concern in econometrics and its recognition played a key role in the credibility

revolution (Angrist and Pischke [2010]) of econometrics. While problem definitions

otherwise differ between these literatures, off-policy learning methods have received

recent interest in econometrics (Zhan et al. [2021], Athey and Wager [2021]).

For an agent receiving reward R(s, a) for taking action a ∈ A at state s ∈ S, forming

an expectation over the future state s+ ∈ S, SBEED’s goal is to learn the value

function V∗(s) and policy a ∼ P∗(·|s) which satisfy the regularized Bellman equation:

V∗(s) = max
P (·|s)

Ea∼P (·|s)

[
R(s, a) + βEs+|s,a[V∗(s

+)|s, a]
]
+H(P, s)
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where the entropy H(P, s) = −Ea∼P (·|s)[logP (a|s)] regularizes the optimal policy

P∗(·|s) towards exploring all actions a ∈ A. Given the researcher’s choice of R, β, the

goal is to learn P∗, V∗ from finite samples {(si, ai, s+i )}ni=1. Importantly, the actions ai

may be sampled from a suboptimal policy which does not equal P∗. Starting from the

first-order condition of the Bellman equation, Dai et al. [2018] develop an adversarial

population objective, whose finite-sample analog is the A-estimator 1.2,1.3 with loss:

l(θ, λ, Y ) =
(
R(s, a) + βVθ(s

+)− Vθ(s)− logPθ(a|s)
)
λ(s, a)− 1

2
λ(s, a)2 (2.4)

where λ(s, a), logPθ(a|s) and Vθ(s) are implemented as neural networks in practice.

2.4 A-Estimators for Conditional Moment Restrictions

Another powerful application for A-estimators recently pursued by the econometric

literature are conditional moment estimators. These methods estimate parameters θ∗

which are identified by restrictions of the form:

E[m(X, θ)|Z] = 0 ∀Z ⇐⇒ θ = θ∗ (2.5)

for some random variables Y = (X,Z) and a known function m(X, θ). Conditions of

this type occur e.g. when estimating some causal effect θ via instrumental variables, or

as the first-order conditions of agents optimizing some expected utility given some in-

formation Z. As a result, nonparametric conditional moment estimators received con-

siderable interest in econometrics, see e.g. Ai and Chen [2003, 2007], Chen and Qiu

[2016]. These earlier estimators rely on first-step estimates of nuisance parameters

capturing the conditional means and variances. Intuitively however, estimating the

nuisance parameters via predictive objectives in a separate first step may dedicate

scarce model capacity to capturing features which are not useful for the purpose of es-

timating θ∗ downstream. This motivates recent work on adversarial objectives which

unify the estimation into a single objective, more plausibly targeting the nuisance

estimation towards the goal of identifying θ∗. Specifically, we will examine the esti-

mator of Dikkala et al. [2020], with l(θ, λ, Y ) = m(X, θ)′λ(Z) − 1
4
‖λ(Z)‖22, yielding

the finite sample objective

inf
θ∈Θn

sup
λ∈Λn

En

[
m(X, θ)′λ(Z)− 1

4
λ(Z)′λ(Z)

]
,
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where Λn is a class of neural networks. The methods proposed by Bennett et al.

[2019a], Bennett and Kallus [2020] are closely related, but differ in the penalty they

impose on λ. Dikkala et al. [2020] consider the case of instrumental variable regres-

sion, where X = (y, x) and m(X, θ) = y− θ(x), but we will examine the general case.

We note that Example 2.3 (SBEED, Dai et al. [2018]) can be viewed as a special case

of re-scaled version of this objective, with X = (s, a, s+) and Z = (s, a), although

both literatures seem to be unaware of their connection. One can analytically solve

for the optimal adversary λθ∗(Z) = 2E[m(X, θ)|Z] to rewrite the population objective

as:

E[l(θ, Y )] := E[l(θ, λθ∗, Y )] = E[‖E[m(X, θ)|Z]‖22] = E[‖E[m(X, θ)−m(X, θ∗)|Z]‖22]

which can be understood as a measure of distance between θ and θ∗, which clearly

attains its minimum at θ = θ∗, when E[m(X, θ)|Z] ≡ 0. In Section 4.4, we will apply

our theory to derive the asymptotic distribution of this estimator and show that

is in fact inefficient. We further discuss how the adversarial formulation of GMM

can directly inform a simple modification similar to Bennett and Kallus [2020] which

yields an efficient A-estimator.

2.5 Estimating Riesz Representers

Chernozhukov et al. [2020] propose a distinct A-estimator to estimate Riesz rep-

resenters for structural parameters φ∗ which can be written as linear functionals

φ∗ = φ(g∗) = E[m(Y, g∗)]. Here, g∗ = E[y|x] is an unknown function for which an

estimate ĝn is available from some first-stage regression of y on x, where Y = (y, x, w).

Quantities like φ∗ are common in the average treatment effect or asset pricing liter-

ature, for example. Unfortunately, especially if ĝn is estimated via machine learning,

the ‘naive’ estimator

φ̂n = En[m(Y, ĝn)]

is often not well behaved:
√
n(φ̂n−φ∗) may not converge in distribution to a Gaussian

limit and thus one cannot provide confidence intervals around the estimate. Under the

conditions of the Riesz representation theorem however, there may exist a function

θ∗ ∈ Θ called the Riesz representer of the functional φ(g), which satisfies:

φ(g) = E[θ∗(x)g(x)] ∀g ∈ Θ

10



If a well-behaved estimate θ̂n of θ∗ is available, it can be combined with ĝn to define

the so-called orthogonalized estimator:

φ̃n = En[m(Y, ĝn)− θ̂n(x)(y − ĝn(x))]

which attains asymptotic normality under rather weak conditions on ĝn (see Lemma

17 of Chernozhukov et al. [2020]). Chernozhukov et al. [2020] propose a generalized

procedure to estimate θ̂n via an A-estimator, which we will simplify as follows:

inf
θ∈Θn

sup
λ∈Λn

En[m(Y, λ)− θ(x)λ(x)− λ(x)2/2]

where Θn,Λn are neural networks. To clarify why this objective works, is it use-

ful to analytically solve the adversarial component of the corresponding population

objective:

sup
λ

E[m(Y, λ)− θ(x)λ(x)− λ(x)2/2] = 1

2
E[(θ∗(x)− θ(x))2]

As we will show in Section 4.5, our theory directly yields the convergence rates for θ̂n

that Chernozhukov et al. [2020]’s Lemma 17 requires for the asymptotic normality of

φ̃n. It does so at a reduced curse of dimensionality in x for rather general function

classes - i.e. under weaker conditions on smoothness and dimension of the data -

complementing the original work.

3 General Theory

Roadmap. This Section will present our general theory of A-estimators. Subsec-

tion 3.1 briefly discusses an alternative definition of A-estimators that may be more

natural to some readers. In Subsection 3.2, we establish that A-estimators satisfy

the desirable condition of Neyman-orthogonality with respect to the adversary and

discuss its implications. Next, we characterize the convergence rates of A-estimators:

Section 3.3 provides a high-level result for arbitrary sieves such as splines or wavelets,

not just neural nets. Under more easily verifiable low-level conditions, Subsection

3.4 provides convergence rates for semiparametric settings involving neural networks,

showing they exhibit a reduced curse-of-dimensionality. Finally, we characterize the

asymptotic normality of smooth functionals of A-estimators. We again begin with a
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general, high-level result for arbitrary sieves, followed with the low-level conditions

for the normality of neural networks. Notably, we show that a combination of under-

smoothing and regularizing towards a convex target space suffices to overcome a key

issue for normality proofs of neural networks: their non-convex sieve space.

Notation. Throughout, we consider random variable Y with support Y , distri-

bution P and corresponding expectation operator E. We also denote the variance

operator by V[f(Y )] = E(f(Y ) − E[f(Y )])2 for any function f : Y 7→ R. We de-

note the sample average, i.e. the expectation under the empirical distribution Pn,

by En. Throughout, E will treat estimated parameters as deterministic sequences

indexed by n, as is common in the literature. We also consider subvectors of Y ,

denoted by x ∈ X , x̄ ∈ X̄ , with their respective supports X , X̄ being subspaces of

Y . We require various norms: throughout, ‖x‖q will denote the ℓq norm of a finite

dimensional vector x, with ‖x‖ = ‖x‖2 being the Euclidean norm. For a possi-

bly vector-valued function f(x), we denote its Lq function norm over some subset

X̃ ⊂ X by ‖f‖Lq(X̃ ) = E[‖f(x)‖qq|x ∈ X̃ ]1/q. We denote the supremum norm of

a vector x with components xi by ‖x‖∞ = maxi |xi|. The supremum norm of f

over X̃ will be denoted by ‖f‖X̃ = supx∈X̃ ‖f(x)‖∞. For X̃ = X , we may omit

the dependence on X by writing ‖f‖∞ := ‖f‖X . We will often write a ≺ b to

denote a = O(b), implying that a sufficiently large global constant ∞ > C > 0

exists such that a ≤ Cb, where C does not depend on any varying aspects of

the problem, such as any parameters, sample sizes, et cetera. We write a ≍ b if

a ≺ b ≺ a. We will also write a ∨ b = max(a, b) and a ∧ b = min(a, b). Through-

out, we will write lθ(λ, Y ) = l(θ, λ, Y ) and l(θ, Y ) = l(θ, λθ∗, Y ) for short, where

λθ∗ = argmaxλ∈Λ El(θ, λ, Y ). We denote by πn a (not necessarily linear) projection

onto the respective sieves, i.e. πnθ ∈ arg infθ′∈Θn
‖θ′ − θ‖∞ for any θ ∈ Θ and

πnλ ∈ arg infλ′∈Λn
‖λ′ − λ‖∞ for any λ ∈ Λ.

3.1 Nash vs Minimax

We presented our preferred definition for A-estimators in the introduction, as satis-

fying a Nash condition of the empirical loss. All results of this paper will apply to

this definition. However, the reader may have noticed that the “simultaneous” Nash

condition of the estimator is symmetric in θ̂n and λ̂n, unlike the ‘sequential’ mini-max
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population objective, which nests a family of inner maximizations:

λθ∗ = argmax
λ∈Λ

El(θ, λ, Y ) (3.1)

where the loss l and as a result the solutions λθ∗ are indexed by the parameter θ ∈ Θ.

The reader may therefore wonder if we could define an A-estimator for θ∗ in a similar

‘sequential’ mini-max fashion. That is, we could consider a family of M-estimators

λ̂θn approximately maximizing the empirical loss at any value of θ ∈ Θ:

λ̂θn ∈ Λn : Enl
(
θ, λ̂θn, Y

)
≥ sup

λ∈Λn

Enl(θ, λ, Y )− ηn ∀θ ∈ Θn (3.2)

And then look for θ̂n ∈ Θn satisfying:

Enl(θ̂n, λ̂
θ̂n
n , Y ) ≤ inf

θ∈Θn

Enl(θ, λ̂
θ
n, Y ) + η̄n (3.3)

where η̄n = oP(1) again accommodates approximate minimization. Fortunately, it

turns out that any θ̂n satisfying the more compact Nash condition from the introduc-

tion always satisfies the mini-max condition presented above, as summarized by the

following Lemma:

Lemma 3.1. Any θ̂n, satisfying 1.2 and 1.3 for some λ̂n, also satisfies 3.3 with some

λ̂θn for which 3.2, λ̂θ̂nn = λ̂n and η̄n = η̃n + ηn holds.

Proof. Pick any θ̂n satisfying 1.2 and 1.3 for some λ̂n. Now pick some arbitrary family

λ̂θn satisfying 3.2 for all θ 6= θ̂n, and define λ̂θ̂nn := λ̂n. Note that 1.3 directly implies

that this λ̂θn also satisfies 3.2 at θ = θ̂n. It remains to show that the resulting θ̂n and

λ̂θn satisfy 3.3:

Enl(θ̂n, λ̂
θ̂n
n , Y ) ≤ inf

θ∈Θn

Enl(θ, λ̂n, Y ) + η̃n ≤ inf
θ∈Θn

Enl(θ, λ̂
θ
n, Y ) + η̃n + ηn

where the first inequality used λ̂θ̂nn and the Nash condition 1.2, and the second used

the fact that λ̂θn was constructed to satisfy 3.2.

This reassures us that it suffices to find one set of values θ̂n, λ̂n which satisfy the Nash

condition from the introduction, rather than a continuum of solutions λ̂θn indexed by

θ. The final θ̂n will satisfy the mini-max condition regardless, for some (unknown)

λ̂θn. For our theory, it was crucial to derive the uniform convergence of λ̂θn, hence we
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will state the rate results for the more general mini-max definition. For the normality

result, it was more convenient to work with the stronger Nash definition.

3.2 Adversaries are Neyman-Orthogonal

For many A-estimators, one could construct non-adversarial estimators which capture

the same population objective. Whenever the adversarial nuisance parameter λ is a

function, this usually requires a non-parametric first-step estimation of an alternative

nuisance parameter. However, such an alternative estimator may not have a desir-

able property that is guaranteed for A-estimators: Neyman-orthogonality of θ∗ with

respect to the nuisance parameter.

This property has a long history in statistics, dating back at least to Neyman [1959].

It was popularized in econometrics by Chernozhukov et al. [2017] as a key setting in

which standard machine learning methods can be applied without invalidating causal

inference, which sparked follow-up work such as Chernozhukov et al. [2021] seeking

to reformulate non-orthogonal problems as orthogonal ones. The notion applies to

parameters which are identified by a moment restriction of the form:

E[ϕ(θ, ν∗, Y )] = 0 ⇐⇒ θ = θ∗ (3.4)

where ϕ is known and ν∗ is an unknown nuisance parameter which has to be estimated

in a first step. A popular estimator θ̂n in this setting would be Hansen [1982]’s GMM,

for example. The moment condition above is called (Neyman-)orthogonal whenever:

∇ν∗→νE[ϕ(θ∗, ν∗, Y )] = 0 ∀ν (3.5)

Intuitively, this states that the condition identifying θ∗ is “locally robust” against

perturbations in ν∗. This guarantees that the uncertainty introduced by an appro-

priate first-step estimation of ν∗ has no first-order effect on the GMM estimator θ̂n.

Specifically, the asymptotic distribution of θ̂n is the same as in the case in which ν∗

is known. In contrast, when moment restrictions do not satisfy this orthogonality

condition, uncertainty about ν∗ generally amplifies the asymptotic variance of θ̂n, see

e.g. Chen and Liao [2015], and normality may break down altogether.

Notably, if (and only if) θ∗ is parametric, we can examine the first order condition
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for θ∗ that is implied by the A-estimation objective 1.1 in this moment restriction

framework4 : let ϕ(θ, ν∗, Y ) = ∇θl(θ, ν∗(θ), Y ), where ν∗ : Θ 7→ Λ denotes the func-

tional evaluating to ν∗(θ) = λθ∗. Orthogonality then follows from the continuum of

first-order conditions identifying ν∗:

∇ν∗→νE[l(·, ν∗(·), Y )] ≡ 0 =⇒ ∇ν∗→νE[ϕ(θ∗, ν∗, Y )] = ∇ν∗→ν∇θ∗E[l(θ∗, ν∗(θ∗), Y )] = ∇θ∗0

since the derivative operators are exchangeable. This implies that as θ̂n approaches

θ∗, an A-estimator θ̂n is robust to estimation errors in the adversary λ̂θn relative to

λθ∗, meaning they do not reduce the accuracy of θ̂n, to a first-order.

Consider the example of Section 2.1, which estimates θ∗ minimizing the f-Divergence

between the model Pθ and the data P. As a non-adversarial alternative, we could

re-parametrize the problem and estimate ν∗ := dP via a first-step Kernel density

estimator ν̂n(Y ) = d̂Pn(Y ), and subsequently approximate the f-Divergence as the

average over f
(

dPθ(Y )
ν̂n(Y )

)
. However, the first-order condition for θ∗ would not sat-

isfy orthogonality, hence a GMM estimator based on this condition may not attain

the variance of the analogous GMM estimator using ν∗ instead. In contrast, the A-

estimator of Section 2.1 does attain this variance - due to its orthogonal adversary -

which we formally establish in Section 4.1. Moreover, this remains true when general-

izing to a setting in which θ∗ contains unknown functions, where no analogous GMM

estimator exists that could capture the continuum of first-order conditions in θ∗.

3.3 Convergence Rate of A-Estimators

We begin with a general theorem characterizing the convergence rates of sieve A-

estimators, for arbitrary loss functions and parameter spaces. It can be viewed as a

generalization of Shen and Wong [1994]’s M-estimator result. Its proof is provided in

Appendix C.1, with the main challenge being that Shen and Wong [1994]’s chaining

arguments need to be carefully modified to hold uniformly over Θ. Our theorem

adopts a more compact formulation than Shen and Wong [1994] which does not re-

quire any norm over Θ,Λ to state our assumptions, although convergence rates are

4Note however that even when θ∗ is parametric, we usually cannot estimate it via GMM as
∇θl(θ, λ̂

θ
n
, Y ) will not exist if λ̂θ

n
is a typical sieve, such as a neural network. For the same reason,

the theory developed in this paper must not rely on any finite-sample first order conditions. Instead,
it will use only the approximate Nash condition 1.3, 1.2.

15



obtained for any (pseudo-)norm d(θ, θ∗) which is dominated by the objective.

Theorem 3.1 (Convergence Rate of A-Estimators). Assume that:

• C1: The criterion variance is bounded by a power γ > 0 of its expectation:

V[l(θ, Y )− l(θ∗, Y )] ≺ E[l(θ, Y )− l(θ∗, Y )]γ (3.6)

V[lθ(λθ∗, Y )− lθ(λ, Y )] ≺ E[lθ(λθ∗, Y )− lθ(λ, Y )]γ (3.7)

for all θ ∈ Θ, λ ∈ Λ for which the right hand sides are less than some constant.

• C2: For all small ε > 0, the covering number (Def. 1) is bounded via

logN (ε, {l(θ, λ, ·) : θ ∈ Θn, λ ∈ Λn}, ‖ · ‖∞) ≺ ns(ε−r − 1)/r (3.8)

for 0 ≤ s < 1 and r ≥ 0, where r = 0 represents limr→0 n
s(ε−r−1)/r = ns log(1/ε).

Then the following conclusions hold.

i) The criterion converges at rate:

E[l(θ∗, Y )− l(θ̂n, Y )] = OP(n
−τ(γ,s,r,n) + ǫn + ηn + ǭn + η̄n) (3.9)

sup
θ∈Θn

E[lθ(λθ∗, Y )− lθ(λ̂θn, Y )] = OP(n
−τ(γ,s,r,n) + ǫn + ηn) (3.10)

where ǭn = E[l(πnθ∗, Y )− l(θ∗, Y )] and ǫn = supθ∈Θn
E[lθ(λθ∗, Y )− lθ(πnλθ∗, Y )] are

the sieve approximation errors. 3.10 also holds without 3.6. τ(γ, s, r, n) represents:

τ(γ, s, r, n) =





1− s− log logn
logn

, if r = 0, γ ≥ 1
1−s
2−γ

, if r = 0, γ < 1
1−s

2−min(1,γ)(2−r)/2
, if 0 < r < 2

1−s
2
− log logn

logn
, if r = 2

1−s
r
, if r > 2

ii) Hence, d(θ̂n, θ∗) = oP(1) for any (pseudo-)norm d(·, ·) under which E[l(θ, Y )] com-
pact and continuous. If also d(θ, θ∗)

1/q ≺ E[l(θ, Y )− l(θ∗, Y )] for q > 0, we get:

d(θ̂n, θ∗) = OP(n
−τ(γ,s,r,n)q + ǫqn + ηqn + ǭqn + η̄qn)

Remark 3.1 (Discussion of Assumptions). The theorem extends Shen and Wong [1994]’s

convergence rate result for sieve M-estimators to A-estimators. There is a direct map-

ping between our assumptions and theirs: our C1 combines their assumptions C1 and

C2, and our C2 corresponds to their C3. Our proof in Appendix C.1 is structured
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in the same way as that of Shen and Wong [1994], although we need to modify their

Lemmas to obtain the uniform convergence of the adversary in 3.10, which is crucial

to the main result 3.9. The key modifications to our assumptions, which allow us to

do so are: C1) that the constant factor implicit in the “≺” relation of 3.7 must not

depend on θ, as implied by the definition of “≺” at the beginning of this section and

C2) that the complexity of the joint sieve space Θn×Λn satisfies the entropy bound.

Otherwise, the assumptions are conceptually the same and we refer the reader to

Shen and Wong [1994] for a more detailed discussion.

Remark 3.2. Using similar arguments as ours, one may establish the uniform con-

vergence of A-estimators over a third parameter space, generalizing the setting to

arbitrary finite sequences of min’s and max’s over different parameter spaces: e.g.

minθ maxλ minγ E[l(θ, λ, γ, Y )]. This would yield convergence rates towards more gen-

eral Stackelberg equilibria in so-called empirical games, for which we are currently only

aware of a consistency result by Tuyls et al. [2018].

Remark 3.3. Beyond convergence rates for θ̂n and λ̂θn, it is often useful to control the

empirical process of arbitrary functions f(θ, λ, Y ) of the parameters, e.g. to establish

conditions for asymptotic normality required by Theorem 3.3. For this purpose, we

provide Lemma B.5 in Appendix B.

3.4 Semiparametric Rates with Neural Networks

Next, we will apply the general result of the previous section to derive the convergence

rates for neural network A-estimators. For generality, we will consider the semipara-

metric setting in which θ, λ may contain both Euclidean vectors and functions. These

lower-level conditions are easy to verify in practice, but are general enough to apply to

all estimators considered in Section 2. We will include the proof as it is short and an

instructive application of Theorem 3.1. The theorem allows for two types of function

classes, both of which can be viewed as generalizations of traditional Hölder functions

with D-dimensional domain, with their own notion of an intrinsic dimension d∗ ≤ D,

which may be smaller than that of the dataD. As we will review in Remark 3.5, we ob-

serve that neural networks achieve a reduced curse of dimensionality in these settings.

Theorem 3.2 (Semiparametric Rates with Neural Networks).
Consider the semiparametric setting in which Θ = B̄ × Ā and Λ = B×A, where B̄,B
are subsets of some Euclidean spaces and Ā,A are some function spaces. Let Λ,Θ be
compact under ‖ · ‖∞. For all λ, λ′ ∈ Λ, θ, θ′ ∈ Θ, assume the following conditions
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hold:

• A0: Assume that θ∗ ∈ Θ∗ satisfies either

a) Θ∗ ⊂ B̄ × H(p̄, X̄ ) on some X̄ ⊂ [0, 1]D̄ with dimM X̄ = d̄∗ ≤ D̄ (see Def. 3
and 4)

b) Θ∗ ⊂ B̄ × G(p̄, d̄∗, [0, 1]D̄) (see Def. 6)

and that {λθ∗ : θ ∈ Θ} ⊂ Λ∗ satisfies either

a) Λ∗ ⊂ B ×H(p,X ) on some X ⊂ [0, 1]D with dimM X = d∗ ≤ D

b) Λ∗ ⊂ B × G(p, d∗, [0, 1]D)

• A1: l(θ, λ, Y )− l(θ′, λ′, Y ) ≺ ‖θ − θ′‖X̄ + ‖λ− λ′‖X

• A2: V[l(θ, Y )− l(θ∗, Y )] ≺ E[l(θ, Y )− l(θ∗, Y )] ≺ ‖θ − θ∗‖2X̃ + P(x̄ 6∈ X̃ ) ∀X̃ ⊂ X̄

• A3: V[lθ(λθ∗, Y )−lθ(λ, Y )] ≺ E[lθ(λθ∗, Y )−lθ(λ, Y )] ≺ ‖λ−λθ∗‖2X̃+P(x 6∈ X̃ ) ∀X̃ ⊂ X

Pick any two values r̄ > r ≥
(

d∗

p
∨ d̄∗

p̄

)
. Consider the A-estimator 3.2 with ηn, η̄n =

oP(n
−2/(2+r̄)) where Λn = B × Fσ(L,Wn, wn, κn) and Θn = B̄ × Fσ(L̄, W̄n, w̄n, κ̄n)

implement neural networks (cf. Definition 2) satisfying Wn, W̄n, wn, w̄n ≍ nr/(r+2)

and κn, κ̄n ≍ nc for any large enough choice of L, L̄, c > 0. For A0a) choose σ(x) =
ReLU(x) and for A0b) choose σ(x) = tanh(x). Then:

E[l(θ̂n, Y )− l(θ∗, Y )] = oP(n
−2/(2+r̄))

sup
θ∈Θn

E[lθ(λθ∗, Y )− lθ(λ̂θn, Y )] = oP(n
−2/(2+r̄))

Hence, d(θ̂n, θ∗) = oP(1) for any (pseudo-)norm d(·, ·) under which E[l(θ, Y )] is com-
pact and continuous. Further, if d(θ, θ∗)

1/q ≺ E[l(θ, Y )− l(θ∗, Y )] for q > 0, we get:

d(θ̂n, θ∗) = oP(n
−2q/(2+r̄))

Proof. We will verify the conditions of Theorem 3.1. A2 and A3 imply C1 (3.6
and 3.7) with γ = 1. Lipschitzness A1 together with Lemma B.1 imply C2 (B.3)
with s = t/(t + 2) for any t : r̄ > t > r and r = 0. Therefore Theorem 3.1
applies with n−τ(γ,s,r,n) = n2/(2+t) logn ≺ n2/(2+r̄), which dominates ηn and η̄n by
assumption. We are therefore left with bounding ǫn and ǭn. By A3, we can bound
ǫn ≺ supθ∈Θn

‖πnλθ∗ − λθ∗‖2X̃ + P(x 6∈ X̃ ) for any X̃ ⊂ X . In the case of A0a), we set

X̃ = X and use Lemma B.2 to obtain supθ∈Θn
‖πnλθ∗ − λθ∗‖2X ≺ (Wn ∧ wn)

−2p/d∗ ≺
n−2pr/d∗/(2+r) ≺ n2/(2+r) which yields ǫn = o(n2/(2+r̄)). For A0b), Lemma B.3 yields
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the same bound as Lemma B.2, but only over a subset X̃ ⊂ X with P (x 6∈ X̃ ) ≺ n−k

for some arbitrarily large constant k > 0, which only affects the constant c in the
bound on κn. Hence we conclude that ǫn ≺ n2/(2+r) + n−k ≺ n2/(2+r). Analogous
arguments yield the same bound for ǭn.

Remark 3.4 (Discussion of Assumptions). A0 defines the function classes addressed

by the Theorem. Both are generalizations of traditional Hölder classes which arise for

d∗ = D, see Remark 3.5. Condition A1 requires the loss to be Lipschitz in both pa-

rameters, which simplifies (but is not necessary for) the verification of C2. Condition

A2 (and analogously A3) consists of two parts. First, it states that for a given pa-

rameter, the variance of the criterion difference must be bounded by its expectation,

a simplified version of Assumption C1 of Theorem 3.1 which happens to be satisfied

in all of our examples, but versions of this Theorem with γ 6= 1 can be derived via the

same steps as the proof above. The second part of the condition bounds the expected

loss by a squared sup-norm over any subset X̃ of the function domain X . For the case
of A0a), it would have sufficed to state the condition with X̃ = X only, but for A0b)

we require arbitrary subsets X̃ to apply the approximation result of Lemma B.3. A2

is implied, for example, by E[l(θ, Y ) − l(θ∗)] ≺ ‖h(θ) − h(θ∗)‖2Lq(X ) for some q and

Lipschitz map h : Θ 7→ Θ. The assumption is significantly weaker than Shen et al.

[2019] or Farrell et al. [2018] who impose E[l(θ, Y ) − l(θ∗)] ≍ ‖θ − θ ∗ ‖2L2(X ), which

would not hold for Examples 2.2 or 2.4. It could be generalized further to allow for

arbitrary powers of the sup-norms (and proved in the same way via Theorem 3.1),

but the squares arise rather universally via Taylor expansions.

Remark 3.5. Theorem 3.2 clarifies that neural networks do not necessarily exhibit the

curse of dimensionality, as the lower bound on r̄ does not depend on the dimension

D of the data. Instead, what matters is the intrinsic dimension d∗ of the target

function. In the setting A0a), introduced by Nakada and Imaizumi [2020], d∗ refers

to the Minkowski dimension of the manifold X which supports the data. It has been

observed that d∗ ≪ D for many high-dimensional types of data: intuitively, d∗ is low

whenever there is strong statistical dependency between the individual dimensions

of the data. Examples include the characteristics of physical products, images and

natural language. In the setting A0b), introduced by Bauer et al. [2019], d∗ refers to

the order of a generalized hierarchical interaction model. It is common for structural

models in e.g. economics or optimal control to suggest that an unknown function

is hierarchically composed of some finite number of individual functions which only
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depend on d∗ ≪ D inputs at a time. The result underscores that neural networks

can adaptively - that is, without the researcher modifying the estimation procedure -

exploit structures in the target function which allow them to model the relationships

more efficiently than what standard convergence results suggest.

3.5 Asymptotic Normality of A-Estimators

In applications, it we a often interested in estimating a quantity of the form F (θ∗),

where F : Θ 7→ R is some known functional. To derive confidence intervals around

the plug-in estimate F (θ̂n), we need its asymptotic distribution. To this end, we

present Theorem 3.3, which can roughly be viewed as a generalization of Shen [1997]

to A-Estimators. For this section, we make use of the pathwise derivative presented

in Definition 7. We require a particular inner product over the space Θ:

〈θ, θ′〉 := ∇θ∗→θ∇θ∗→θ′E[l(θ∗, Y )]

As discussed in Definition 7, the notation ∇θ∗→θ implicitly assumes that the cor-

responding limit exists and is linear in θ. For short, we write λ′θ∗ [v] := ∇θ→vλ
θ
∗,

l′(θ, Y )[v] := ∇θ→vl(θ, Y ) and l′(θ, λ, Y )[v, w] := ∇θ→vl(θ, λ, Y ) +∇λ→wl(θ, λ, Y ).

Theorem 3.3 (General Normality of A-Estimators).

Consider the estimators θ̂n, λ̂n satisfying the Nash conditions 1.2 and 1.3. Fix a
sequence en = o(n−1/2). Assume F is smooth enough and θ̂n, λ̂n converge fast enough
such that a Riesz representer v∗ ∈ Θ∗ exists, satisfying:

sup
θ∈Θ̂n

|F (θ)− F (θ∗)− 〈θ − θ∗, v∗〉| = OP(en) (3.11)

Where Θ̂n and Λ̂n(θ) are the shrinking neighborhoods defined in Lemma B.5. For
v ∈ {v∗,−v∗}, define the local perturbations θ̄n(θ) = θ− env and λ̄θn(λ) = λ+ enλ

′θ
∗ [v]

and assume:

CONDITION N1: Stochastic Equicontinuity

sup
θ∈Θ̂n,λ∈Λ̂n(θ)

(En − E)l′(θ, λ, Y )[v, λ′θ∗ [v]]− l′(θ∗, Y )[v] = OP(en)

CONDITION N2: Population Criterion Difference

sup
θ∈Θ̂n,λ∈Λ̂n(θ)

El′(θ, λ, Y )[v, λ′θ∗ [v]]− l′(θ∗, Y )[v]− 〈θ − θ∗, v〉 = OP(en)
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CONDITION N3: Approximation Error

sup
θ∈Θ̂n,λ∈Λ̂n(θ)

Enl
′(θ, λ, Y )[θ̄n(θ)− πnθ̄n(θ), λ̄θn(λ)− πnλ̄θn(λ)] = OP(e

2
n)

If 1.2 and 1.3 are satisfied with η̃n, ηn = OP(e
2
n), then:

√
n
(
F (θ̂n)− F (θ∗)

)
d−→ N (0, V ), where V = V (l′(θ∗, Y )[v∗])

Remark 3.6 (Discussion of Assumptions). In contrast to our convergence rate result,

our proof requires the A-estimator to satisfy the (stronger) Nash condition from the

introduction. Our conditions N1-3 are analogues of Shen [1997]’s and play the same

roles in our proof. N1 combines their assumptions A and D, N2 corresponds to their

B, and N3 to their C. Shen [1997]’s high-level discussion of their assumptions therefore

applies to ours as well, and we again refer the reader there for additional context.

The main difference is that their conditions are formulated to control the remainder

of a second order Taylor expansion, whereas we look at the convergence of the first

derivative, which results in OP(en) = oP(n
−1/2) requirements for N1 and N2, rather

than the OP(e
2
n) = oP(n

−1) found in Shen [1997]’s conditions A and B.

Remark 3.7. Condition N3 is a version of a known condition on approximation error

in M-estimation settings (see Condition C4 in Shen et al. [2019] and Condition C in

Shen and Wong [1994]). Its verification usually exploits convexity of Θn, such that

πnθ̄n(θ) = θ+ enπnv∗. This holds for series or kernel based estimators, but not neural

networks. Shen et al. [2019] therefore leave it as an explicit assumption, concluding

that it is unclear how to verify it for neural networks. In Theorem 3.4, we resolve this

issue, showing that N3 can be verified for non-convex sieves such as neural networks

by adhering to two simple implementation choices: 1) undersmoothing, i.e. choosing a

sieve which grows faster than rate-optimal, achieving an approximation error of o(n−1)

and 2) regularizing the sieves towards the convex target classes containing θ∗, λ∗.

3.6 Semiparametric Normality with Neural Networks

Next, we present Theorem 3.4, which strengthens the assumptions of our previous

neural network convergence rate result (Theorem 3.2) in a way that allows us to derive

the asymptotic normality of functionals F (θ̂n) via Theorem 3.3. A crucial innovation

is that we are able to work around the non-convexity issues of deep neural networks

discussed in Remark 3.7, to obtain a normality result from low-level conditions, which
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only consist of general properties that the loss function must satisfy (A4-A7), and

certain implementation choices for the neural networks that must be followed. To the

best of our knowledge, the theorem therefore also provides the first low-level condi-

tions for the normality of smooth functionals of deep neural network M-estimators

(as the special case where Λ is singleton).

Theorem 3.4 (Semiparametric Normality with Neural Networks).
Let all assumptions of Theorem 3.2 be satisfied with d∗

p
∨ d̄∗

p̄
< 1/4, and choose 2 ≥

r̄ > r > 2/3. Let Θ∗,Λ∗ be convex and θ∗, λ
θ
∗ lie in their interior. Replace the neural

network sieves Θn,Λn with the following regularized versions:

Θn ← {θ ∈ Θn : inf
θ′∈Θ∗

‖θ − θ′‖X̄ ≺ n−1−ǫ}, Λn ← {λ ∈ Λn : inf
λ′∈Λ∗

‖λ− λ′‖X ≺ n−1−ǫ}

for any ǫ > 0 which is small enough to guarantee that Θn, ,Λn are nonempty. Further,
for all θ, v ∈ Θ, λ, w ∈ Λ, assume:

• A4: Lipschitz Derivative: l′(θ, λ, Y )[v, w]− l′(θ′, λ′, Y )[v, w] ≺ ‖θ−θ′‖X̄ +‖λ−λ′‖X
• A5: The perturbations are smooth: v∗ ∈ Θ∗, λ

′θ
∗ [v∗] ∈ Λ∗

• A6: The Taylor remainders vanish with the loss:

i) |El′(θ, λ, Y )[v∗, λ′θ∗ [v∗]]− l′(θ, Y )[v∗]| ≺ E[l(θ, λθ∗, Y )− l(θ, λ, Y )]
ii) |El′(θ, Y )[v∗]− l′(θ∗, Y )[v∗]− 〈θ − θ∗, v∗〉| ≺ E[l(θ, Y )− l(θ∗, Y )]

• A7: For non-Donsker classes, the variance of the derivatives is bounded by the loss:

i) V[l′(θ, λ, Y )[v, λ′θ∗ [v]] − l′(θ, λθ∗, Y )[v, λ′θ∗ [v]]] ≺ E[l(θ, λθ∗, Y ) − l(θ, λ, Y )] or Λ∗

is P-Donsker

ii) V[l′(θ, Y )[v]− l′(θ∗, Y )[v]] ≺ E[l(θ, Y )− l(θ∗, Y )] or Θ∗ is P-Donsker

If θ̂n, λ̂n satisfy the Nash condition 1.2,1.3 with ηn, η̃n = oP(n
−1), then:

√
n
(
F (θ̂n)− F (θ∗)

)
d−→ N (0, V ), where V = V (l′(θ∗, Y )[v∗])

Remark 3.8 (Discussion of Assumptions). The Theorem requires that the neural net-

work sieves Θn,Λn are implemented to undersmooth (i.e. grow faster than the rate-

optimal sieve would) via the condition on r, while being regularized towards the

convex target spaces Θ∗,Λ∗. Note that this does not affect the sieve’s approximation

power towards these spaces, and there always exists an ǫ > 0 for which Θn,Λn are

non-empty due to their o(n−1) approximation rates. While in principle just an imple-

mentation choice, the current sup-norm regularization is arguably not practical and
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future work may be able to clarify whether e.g. an appropriate L2 penalty on the

weights suffices. Conditions A4-A7 are general conditions on the loss function which

can be satisfied in all our examples. A4 is a simple Lipschitz condition analogous to

A1. The smoothness of the Riesz representer (A5) is most easily verified by com-

puting and examining a given v∗, λ
′θ
∗ [v∗] directly, although the Riesz representation

theorem can provide general conditions under which v∗ lives in the same space as θ∗.

A6 is a standard condition controlling the Taylor remainder. For a discussion, see e.g.

Assumptions 4.5 in Ai and Chen [2003] and Ai and Chen [2007], or Assumption 3.5ii)

in Chen and Pouzo [2015]. Whether it holds depends on how non-linear the objective

is: e.g. for the quadratic objective of Dikkala et al. [2020], the left-hand side is zero.

A7 serves to control the empirical process (N1). It can be easily satisfied either by

bounding the variances of the derivatives, or by relying on the Donsker property of

the target space (cf. Remark 3.9).

Remark 3.9. Note that the Donsker property and thus A7 always holds if p > D/2,

where standard results using bracketing number bounds imply that the Hölder spaces

Θ∗,Λ∗ satisfy the Donsker property. We conjecture that this analogously holds for

our lower-dimensional classes A0a) and A0b) whenever d∗/p < 2, which would make

the verification of A7 unnecessary in general, since we require d∗

p
∨ d̄∗

p̄
< 1/4. Verifying

this conjecture is beyond the scope of this paper however, hence we provide A7 as an

explicit assumption for maximum flexibility.

4 Application to Examples

4.1 Minimum f-Divergence

Applying our general Theorem 3.2 to the estimator of Section 2.1 yields Proposition

4.1, which provides the convergence rate of semiparametric θ̂n if Λ and all unknown

functions in Θ are approximated by classes of neural networks.

Proposition 4.1. Let θ∗ ∈ Θ∗ ⊂ Θ, λθ∗ = f ′(dPθ

dP
) ∈ Λ∗ ⊂ Λ, where Θ,Λ are compact

under ‖ · ‖∞ and path-connected, and the target function classes Θ∗,Λ∗ satisfy A0 in
Theorem 3.2. Fix some C < ∞. For any θ ∈ Θ, let 0 < f ′′

(
dPθ

dP
(Y )
)
< C wp1 and

for any λ ∈ Λ, let 0 < f ′′
∗ (λ(Y )) < C wp1. Let

∥∥∥dPθ

dP
− dPθ′

dP

∥∥∥
∞
≺ ‖θ − θ′‖∞. Let

Θn,Λn be constructed as in Theorem 3.2, with all neural networks growing in width
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at some rate nr/(r+2) satisfying r ≥ d∗

p
∨ d̄∗

p̄
. Then for any r̄ > r:

Df(Pθ̂n
‖P) = oP(n

−2/(2+r̄))

Remark 4.1. In general, the convergence rate of θ̂n is faster the slower the growth rate

nr/(r+2) of the neural network. However, the growth must be fast enough to control

the approximation error of the sieves Θn,Λn relative to the target function classes

Θ∗,Λ∗. This lower bound depends on the ratio of the smoothness of the target classes

p and p̄ and their intrinsic dimensions d∗ and d̄∗, which may be smaller than that of

the data Y , in which case f -GANs attain a reduced curse-of-dimensionality relative

to traditional nonparametric density estimators.

Remark 4.2. This convergence rate result stands in contrast to Arora et al. [2017],

who argued that Generative Adversarial Networks do not generalize with respect

to the metric given by the population objective, only under a weaker “neural net

distance” which they introduce. The convergence rate result above clarifies that the

broad class of f -GANs in fact does converge quickly under population divergence.

While a fast convergence rate of the model distribution Pθ̂n
is a key goal in semi-

and nonparametric estimation, whenever some function F (θ̂n) of the estimate informs

downstream decision-making, we are often interested in obtaining confidence intervals

around F (θ̂n). To this end, we derive the asymptotic normality of the adversarial f -

Divergence objective - an entirely novel result at this level of generality, to the best

of our knowledge. First, we compute the inner product defined in Section 3.5, which

can be expressed concisely:

〈θ, θ′〉 = ∇θ∗→θ∇θ∗→θ′E

[
f

(
dPθ∗(Y )

dP(Y )

)]
= E [∇θ∗→θ log dPθ∗(Y ) · ∇θ∗→θ′ log dPθ∗(Y )]

Where ∇θ∗→θ log dPθ∗(Y ) = ∇θ∗→θ
dPθ∗ (Y )

dP(Y )
is a pathwise derivative of the Radon-

Nikodym derivative. Conditions under which the normality result of Section 3.5

applies are presented in Proposition 4.2.

Proposition 4.2. Consider a functional F (θ) for which a Riesz representer v∗ exists
satisfying 3.11 with 〈·, ·〉 defined above. Let all assumptions of Theorem 4.1 be satisfied
for d∗/p∨ d̄∗/p̄ < 1/4 and assume that ×∗ is Donsker. Let Θ∗,Λ∗ be convex, let θ∗, λ

θ
∗

lie in their interior, and let them contain v∗, λ
′,θ
∗ [v∗]. Assume the Lipschitz condition

‖∇θ→v
dPθ

dP
−∇θ′→v

dPθ′

dP
‖∞ ≺ ‖θ − θ′‖∞ and let f ′′ be Lipschitz. Pick 2 ≥ r̄ > r > 2/3

and regularize Θn,Λn as in Theorem 3.4. Finally, for any θ̃, θ̃′ on a path between θ∗
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and θ, assume that:

∇θ̃→θ̃′−θ∗
∇θ̃→θ−θ∗

∇θ̃→v∗
Df(Pθ̃‖Pθ∗) ≺ Df (Pθ‖Pθ∗)

Then: √
n(F (θn)− F (θ∗)) d→ N (0, 〈v∗, v∗〉) (4.1)

Remark 4.3. In applications, the key difficulty lies in verifying that the third derivative

above is bounded by the loss. This condition serves to control the higher order term of

the Taylor expansion. Such assumptions are common in the semiparametric literature,

e.g. Ai and Chen [2003]’s Assumptions 4.5 and 4.6 play the same role. It is easiest

to verify in the parametric setting, where

∇θ̃→θ̃′−θ∗
∇θ̃→θ−θ∗

∇θ̃→v∗
Df (Pθ‖Pθ∗) ≍ ‖θ − θ∗‖22 ≍ Df(Pθ‖Pθ∗)

Note that 〈·, ·〉 and hence the asymptotics of θ̂n are independent of f , so the f -

divergences are asymptotically equivalent. An example for a smooth functional F (θ)

that is of particular interest in the semiparametric setting θ = (β, α) is F (θ) = β ′ζ ,

which “picks out” a linear combination of the parametric components. This allows

us to derive the asymptotic normality of the vector
√
n(β̂ − β∗) in the following

Corollary, which makes use of the orthogonal scores assumption that is standard in

the semiparametric literature.

Corollary 4.2.1. In addition to the assumptions of Proposition 4.2, assume the
orthogonal scores condition holds:

E [∇β∗→β log dPβ∗,α∗
(Y )∇α∗→α log dPβ∗,α∗

(Y )] = 0 ∀β, α

Then the parametric component β̂n attains the Cramér-Rao bound:

√
n(β̂n − β∗) d→ N

(
0, I−1

)
, where I = E

[
∇β∗

log dPβ∗,α∗
(Y ) · ∇β′

∗
log dPβ∗,α∗

(Y )
]

Proof. We simply choose v∗ = (I−1ζ, 0), such that 〈θ− θ∗, v∗〉 = (β − β∗)′ζ = F (θ)−
F (θ∗). Since 〈v∗, v∗〉 = ζ ′I−1ζ , Proposition 4.2 yields

√
n(β̂n − β∗)′ζ d→ N (0, ζ ′I−1ζ).

The result then follows via the Cramér-Wold device.

The f -GAN objective therefore attains the efficient asymptotics of maximum likeli-

hood, but does not require explicit knowledge of the model density Pθ.
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4.2 Generalized Empirical Likelihood

For the class of Generalized Empirical Likelihood estimators introduced in Section 2.2,

the
√
n-normality and asymptotic efficiency of θ̂n is long established in the parametric

case (Imbens et al. [1998], Imbens [2002], Newey and Smith [2004]). However, our

theoretical framework still allows us to extend the known results to the semiparametric

case where θ may contain unknown functions, which are approximated by a class of

neural networks Θn which may grow with n. In this case, we can characterize the

convergence rate of θ̂n to the identified set Θ∗ = {θ ∈ Θ : E[m(Y, θ)] = 0}, which
is unlikely to be singleton given that an infinite-dimensional parameter is hardly

pinned down by a finite number of unconditional moment restrictions. We obtain the

following result:

Proposition 4.3. Let Df = χ2 and consider the A-estimator θ̂n, λ̂n satisfying 1.2,1.3
with l(θ, λ, Y ) = −f∗(λ′m(Y, θ)). Let Θ∗,Θn be as in Theorem 3.2 and Λ∗ = Λn =
R

dim(m), with r̄ > d∗

p
. Assume that m(Y, θ)−m(Y, θ′) ≺ ‖θ−θ′‖∞ and |m(Y, θ)| <∞.

Then:

E

[
m(Y, θ̂n)

]
= oP(n

−1/(2+r̄))

Proof. We verify the conditions of Theorem 3.2. Assumption A0 holds by assumption,

and A1 follows from the Lipschitzness ofm(Y, ·) and that of f∗(t) = t+t2/4. To verify

Assumption 2, note that l(θ∗, Y ) = 0 and boundedness of m(Y, θ) imply:

V[l(θ, Y )− l(θ∗, Y )] ≺ E[(m(Y, θ)′λθ∗)
2] ≍ E[l(θ, Y )− l(θ∗, Y )]

For the second part of condition A2, simply verify that E[l(θ, Y )− l(θ∗, Y )] ≺ ‖λθ∗ −
λθ∗∗ ‖22 ≺ ‖θ, θ∗‖2X̃+P(x̄ 6∈ X̃ ), which follows by applying the Lipschitzness ofm in θ and

the tower-property of E to λθ∗ = −2E[m(Y, θ)m(Y, θ)′]−1
E[m(Y, θ)], akin to the proof

of 4.1. Assumption A3 can be verified for the Euclidean λ via a Taylor expansion,

yielding: V[l(θ, λ, Y )− l(θ, λθ∗, Y )] ≍ ‖λ− λθ∗‖22 ≍ E[l(θ, λ, Y )− l(θ, λθ∗, Y )].

4.3 Off-Policy Reinforcement Learning

Next, we will use our theory to the extend the known results about SBEED, the

off-policy RL algorithm of Dai et al. [2018] introduced in Section 2.3. Theorem 3.2

makes it easy to obtain the convergence rates of the corresponding A-estimator:
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Proposition 4.4. Consider the A-estimator θ̂n, λ̂n satisfying 1.2,1.3 with l(θ, λ, Y )
as in 2.4. Assume the observations are iid for simplicity, and that P∗ = Pθ∗ and
V∗ = Vθ∗, where θ∗ ∈ Θ∗, λ

θ
∗ ∈ Λ∗ satisfy A0 in Theorem 3.2 with X = X̄ = S ×

A. Let Θ∗ ⊂ Θ,Λ∗ ⊂ Λ, with Θ,Λ compact under ‖ · ‖∞ and path-connected. Let
R(·, ·), Vθ(·), Pθ(·|·) be continuous. Let the parametrizations Pθ, Vθ satisfy the Lipschitz
conditions ‖logPθ − logPθ′‖∞ ≺ ‖θ − θ′‖∞ and ‖Vθ − Vθ′‖∞ ≺ ‖θ − θ′‖∞. Let the

neural network classes Θn,Λn be constructed as in Theorem 3.2, for any r ≥ d∗

p
∨ d̄∗

p̄
.

Then for any r̄ > r:

Es,a

[(
R(s, a) + βE[Vθ̂n(s

+)|s, a]− Vθ̂n(s)− logPθ̂n
(a|s)

)2]
= oP(n

−2/(2+r̄))

Remark 4.4. In contrast to the original work, our result also applies in the case where

A and S are continuous, and we characterize the optimal rate of growth for the neural

network function approximators, which optimally trade off bias and variance. While

following almost trivially from the general Theorem 3.2, our result yields significantly

faster convergence rates than the oP(
√
n) rates obtained by Dai et al. [2018], and our

rates further exhibit the reduced curse of dimensionality of neural networks.

Remark 4.5. We noticed that SBEED can be viewed as a special case of some of

the econometric conditional moment estimators treated in Example 2.4, such as

Dikkala et al. [2020]. We therefore refer the reader to Section 4.4 for an applica-

tion of our asymptotic normality result. Interestingly, neither literature seems to

be aware of this connection. Dai et al. [2018] cite convex conjugation and the inter-

changeability principle as the inspiration for their objective, whereas the adversarial

conditional moment estimators in econometrics were inspired by Hansen [1982]’s Gen-

eralized Method of Moments.

4.4 A-Estimators for Conditional Moment Restrictions

We will now apply our theory to examine the asymptotic behavior of the conditional

moment estimator of Dikkala et al. [2020], introduced in Section 2.4. We can apply

Theorem 3.2 to obtain the rate at which θ̂n converges:

Proposition 4.5. Let Θn,Θ∗,Λn,Λ∗ be as in Theorem 3.2. Let m(X, θ) be ‖ · ‖∞-
Lipschitz in θ. Let the support of Y be bounded. Then, for any r̄ > d∗

p
∨ d̄∗

p̄
, we

get:

E

[∥∥∥E[m(X, θ̂n)−m(X, θ∗)|Z]
∥∥∥
2

2

]
= oP(n

2/(2+r̄))

For the instrumental variable regression setting studied by Dikkala et al. [2020], where
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m(X, θ) = y − θ(x), this implies:

E

[∥∥∥E
[
θ̂n(x)− θ∗(x)

∣∣Z
]∥∥∥

2

2

]
= oP(n

2/(2+r̄))

Proof. Condition A0 is satisfied by assumption, and A1 follows from Lipschitzness of

m(X, ·) and boundedness. Assumptions A2 and A3 can be verified by using bound-

edness to establish

V[l(θ, Y )− l(θ∗, Y )] ≺ ‖λθ∗‖2L(Z)2 ≍ E[l(θ, Y )− l(θ∗, Y )]
V[l(θ, λ, Y )− l(θ, λθ∗, Y )] ≺ ‖λ− λθ∗‖2L(Z)2 ≍ E[l(θ, λ, Y )− l(θ, λθ∗, Y )]

Remark 4.6. Note that just like in the previous Example 2.2, this result does not

require the parameter θ∗ to be identified by the restriction 2.5. If that is the case

however, the above rates can be translated into similar rates in any norm ‖θ̂n − θ∗‖
which is dominated by the objective, usually by construction. See Ai and Chen [2003]

for an example of such a norm in the semi-parameteric setting.

Remark 4.7. In contrast to Dikkala et al. [2020], our convergence rate result allows for

general m and possibly vector-valued, semiparametric Θ in which unknown functions

are approximated by neural networks. Our rates are also exhibit the reduced curse

of dimensionality of neural networks.

Next, we use Theorem 3.4 to derive the asymptotic variance of the estimator, showing

that the estimator is in inefficient in general. For this purpose, it suffices to only

consider the simpler parametric setting.

Proposition 4.6. Consider the parametric case where Θn = Θ∗ = Θ is Euclidean.
In addition to the assumptions of Proposition 4.5, assume that the identification con-
dition 2.5 holds. Let d(X, θ) := ∇θm(X, θ) be bounded and satisfy the Lipschitz
condition |d(X, θ) − d(X, θ′)| ≺ ‖θ − θ′‖∞. Assume that E[l(θ, Y )] is three times
differentiable in θ. For all θ ∈ Θ, let λθ∗ := 2E[m(X, θ)|Z] ∈ Λ∗ for a Λ∗ sat-
isfying A0 with d∗

p
< 1

4
, let θ∗, λ

θ
∗ lie in the respective interiors of Θ,Λ∗, and let

λ′θ∗ [v∗](·) := 2v′∗E[d(X, θ)|Z = ·] ∈ Λ∗ for any v∗ ∈ Θ. Let Λn be regularized as in
Theorem 3.4. Then: √

n(θ̂n − θ∗) d→ N (0, V )

where V = E [E [∇θ∗m(X, θ∗)
′|Z]E [m(X, θ∗)m(X, θ∗)

′|Z]E [∇θ∗m(X, θ∗)|Z]]−1.

Chamberlain [1987] derived the efficiency bound for the parametric conditional mo-

28



ment setting, corresponding to the smallest (in a p.s.d. sense)
√
n-asymptotic variance

for any unbiased estimator. It is given by the covariance matrix:

V∗ = E

[
E [∇θ∗m(X, θ∗)

′|Z]E [m(X, θ∗)m(X, θ∗)
′|Z]−1

E [∇θ∗m(X, θ∗)|Z]
]−1

Note that V 6= V∗ in general, implying that θ̂n is an inefficient estimator. By ex-

tension, this also applies to the Reinforcement Learning algorithm of Example 2.3.

Comparing the GMM objective of Example 2.2 - which is known to be efficient in

the unconditional moment setting - to the population objective of the present ex-

ample, this may be unsurprising: in contrast to GMM, the population objective of

Dikkala et al. [2020] corresponds to a regular ℓ2 norm, without the inverse covariance

weighting which is crucial for asymptotic efficiency in the unconditional case. Gener-

alizing GEL to the conditional moment setting by replacing the constant adversary

with a neural network Λn, Metzger [2022] therefore proposes the A-estimator given

by:

inf
θ∈Θn

sup
λ∈Λn

En [−f∗ (m(X, θ)′λ(Z))]

which nests a simplified variant of Bennett and Kallus [2020] for Df = χ2, and for

Df = DKL can be viewed as alternative to the Kernel approach of Kitamura et al.

[2004]. Metzger [2022] provides a similar information theoretic foundation as the GEL

estimator and - building on the theory developed in the present paper - derives the

convergence rates and asymptotic efficiency of this estimator, where Θn may contain

unknown functions which are modeled as neural networks.

4.5 Estimating Riesz Representers

Finally, we show that Theorem 3.2 can be used to quickly derive the convergence rates

of Chernozhukov et al. [2020]’s adversarial estimator for Riesz representers, which we

introduced in Section 2.5.

Proposition 4.7. Let Θn,Θ∗,Λn,Λ∗ be as in Theorem 3.2. Let m(Y, λ) = m(Y, λ(x))
be Lipschitz in λ(x). Let the support of Y be bounded. Then, for any r̄ > d∗

p
∨ d̄∗

p̄
:

‖θ̂n − θ∗‖L2(x) = oP(n
1/(2+r̄))

This result clarifies that the Riesz representer of Chernozhukov et al. [2020] can sim-

ilarly benefit from the adaptivity properties of neural networks, which yield faster
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rates for our target classes if d∗ < D. In combination with their Lemma 17, this

implies that compared to other non-parametric sieves, neural networks guarantee the

asymptotic normality of the orthogonalized estimator φ̃n under weaker conditions on

smoothness and D. Since the normality of φ̃n− φ∗ is of primary interest and already

follows from Chernozhukov et al. [2020]’s Lemma 17 given our convergence rates, we

refrain from deriving it for arbitrary functionals φ̂n(g) = E[θ̂n(x)g(x)], although it

would be possible to use Theorem 3.4 to derive
√
n(φ̂n(g) − φ(g))

d→ N (0, Vg) for

some Vg for example.

5 Conclusion

We characterize the general class of adversarial estimators (‘A-estimators’), subsum-

ing many estimators independently proposed in the fields of econometrics and ma-

chine learning. Our unified framework suggests interesting commonalities between

A-estimators: their adversary is always Neyman-orthogonal with respect to the main

model, guaranteeing that its estimation errors have no first-order asymptotic im-

pact on the estimated model. Most objectives have versions which asymptotically

minimize an f -divergence criterion and are asymptotically efficient. Typically, A-

estimators adaptively learn how to optimally emphasize the restrictions implied re-

searcher’s estimation assumptions, performing particularly well when this set is large.

This makes them a promising framework for incorporating machine learning methods

into causal inference, where even simple target parameters often satisfy a continuum

of restrictions. We characterize the convergence rates of A-estimators, as well as the

asymptotic normality of smooth functionals of their parameters. We also provide

low-level analogues of these results for semi-parametric models, in which unknown

functions are approximated by deep neural networks. Our convergence and normal-

ity results also extend the theory of neural network M-estimators, as a special case:

building on recent results in approximation theory, our neural network converge rates

exhibit a reduced curse of dimensionality for more general losses than previously ex-

amined, which hold uniformly over a second parameter space. Our normality result

overcomes a problem previously posed by the non-convexity of neural network sieves,

showing that a particular regularization, combined with under-smoothing, can be

used to satisfy a strong, high-level approximation error condition which the literature

left hitherto unverified.
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defined as the cardinality of the smallest set C ⊂ Λ such that supλ∈Λ infc∈C ‖λ−c‖ ≤ δ.
The quantity logN (δ,Λ, ‖ · ‖) is also called metric entropy.

Definition 2 (Deep Neural Networks).
We define the class of deep σ networks f ∈ Fσ(L,W,w, κ, B) as parametrized func-
tions of the form:

f(x) = A(L) · σ
(
A(L−1) · · ·σ

(
A(1)x+ b(1)

)
· · ·+ b(L−1)

)
+ b(L)

where the A(l)’s are weight matrices and b(l)’s are intercept vectors with real-valued
elements, and σ : R 7→ R is applied element-wise. For example, the choice σ(x) =
ReLU(x) = max{0, x} (rectified linear unit) gives rise to the class of deep ReLU
networks, and σ(x) = tanh (x) gives rise to the class of tanh networks. We say the
network is L layers deep and call the upper bound supl dim(b(l)) ≤ w its width.
Further, we assume that

max
i,j,l

∣∣∣A(l)
ij

∣∣∣ ≤ κ,max
i,l
|b(l)i | ≤ κ,

L∑

l=1

∥∥A(l)
∥∥
0
+
∥∥b(l)

∥∥
0
≤ W, for i = 1, . . . , L

i.e. all elements in the A(l)’s and b(l)’s are bounded in absolute value by κ, and there
are at most W non-zero parameters in total. Finally, we assume ‖f‖∞ ≤ B < ∞
for all f . If the particular value B is an arbitrary large enough constant, we may
suppress the notation and write Fσ(L,W,w, κ, B) = Fσ(L,W,w, κ).

Definition 3 (Minkowski Dimension).
The (upper) Minkowski dimension of a set X ⊂ [0, 1]D is defined as

dimM X := inf

{
d∗ ≥ 0 | lim sup

ε↓0
N (ε,X , ‖ · ‖∞)εd

∗

= 0

}

where N (ε,X , ‖ · ‖∞) is given by Definition 1. As shown in Nakada and Imaizumi
[2020], this definition generalizes many other notions of intrinsic dimension, such as
the manifold dimension.

Definition 4 (Hölder Space).
For a function f : R

D → R, ∂df(x) is a partial derivative with respect to a d-th
component, and ∂αf := ∂α1

1 · · ·∂αD

D f using multi-index α = (α1, . . . , αD) . For z ∈ R

⌊z⌋ denotes the largest integer that is less than z. Let p > 0 be a degree of smoothness.
For f : [0, 1]D → R, the Höder norm is defined as

‖f‖H(p,[0,1]D) := max
α:‖α‖1<⌊p⌋

sup
x∈[0,1]D

|∂αf(x)|+ max
α:‖α‖1=⌊p⌋x,x′∈[0,1]D,x 6=x′

|∂αf(x)− ∂αf (x′)|
‖x− x′‖p−⌊p⌋

∞

Then, the Hölder space on [0, 1]D is defined as

H
(
p, [0, 1]D

)
=
{
f ∈ C⌊p⌋

(
[0, 1]D

)
| ‖f‖H(p,[0,1]D) <∞

}
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Also,H
(
p, [0, 1]D,M

)
=
{
f ∈ H

(
p, [0, 1]D

)
| ‖f‖H(p,[0,1]D) ≤M

}
denotes theM-radius

closed ball in H
(
p, [0, 1]D

)
.

Definition 5 ((p, C)-smoothness).
Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd → R is called
(p, C)−smooth, if for every α = (α1, . . . , αd) ∈ N

d
0 with

∑d
j=1 αj = q the partial

derivative ∂qm
∂xα

1 ...∂x
αd
d

exists and satisfies

∣∣∣∣
∂qm

∂xα1
1 · · ·∂xαd

d

(x)− ∂qm

∂xα1
1 · · ·∂xαd

d

(z)

∣∣∣∣ ≤ C · ‖x− z‖s2

for all x, z ∈ R
d.

Definition 6 (Generalized Hierarchical Interaction Models).
Let C ∈ R≥0, D ∈ N, d∗ ∈ {1, . . . , D}, m : RD → R and p = q + s for some q ∈ N0

and 0 < s ≤ 1.

a) We say that m satisfies a generalized hierarchical interaction model of order d∗

and level 0 with bound C, if there exist a1, . . . , ad∗ ∈ R
D and some f : Rd∗ → R

such that
m(x) = f

(
aT1 x, . . . , a

T
d∗x
)

for all x ∈ R
D

and where f is Lipschitz continuous with constant C and all of its partial
derivatives of order less than or equal to q are bounded in absolute value by by
C.

b) We say that m satisfies a generalized hierarchical interaction model of order d∗

and level l + 1 with bound C if there exist K ∈ N, gk : R
d∗ → R(k = 1, . . . , K)

and f1,k, . . . , fd∗,k : R
D → R(k = 1, . . . , K) such that f1,k, . . . , fd∗,k(k = 1, . . . , K)

satisfy a generalized hierarchical interaction model of order d∗ and level l and

m(x) =

K∑

k=1

gk (f1,k(x), . . . , fd∗,k(x)) for all x ∈ R
D

where gk are Lipschitz continuous with constant C and all of their partial deriva-
tives of order less than or equal to q are bounded by some constant C.

c) We say that the generalized hierarchical interaction model defined above is
(p, C)-smooth, if all functions occurring in its definition are (p, C)-smooth, cf.
Definition 5.

d) We define G(p, d∗, C, [0, 1]D) as the class of all functions m : [0, 1]D → R sat-
isfying a (p, C)-smooth generalized hierarchical interaction model of order d∗

and level l with bound C, where l ≤ C. Since the particular value of C is not
important as long as C <∞, we also write G(p, d∗, [0, 1]D).
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Definition 7 (Pathwise Derivatives).
For some θ ∈ Θ, λ ∈ Λ and some functional l : Θ × Λ 7→ R

d, we define the first
pathwise derivative in the direction θ′ ∈ Θ as

∇θ→θ′l(θ, λ) := lim
τ→0

∂

∂τ
l(θ + τθ′, λ)

for some real number τ ∈ R. Throughout this paper, the usage of ∇θ→θ′ implicitly
assumes that the derivative and limit on the RHS exists and is linear in θ′.

B Supporting Lemmas

Lemma B.1 (Covering Number of Neural Networks).
Consider the class of deep neural networks f ∈ Fσ(L,W,w, κ) (Definition 2), with
activation σ satisfying σ : |σ(x)| ≤ x, |σ(x)− σ(x′)| ≤ |x− x′| ∀x, x′ ∈ R (e.g. ReLU,
tanh) and consider the norm ‖f‖∞ = supx∈X |f(x)| for some X ⊂ [0, 1]D where
D ≤ w. Its δ-covering number (Definition 1) can be bounded by:

N (δ,Fσ(L,W,w, κ), ‖ · ‖∞) ≤
(
2L2(w + 2)(κw)L+1

δ

)W

Proof. This is Lemma 7 in Chen et al. [2020]. While they only state the Lemma for
the case of ReLU networks σ(x) = max(0, x), their proof works for any activation σ
satisfying |σ(x)| ≤ x and |σ(x) − σ(x′)| ≤ |x − x′| for all x, x′ ∈ R. We substituted
the bound B = 1 and renamed some variables.

Lemma B.2 (Approximation by Deep ReLU Networks on Low Dimensional Data).
Consider the Hölder space H ≡ H

(
p, [0, 1]D

)
(Definition 4) and some support X ⊂

[0, 1]D with Minkowski dimension (Definition 3) bounded by dimM X ≤ d∗ ≤ D. For
any small enough ǫ > 0, the class of deep ReLU networks F ≡ FReLU(L,W (ǫ), w(ǫ), κ(ǫ))
(Definition 2) satisfies:

sup
f∗∈H

inf
f∈F

sup
x∈X
|f(x)− f∗(x)| < ǫ

as long as W (ǫ) ≥ c1ǫ
−d∗/p, w(ǫ) ≥ c2ǫ

−d∗/p, κ(ǫ) ≥ c3ǫ
−c4 for any large enough

choice of L, c1, c2, c3, c4 > 0.

Proof. The case d∗ < D is covered by Theorem 5 in Nakada and Imaizumi [2020].
While they do not state a bound on the width w(ǫ), it is easy to see that any network
described by Definition 2 with at most W (ǫ) non-zero parameters can be represented
by a network with width bounded by w(ǫ) ≤W (ǫ). In the case of d∗ = D, the Lemma
simply states the approximation error for conventional Hölder spaces as established
in Yarotsky [2017].
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Lemma B.3 (Approximation of Generalized Interaction Models by Deep ReLU Net-
works).
Consider the function class G ≡ G(p, d∗, [0, 1]D) (Definition 6d) and consider some ar-
bitrary random variable x ∈ [0, 1]D with probability measure Px. For any small enough
ǫ, η > 0, the class of deep tanh networks F ≡ Ftanh(L,W (ǫ), w(ǫ), κ(ǫ)) (Definition
2) satisfies:

sup
f∗∈G

inf
f∈F

sup
x∈X
|f(x)− f∗(x)| < ǫ

for some subset X ⊂ [0, 1]D with Px(x 6∈ X ) ≤ η as long as W (ǫ) = c1ǫ
−d∗/p, w(ǫ) =

c2ǫ
−d∗/p, κ(ǫ) = c3ǫ

−c4/η for any large enough choice of L, c1, c2, c3, c4 > 0.

Proof. This directly follows from Theorem 3 in Bauer et al. [2019], however our no-
tation is greatly simplified by the fact that we are not interested in most of their
constants, and that we offloaded most of the assumptions into Definition 6. What
matters is that the network they construct has a depth that bounded by a constant
(their equation (6)), and a number of non-zero parameters that is proportional to
what they call (Mn + 1)d

∗

in their Theorem 3 (by their equations (7) and (5) and
the definition of M∗ in their Theorem 3). Since we assumed bounded support (leav-
ing their an as a constant), their bound yields an approximation error of ǫ =: cM−p

n

for some c > 0, such that the number of non-zero parameters can be bounded as
W (ǫn) = O

(
(Mn + 1)d

∗
)
= O(ǫ−d∗/p). They bound κ(ǫ) (α in their notation) in terms

ofMn and η yielding κ(ǫ) = O(ǫ−c4/η) for some large enough constant c4 > 0. Finally,
their theorem holds only for activation functions σ which satisfy a property they call
N-admissible. While this is technically not satisfied by σ(x) = tanh (x), it is easy to
verify that this property is satisfied by the activation function σ̃(x) = 1/2+tanh (x)/2.
Since for any f̃ ∈ Fσ̃(L,W,w, κ) there exists some f ∈ Ftanh(L,W,w, 2κ+ 1/2) such
that f̃ = f , the same approximation bound holds with σ(x) = tanh (x).

Lemma B.4 (Empirical Process of Donsker Classes).
If Y ∈ Y is iid and {l(θ, Y ) : θ ∈ Θ} is P-Donsker for some l : Θ×Y 7→ R satisfying

lim
θ∈Θ:‖θ−θ∗‖→0

E
[
(l(θ, Y )− l(θ∗, Y ))2

]
= 0,

then
sup

θ∈Θ:‖θ−θ∗‖≤δn

(E− En)[l(θ, Y )− l(θ∗, Y )] = oP(n
−1/2)

for any δn = oP(1).

Proof. This directly follows from Lemma 1 in Chen et al. [2003].

Lemma B.5 (Empirical Process Rates for A-Estimators).
Under the assumptions of Theorem 3.1, for any function f(θ, λ, Y ) satisfying the
following conditions:

40



• For any sequence en ≥ 0 and all θ ∈ Θ, λ ∈ Λ:

V[f(θ, λθ∗, Y )− f(θ∗, λθ∗∗ , Y )] ≺ E[l(θ, Y )− l(θ∗, Y ) + en]
γ (B.1)

V[f(θ, λ, Y )− f(θ, λθ∗, Y )] ≺ E[lθ(λθ∗, Y )− lθ(λ, Y ) + en]
γ (B.2)

at least if the right hand sides are smaller than some C > 0.

• For all small ε > 0, we have:

logN (ε, {f(θ, λ, ·) : θ ∈ Θn, λ ∈ Λn}, ‖ · ‖∞) ≺ ns(ε−r − 1)/r (B.3)

we obtain the following empirical processes bounds:

sup
θ∈Θ̂n

(E− En)[f(θ, πnλ
θ
∗, Y )− f(θ∗, λθ∗∗ , Y )] = OP(n

−τ(γ,s,r,n) + ǫn + ηn + ǭn + η̄n + en)

sup
θ∈Θ̂n

λ∈Λ̂n(θ)

(E− En)[f(θ, λ, Y )− f(θ, πnλθ∗, Y )] = OP(n
−τ(γ,s,r,n) + ǫn + ηn + en)

where Λ̂n(θ) := {λ ∈ Λn : E[lθ(λθ∗, Y )−lθ(λ, Y )] ≺ E[lθ(λθ∗, Y )−lθ(λ̂θn, Y )]} and Θ̂n :=

{θ ∈ Θ : E[l(θ, Y ) − l(θ∗, Y )] ≺ E[l(θ̂n, Y ) − l(θ∗, Y )]} are shrinking neighborhoods

around λθ∗ and θ∗ containing λ̂θn and θ̂n.

C Proofs

C.1 Theorem 3.1 and Lemma B.5

Theorem 3.1 and Lemma B.5 are simplified versions of the slightly more general The-
orems C.1 and C.2, which modify Shen and Wong [1994]’s M-estimator convergence
rate arguments to hold uniformly over another parameter space and accommodate es-
timators which are finite-sample optimal up to some stochastic remainder. Theorem
C.1 is presented in C.1.1 and derives the uniform convergence rates for λ̂θn. Theorem

C.2 is presented in C.1.2 and derives the rates for θ̂n. In C.1.3, we then discuss how
Theorem 3.1 and Lemma B.5 follow from these results.

C.1.1 Uniform convergence rate of λ̂θn

Theorem C.1 (Uniform Convergence Rates of Sieve M-Estimators). Let ρθ(·, ·) be a

pseudo-distance on Λ, possibly indexed by θ ∈ Θ. For the estimator λ̂θn of 3.2, assume:

CONDITION C1a. For some constants A1 > 0 and α > 0, and all small ε > 0:

inf
{ρθ(λ,λθ

∗)≥ε,λ∈Λ,θ∈Θ}
E
[
lθ
(
λθ∗, Y

)
− lθ(λ, Y )

]
≥ 2A1ε

2α
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CONDITION C1b. For some constants A2 > 0 and β > 0, and all small ε > 0:

sup
{ρθ(λ,λθ

∗)≤ε,λ∈Λ,θ∈Θ}
V
[
lθ(λ, Y )− lθ

(
λθ∗, Y

)]
≤ A2ε

2β

CONDITION C2. Let Fn =
{
lθ(λ, ·)− lθ

(
πnλ

θ
∗, ·
)
: λ ∈ Λn, θ ∈ Θn

}
. For some

r0 <
1
2
, A3 > 0 and all small ε > 0, its entropy (Def. 1) is bounded as:

logN (ε,Fn, ‖ · ‖∞) ≤ A3n
2r0ε−r

where either r > 0 or r = 0+, which is understood to represent ε−0+ = log(1/ε).

Let ǫn := supθ∈Θn
ρθ
(
πnλ

θ
∗, λ

θ
∗

)
∨
∣∣E
[
lθ(λθ∗, Y )− l(πnλθ∗, Y )

]∣∣1/2α, then

sup
θ∈Θn

ρθ
(
λ̂θn, λ

θ
∗

)
= OP

(
n−τ + ǫn + η1/2αn

)
,

where τ = τ(α, β, r, r0, n) is given by:

τ =





1−2r0
2α
− log logn

2α logn
, if r = 0+, β ≥ α

1−2r0
4α−2β

, if r = 0+, β < α
1−2r0

4α−min(α,β)(2−r)
, if 0 < r < 2

1−2r0
4α
− log logn

2α logn
, if r = 2

1−2r0
2αr

, if r > 2

And for any f(θ, λ, Y ) satisfying C1a and C2 when lθ(λ, Y ) is replaced by f(θ, λ, Y ),
we can bound the empirical process as follows:

sup
θ∈Θn,λ∈Λ̂n(θ)

(E− En)[f(θ, λ, Y )− f(θ, πnλθ∗, Y )] = OP(n
−τ + ǫn + η1/2αn ) (C.1)

where Λ̂n(θ) is defined as in Lemma B.5.

Proof. The theorem generalizes Theorem 1 of Shen and Wong [1994] such that it holds
uniformly over a family of losses indexed by the parameter θ ∈ Θn, and to allow for
the finite-sample optimum to hold approximately up to a possibly stochastic sequence
ηn. Fortunately, the proof can remain almost identical. Shen and Wong [1994] prove
the Theorem by induction, through a chaining argument. They use their Lemma 2
to derive an initial, slow rate which corresponds to the induction start, yielding the
assumptions of their Lemma 3 at step k = 2. Next, their Lemma 3 is repeatedly
applied as the induction steps until the rates of Theorem C.1 are obtained. We do
not reproduce these algebraic steps, as they are the same as in Shen and Wong [1994].
Like Shen and Wong [1994], we also do not provide the proof for the induction start
as it is similar, but simpler than the proof of the induction step, which we present in
Lemma C.1.
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Lemma C.1 (Induction Step for Theorem C.1).

Suppose Conditions C1a, C1b and C2 hold. If at Step k − 1 we have a rate ε
(k−1)
n =

n−αk−1 > max
(
n−(1−2r0)/[α(r+2)], ǫn

)
so that

P

(
sup
θ∈Θn

ρθ
(
λ̂θn, λ

θ
∗

)
≥ Dε(k−1)

n

)
≤ 5

[
exp

(
−(1− ε)max

(
D4α, D2α

)
M1n

2r0
)
+ (k − 1) exp

(
−Lnδ∗

)]

where δ∗ = min
(

r+4r0
r+2

, βr(1−2r0)
4α

+ r0

)
and L = (1 − ε)min

(
M2D

2α,M3D
4α−β(2−r)/2

)

Then at Step k, we can find an improved rate

ε(k)n = max
(
n−αk , n−(1−2r0)/[α(r+2)], ǫn, η

1/2α
n

)

where αk = (1− 2r0) /(4α) + αk−1β(2− r)/(4α), so that

P

(
sup
θ∈Θn

ρθ
(
λ̂θn, λ

θ
∗

)
≥ Dε(k)n

)
≤ 5

[
exp

(
−(1− ε)max

(
D4α, D2α

)
M1n

2r0
)
+ k exp

(
−Lnδ∗

)]

And for any function f(θ, λ, Y ) satisfying C1b and C2 when lθ(λ, Y ) is replaced by

f(θ, λ, Y ), and Λ̂n(θ) is defined as in Lemma B.5, the same bound applies to:

P

(
sup

θ∈Θn,λ∈Λ̂n(θ)

(E− En)[f(θ, λ, Y )− f(θ, πnλθ∗, Y )] ≥ A1

(
Dε(k)n

)2α
)

Proof. We assume D > 1 (wlog) and we only prove the case of 4α ≥ β(2− r)/2. Let
B

(i)
n =

{
Dε

(i)
n ≤ supθ∈Θn

ρθ
(
λ̂θn, λ

θ
∗

)
< Dε

(i−1)
n

}
for i = 2, . . . , k. Then

P

(
sup
θ∈Θn

ρθ
(
λ̂θn, λ

θ
∗

)
≥ Dε(k)n

)
≤ P

(
sup
θ∈Θn

ρθ
(
λ̂θn, λ

θ
∗

)
≥ Dε(k−1)

n

)
+ P

(
B(k)

n

)

To prove the Lemma , we only need to tackle P

(
B

(k)
n

)
. By Condition C1a,

inf{
ρθ(λ,λθ

∗)≥Dε
(k)
n ,λ∈Λn,θ∈Θn

} E
[
lθ
(
πnλ

θ
∗, Y

)
− lθ(λ, Y )

]
− ηn

≥ 2A1

(
Dε

(k)
n

)2α
− supθ∈Θn

E
[
lθ
(
λθ∗, Y

)
− lθ

(
πnλ

θ
∗, Y

)]
− ηn ≥ A1

(
Dε

(k)
n

)2α

The last inequality requires A1

(
Dε

(k)
n

)2α
− supθ∈Θn

E
[
lθ
(
λθ∗, Y

)
− lθ

(
πnλ

θ
∗, Y

)]
−

ηn > 0. This is holds for A1 > 2 (wlog), which follows from ε
(k)
n ≥ ǫn and ε

(k)
n ≥ η

1/2α
n .
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Thus

P
(
B(k)

n

)
≤ P


 sup{

Dε
(k)
n ≤ρθ(λ,λθ

∗)<Dε
(k−1)
n ,λ∈Λn,θ∈Θn

}En

[
lθ(λ, Y )− lθ

(
πnλ

θ
∗, Y

)]
≥ −ηn




≤ P


 sup{

Dε
(k)
n ≤ρθ(λ,λθ

∗)<Dε
(k−1)
n ,λ∈Λn,θ∈Θn

}n
1/2(En − E)

[
lθ(λ, Y )− lθ

(
πnλ

θ
∗, Y

)]
≥ A1n

1/2
(
Dε(k)n

)2α



Let vk = sup{
Dε

(k)
n ≤ρθ(λ,λθ

∗)<Dε
(k−1)
n ,λ∈Λn,θ∈Θn

} Var
(
lθ
(
πnλ

θ
∗, Y

)
− lθ(λ, Y )

)
. By Condi-

tion C1b and ε
(k−1)
n ≥ ǫn we get vk ≤ 4A2

(
Dε

(k−1)
n

)2β
. Since ε

(k)
n satisfies

ε(k)n ≥ n−min((1−2r0)/(4α)+αk−1β(2−r)/(4α),(1−2r0)/[α(r+2)])

we know that n1/2
(
Dε

(k)
n

)2α
≥ max

(
c1n

−(2−r−8r0)/[2(r+2)], c2
(
Dεk−1

n

)2β(2−r)/4
nr0
)
for

some constants c1 > 0 and c2 > 0. We can therefore apply Shen and Wong [1994]’s
Lemma 1 and obtain:

P
(
B(k)

n

)
≤ exp

(
−ψ1

(
A1n

1/2
(
Dε(k)n

)2α
, vk,Fn

))

The behavior of ψ1(·) can be analyzed via Shen and Wong [1994]’s Remark 12.

(i) If
(
Dε

(k)
n

)2α
A1 > 12

(
Dε

(k−1)
n

)2β
, then

ψ1

(
A1n

1/2
(
Dε(k)n

)2α
, vk,Fn

)
≥ 3A1

4
n
(
Dε(k)n

)2α ≥M2D
2αnn−2(1−2r0)/(r+2) ≥M2D

2αn(r+4r0)/(r+2)

for some constant M2 > 0. (ii) If
(
Dε

(k)
n

)2α
A1 ≤ 12

(
Dε

(k−1)
n

)2β
, then

ψ1

(
A1n

1/2
(
Dε(k)n

)2α
, vk,Fn

)
≥

(
A1n

1/2
(
Dε

(k)
n

)2α)2

4 (4A2)
(
Dε

(k−1)
n

)2β

≥M3D
4α−β(2−r)/2

(
ε(k−1)
n

)2β(2−r)/2 nr0

(
ε
(k−1)
n

)2β

≥M3D
4α−β(2−r)/2

(
ε(1)n

)−βr
nr0 ≥M3D

4α−β(2−r)/2nβr(1−2r0)/(4α)+r0

for some M3 > 0. Hence,

P
(
B(k)

n

)
≤
{

5 exp
(
−(1− ε)M2D

2αn(r+4r0)/(r+2)
)
if
(
Dε(k)n

)2α
A1 > 12

(
Dε(k−1)

n

)2β

5 exp
(
−(1 − ε)M3D

4α−β(2−r)/2nβr(1−2r0)/(4α)+r0
)
if
(
Dε(k)n

)2α
A1 ≤ 12

(
Dε(k−1)

n

)2β
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Take δ∗, L and ε
(k)
n as defined in the Lemma, and we obtain P

(
B

(k)
n

)
≤ 5 exp

(
−Lnδ∗

)
.

This yields the convergence rate of λ̂θn. The statement about arbitrary f(θ, λ, Y )
follows by applying analogous arguments (starting at the definition of vk) to the
expression f(θ, πnλ

θ
∗, Y )− f(θ, λ, Y ) instead of lθ(πnλ

θ
∗, Y )− lθ(λ, Y ).

C.1.2 Convergence of θ̂n

Theorem C.2 (Convergence Rate of A-Estimators). Consider the family of M-

estimators λ̂θn defined in 3.2 and the A-estimator θ̂n defined in 3.3. Assume that
conditions C1b and C2 are satisfied with ρθ(λ, λ′) :=

∣∣E[lθ(λ, Y )− lθ(λ′, Y )]
∣∣ (hence

C1a is automatically satisfied with α = 1/2). Let ρ̄(·, ·) be some pseudo-distance on
Θ. Assume that the following conditions are satisfied:

CONDITION C1a’ For some constants Ā1 > 0 and ᾱ > 0, and all small ε > 0:

inf
{ρ̄(θ,θ∗)≥ε,θ∈Θn}

E [l (θ, Y )− l(θ∗, Y )] ≥ 2Ā1ε
2ᾱ

CONDITION C1b’. For some constants Ā2 > 0 and β̄ > 0, and all small ε > 0:

sup
{ρ̄(θ,θ∗)≤ε,θ∈Θn}

V [l(θ, Y )− l (θ∗, Y )] ≤ Ā2ε
2β̄

CONDITION C2’. Let F̄n =
{
l(θ, πnλ

θ
∗, ·)− l

(
πnθ∗, πnλ

πnθ∗
∗ , ·

)
: θ ∈ Θn

}
. For

some r̄0 <
1
2
, Ā3 > 0 and all small ε > 0, its entropy (Def. 1) is bounded as:

logN
(
ε, F̄n, ‖ · ‖∞

)
≤ Ā3n

2r̄0ε−r̄

where either r̄ > 0 or r̄ = 0+, which represents ε−0+ = log(1/ε).

Let ǭn := ρ (πnθ∗, θ∗) ∨ |El(πnθ∗, Y )− l(θ∗, Y )|1/2ᾱ be the approximation error of Θn.
Then:

ρ̄
(
θ̂n, θ∗

)
= OP

(
n−τ̄ + ǭn + (η̄n + n−τ + ǫn + ηn)

1/2ᾱ
)

Where τ = τ(1/2, β, r, r0, n) and ǫn are defined as in Thm C.1 and τ̄ = τ(ᾱ, β̄, r̄, r̄0, n).
Also, for every f(θ, λ, Y ) satisfying C2 and C3 when l(θ, λ, Y ) is replaced by f(θ, λ, Y )
(recall l(θ, Y ) = l(θ, λθ∗, Y )), we can bound the empirical process:

sup
θ∈Θ̂n

(E−En)[f(θ, πnλ
θ
∗, Y )−f(θ∗, λθ∗∗ , Y )] = OP

(
n−τ̄ + ǭn + (η̄n + n−τ + ǫn + ηn)

1/2ᾱ
)

Proof. The proof is similar to that of Theorem C.1. Again, we will only prove
the induction step via Lemma D.1 in the Online Appendix, as the remaining ar-
guments are analogous to the proof of the previous Theorem or that of Theorem 1
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in Shen and Wong [1994]. The proof of Lemma D.1 largely mirrors that of Lemma
C.1, but uses the results of Theorem C.1 to control the convergence of the adversary.
The main additional complexity lies in properly switching back and forth between
the sieve spaces and the target function spaces, when bounding the empirical process
terms and variances respectively.

C.1.3 Proofs of Theorem 3.1 and Lemma B.5

Proof. To see that Theorem 3.1 and Lemma B.5 follow from the previous results,
simply choose ρθ(λ, λ′) = |E[lθ(λ, Y )− lθ(λ′, Y )]| and ρ̄(θ, θ′) = |E[l(θ, Y )− l(θ′, Y )]|,
such that Conditions C1a and C1a’ are automatically satisfied with α = 1/2. Further,
substitute γ = 2β ∨ 2β̄ such that Conditions C1b and C1b’ hold by assumptions 3.7
and 3.6 for all ε < 1∧C. Conditions C2 and C2’ directly follow from 3.8, substituting
s = 2r0 = 2r̄0 and fixing r = r̄. This yields Theorem 3.1, and Lemma B.5 with en = 0.

For a proof of Lemma B.5 with en 6= 0, note that Condition C1b in Theorem C.1 is

only needed to verify vk ≤ 4A2

(
Dε

(k−1)
n

)2β
in the proof of Lemma C.1. Hence we can

re-define ǫn ← ǫn + en such that the definition of ε
(k−1)
n ≥ ǫn automatically ensures

vk ≺
(
Dε

(k−1)
n

)2β
. This change in constants does not affect the result. Analogous

arguments can be applied to Lemma D.1 and thus Theorem C.2.

C.2 Theorem 3.3

Proof. The approximate Nash conditions 1.2 and 1.3 imply

OP(e
2
n) ≥ Enl(θ̂n, πnλ̄

θ̂n
n (λ̂n), Y )− l(πnθ̄(θ̂n), λ̂n, Y )

= Enl
′(θ̂n, λ̂n, Y )[θ̂n − πnθ̄n(θ̂n), πnλ̄θ̂nn (λ̂n)− λ̂n] +OP(e

2
n)

= Enl
′(θ̂n, λ̂n, Y )[env, enλ

′θ̂n
∗ [v]] +OP(e

2
n)

(C.2)

The second line uses Taylor’s theorem. The third line substitutes the definitions of

θ̄n, λ̄
θ̂n
n and applies Condition N3. Since the signs of v, λ′θ̂n∗ [v] are arbitrary, we may re-

place the inequality with an equality, which yields OP(en) = Enl
′(θ̂n, λ̂n, Y )[v, λ

′θ̂n
∗ [v]].

Adding and subtracting a few terms, we get:

Enl
′(θ∗, Y )[v] =(En − E)[l′(θ̂n, λ̂n, Y )[v, λ

′θ̂n
∗ [v]]− l′(θ∗, Y )[v]]

+ E[l′(θ̂n, λ̂n, Y )[v, λ
′θ̂n
∗ [v]]− l′(θ∗, Y )[v]] +OP(en)

=〈θ̂n − θ∗, v〉+OP(en)

(C.3)

Where the last line uses Conditions N1 and N2. Substituting v = v∗, we get:

√
n
(
F (θ̂n)− F (θ∗)

)
=
√
n〈θ̂n − θ∗, v∗〉+ oP(1) =

√
nEn[l

′(θ∗, Y )[v]] + oP(1)
d−→ N (0, V )
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with V = V (l′(θ∗, Y )[v]) by the standard central limit theorem.

C.3 Theorem 3.4

Proof of Theorem 3.4. Note that the regularization does not interfere with Theo-
rem 3.2: the approximation power relative to Θ∗,Λ∗ is not reduced as we remove
only elements form the sieves Θn,Λn that are far away from Θ∗,Λ∗, and the reg-
ularization is sufficiently slow to guarantee that the sieves are nonempty for small
enough ǫ > 0. Hence Theorem 3.2 holds with r̄ = 2, yielding rates oP(n

−2/(2+r̄)) =
oP(n

−1/2). Also note that the assumption d∗

p
∨ d̄∗

p̄
< 1/4 along with the lower bound

r > 2/3 ensures supθ∈Θ∗
‖θ − πnθ‖X̄ = o(n−1) and supλ∈Λ∗

‖λ− πnλ‖X = o(n−1). We
first verify condition N1, decomposing it into two parts by adding and subtracting
l′(θ, λ′θ∗ , Y )[v∗, λ

′θ
∗ [v∗]] = l′(θ, Y )[v∗]. First, we show

sup
θ∈Θ̂n,λ∈Λ̂n(θ)

(En − E)l′(θ, Y )[v∗]− l′(θ∗, Y )[v∗] = oP(n
−1/2)

If A7ii) holds with V[l′(θ∗, Y )[v] − l′(θ, Y )[v]] ≺ E[l(θ, Y ) − l(θ∗, Y )], then this can
be established with Lemma B.5 for γ = 1, using the Lipschitz condition A4 and
analogous arguments to those in the proof of Theorem 3.2. Lemma B.5 then yields
the same oP(n

−1/2) rates as Theorem 3.2. If A7ii) instead asserts that Θ∗ is P-
Donsker, the same result follows from Lemma B.4, which can be applied because
the Lipschitz continuity A4 implies the L2 continuity required by the Lemma. This
implies condition N1, together with:

sup
θ∈Θ̂n,λ∈Λ̂n(θ)

(En − E)l′(θ, λ, Y )[v∗, λ
′θ
∗ [v∗]]− l′(θ, λ′θ∗ , Y )[v∗, λ′θ∗ [v∗]] = oP(n

−1/2)

which can be established via analogous arguments and A7i). We proceed to verify
condition N2. Using a similar decomposition, we note that

sup
θ∈Θ̂n,λ∈Λ̂n(θ)

El′(θ, λ, Y )[v∗, λ
′θ
∗ [v∗]]− l′(θ, λ′θ∗ , Y )[v∗, λ′θ∗ [v∗]] = OP(en)

which follows from A6i) and the oP(n
−1/2) rates of Theorem 3.2. Similarly, A6ii) im-

plies supθ∈Θ̂n,λ∈Λ̂n(θ)
El′(θ, Y )[v∗]− l′(θ∗, Y )[v∗]−〈θ−θ∗, v∗〉 = OP(en) hence condition

N2 holds. Finally, we verify condition N3. Define π∗θ := arg infθ′∈Θ∗
‖θ′− θ‖∞ as the

projection onto Θ∗. Similarly, π∗λ := arg infλ′∈Λ∗
‖λ′ − λ‖∞. Due to the reguarliza-

tion, we know ‖θ − π∗θ‖∞ = o(n−1). Therefore ‖θ̄n(θ) − (π∗θ − env∗)‖∞ = o(n−1).
By convexity of Θ∗, we have (π∗θ − env∗) ∈ Θ∗ for n large enough. Given that
supθ′∈Θ∗

‖θ′ − πnθ
′‖∞ = o(n−1) due to d∗

p
∨ d̄∗

p̄
< 1/4 and our choice of r, we get

‖(π∗θ − env∗)− θn(π∗θ − env∗)‖∞ = o(n−1). Taken together, these statements imply
‖θ̄n(θ) − πnθ̄n(θ)‖∞ = o(n−1). Analogous arguments yield ‖λ̄θn(λ) − πnλ̄

θ
n(λ)‖∞ =

o(n−1). Hence N3 holds.
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D Online Appendix

D.1 Proof of Theorem C.2

The induction step for the proof of Theorem C.2 is given by the following Lemma.

Lemma D.1 (Induction Step for Theorem C.2).
Suppose the Conditions of Theorem C.2 hold. If at Step k − 1 we have a rate

ε(k−1)
n = n−ᾱk−1 > max

(
n−(1−2r̄0)/[ᾱ(r̄+2)], ǭn, ǫn

)

so that

P

(
ρ̄
(
θ̂n, θ∗

)
≥ Dε(k−1)

n

)
≤ 5

[
exp

(
−(1 − ε)max

(
D4ᾱ, D2ᾱ

)
M1n

2r̄0
)
+ (k − 1) exp

(
−Lnδ∗

)]

where δ∗ = min
(

r+4r̄0
r+2

, β̄r̄(1−2r̄0)
4ᾱ

+ r̄0

)
and L = (1−ε)min

(
M2D

2ᾱ,M3D
4ᾱ−β̄(2−r̄)/2

)
,

then at Step k, we can find an improved rate

ε(k)n = max
(
n−ᾱk , n−(1−2r̄0)/[ᾱ(r̄+2)], ǭn, (η̄n + rn)

1/2ᾱ
)

where ᾱk = (1− 2r̄0) /(4ᾱ) + ᾱk−1β̄(2− r̄)/(4ᾱ), so that

P

(
ρ̄
(
θ̂n, θ∗

)
≥ Dε(k)n

)
≤ 5

[
exp

(
−(1− ε)max

(
D4ᾱ, D2ᾱ

)
M1n

2r̄0
)
+ k exp

(
−Lnδ∗

)]

Furthermore, for every f(θ, λ, Y ) satisfying Conditions C1b and C2 when l(θ, λ, Y )
is replaced by f(θ, λ, Y ) (recall l(θ, Y ) = l(θ, λθ∗, Y )), the same bound applies to:

P

(
sup
θ∈Θ̂n

(E− En)[f(θ, πnλ
θ
∗, Y )− f(θ∗, λθ∗∗ , Y )] ≥ Dε(k)n

)

Proof. As in the proof of Lemma C.1 we assume D > 1 (wlog) and we only prove the

case of 4ᾱ ≥ β̄(2 − r̄)/2. Let B
(i)
n =

{
Dε

(i)
n ≤ ρ̄

(
θ̂n, θ∗

)
< Dε

(i−1)
n

}
for i = 2, . . . , k.

As before, we only need to bound P

(
B

(k)
n

)
. To this end, it will be useful to define

rn := sup
θ∈Θn

E[l(θ, λθ∗, Y )− l(θ, λ̂θn, Y )] ∨ sup
θ∈Θn

(E− En)[l(θ, λ̂
θ
n, Y )− l(θ, πnλθ∗, Y )]

such that Theorem C.1 implies rn = OP(n
τ+ǫn+ηn), which also implies, by definition

of rn and ǫn: supθ∈Θn

∣∣∣En[l(θ, λ̂
θ
n, Y )− l(θ, πnλθ∗, Y )]

∣∣∣ ≤ rn + ǫn ≤ 2rn. Together with

3.3 this yields:

En[l(θ̂n, πnλ
θ̂n
∗ , Y )− l(θ, πnλθ∗, Y )] ≤ 2rn + η̄n ∀θ ∈ Θn (D.1)
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By Condition C1a’, we can therefore bound:

inf
θ∈Θn:ρ̄(θ,θ∗)≥Dε

(k)
n

E
[
l(θ, πnλ

θ
∗, Y )− l(πnθ∗, πnλπnθ∗

∗ , Y )
]
− η̄n − 2rn

= inf
θ∈Θn:ρ̄(θ,θ∗)≥Dε

(k)
n

E[l(θ, Y )− l(θ∗, Y )] + E[l(θ∗, Y )− l(πnθ∗, Y )]− η̄n − 2rn

+ E[l(θ, πnλ
θ
∗, Y )− l (θ, Y )] + E[l(πnθ∗, Y )− l(πnθ∗, πnλπnθ∗

∗ , Y )]

≥2Ā1

(
Dε(k)n

)2ᾱ − ǭ2ᾱn − η̄n − rn − ǫn − ǫn ≥ Ā1

(
Dε(k)n

)2ᾱ

(D.2)

Where the last line used C1a’, the definition of the approximation errors, assumed
large enough Ā1 (wlog) and used various lower-bounds implied by the definition of

ε
(k)
n . Together with D.1, this yields:

P
(
B(k)

n

)
≤ P


 sup{

Dε
(k)
n ≤ρ̄(θ,θ∗)<Dε

(k−1)
n ,θ∈Θn

}En

[
l(πnθ∗, πnλ

πnθ∗
∗ , Y )− l

(
θ, πnλ

θ
∗, Y

)]
≥ −η̄n − 2rn




≤ P


 sup

θ∈Θn

Dε
(k)
n ≤ρ̄(θ,θ∗)<Dε

(k−1)
n

n1/2(En − E)
[
l(πnθ∗, πnλ

πnθ∗
∗ , Y )− l

(
θ, πnλ

θ
∗, Y

)]
≥ A1n

1/2
(
Dε(k)n

)2ᾱ



Let vk = sup{
Dε

(k)
n ≤ρ̄(θ,θ∗)<Dε

(k−1)
n ,θ∈Θn

} V
[
l(πnθ∗, πnλ

πnθ∗
∗ , Y )− l

(
θ, πnλ

θ
∗, Y

)]
. To bound

vk, we add and subtract terms and apply the Cauchy-Schwartz inequality:

V[l(πnθ∗, πnλ
πnθ∗
∗ , Y )− l(θ, πnλθ∗, Y )]

≤ 3V[l(πnθ∗, λ
πnθ∗
∗ , Y )− l(θ, λθ∗, Y )] + 3V[l(πnθ∗, πnλ

πnθ∗
∗ , Y )− l(θ, πnλθ∗, Y )]

≺ V[l(θ, Y )− l(θ∗, Y )] + V[l(πnθ∗, Y )− l(θ∗, Y )] + V[lπnθ∗(πnλ
πnθ∗
∗ , Y )− lπnθ∗(λπnθ∗

∗ , Y )]

+ V[lθ(λθ∗, Y )− lθ(πnλθ∗, Y )]

By Conditions C1b and C1b’, and since ε
(k−1)
n ≥ ǭn, we obtain vk ≤ 4Ā2

(
Dε

(k−1)
n

)2β̄
,

assuming Ā2 is large enough (wlog). The remaining arguments are unchanged from

the proof of Lemma C.1, which eventually yields: P

(
B

(k)
n

)
≤ 5 exp

(
−Lnδ∗

)
. This

completes the proof for the convergence rate of θ̂n. To prove the statement about ar-
bitrary f(θ, λ, Y ) satisfying C1b and C2, simply repeat the arguments of the previous
proof (starting at the definition of vk) with l(θ, λ, Y ) replaced by f(θ, λ, Y ).
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D.2 Proof of Proposition 4.1

Proof. The first order conditions for λ in 2.1 yield the optimal population adversary
λθ∗(y):

λθ∗(y)dPθ(y)− f ′
∗(λ

θ
∗(y))dP(y)

!
= 0 ⇐⇒ λθ∗(y) = f ′

(
dPθ(y)

dP(y)

)
(D.3)

We verify the conditions of Theorem 3.2. The Lipschitz condition A1 can be verified
by writing l(θ, λ, Y ) =

∫
λ(y)dPθ

dP
(y)dP(y)− f∗(λ(Y )) and using the Lipschitzness of

dPθ

dP
in θ and that of f∗ (which follows from boundedness of Λ and differentiability of

f). Towards A2, apply a 2nd order Taylor expansion (with mean value reminder) of

Df(Pθ‖P) at dPθ

dP
=

dPθ∗

dP
in direction of dPθ

dP
, which yields for some θ̃ ∈ Θ on a path

from θ∗ to θ:

Df(Pθ‖P) =
∫
f

(
dPθ

dP

)
dP =

1

2

∫ (
dPθ

dP
− dPθ∗

dP

)2

f ′′

(
dPθ̃

dP

)
dP ≍

∥∥∥∥
dPθ

dP
− dPθ∗

dP

∥∥∥∥
2

L2(Y)

where the last step follows from strict positivity and boundedness of f ′′
(
dPθ

dP

)
wp1.

Further note that

V[l(θ, Y )− l(θ∗, Y )] = V

[
f∗

(
dPθ

dP
(Y )

)
− f∗

(
dPθ∗

dP
(Y )

)]
≺
∥∥∥∥
dPθ

dP
− dPθ∗

dP

∥∥∥∥
2

L2(Y)

due to Lipschitzness of f∗. Also note that Lipschitzness of dPθ

dP
in θ implies

∥∥∥∥
dPθ

dP
− dPθ∗

dP

∥∥∥∥
2

L2(Y)

≺
∥∥∥∥
dPθ

dP
− dPθ∗

dP

∥∥∥∥
2

Ỹ

+ P(y ∈ Ỹ) ≺ ‖θ − θ∗‖2∞ + P(y ∈ Ỹ)

Taken together, this implies A2. A3 can be verified analogously, starting with a Taylor
expansion yielding E[l(θ, λ, Y )− l(θ, λθ∗, Y )] = −

∫
f ′′
∗ (λ̃)(λ−λθ∗)2dP ≍ −‖λ−λθ∗‖2L2(Y)

for some λ̃ ∈ Λ on a path from λθ∗ to λ.

D.3 Proof of Proposition 4.2

Proof. First, we verify the conditions of Theorem 3.4. Note that

l′(θ, λ, Yi)[v, w] =

∫
λ(y)∇θ→v

dPθ(y)

dP(y)
dP(y) +

∫
w(y)

dPθ(y)

dP(y)
dP(y)− f ′

∗(λ(Yi))w(Yi)

The Lipschitz condition A4 is therefore satisfied by the Lipschitzness of f ′
∗,

dPθ

dP
and

that of ∇θ→v
dPθ

dP
. Towards A6 i), we apply a Taylor expansion with 2nd order mean-
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value reminder around λ = λθ∗, yielding for some λ̃θ on a path between λθ∗ and λ:

E[l′(θ, λ, Yi)[v, λ
′θ
∗ [v]]− l′(θ, λθ∗, Yi)[v, λ′θ∗ [v]]]

= ∇θ→v∇λθ
∗
→λ−λθ

∗

E[l(θ, λθ∗, Y )] + E[f ′′
∗ (λ̃

θ(Y ))(λ− λθ∗)2w(Y )] ≺ E[(λ− λθ∗)2]

where we used ∇λθ
∗
→λ−λθ

∗

E[l(θ, λθ∗, Y )] ≡ 0 to get rid of the first-order term. The
last line follows from the boundedness (in absolute value) of f ′′

∗ (·) and w(·) on their
compact support. Hence A6i) is satisfied. A7i) follows from:

V[l′(θ, λ, Yi)[v, w]− l′(θ, λθ∗, Yi)[v, w]] = V[(f ′
∗(λ(Y ))−f ′

∗(λ
θ
∗(Y )))w(Y )] ≺ E[(λ−λθ∗)2]

where the last step used the Lipschitzness of f ′
∗ and again the boundedness of w(·).

Assumption A7 ii) is satisfied since ×∗ is Donsker by assumption. Finally, we verify

A6 ii). Applying the mean value theorem twice, we get that for some θ̃, θ̃′ on a path be-

tween θ∗ and θ, E[l
′(θ, Y )[v∗]−l′(θ∗, Y )[v∗]−〈θ−θ∗, v∗〉 = ∇θ̃→θ̃′−θ∗

∇θ̃→θ−θ∗
E[l′(θ̃, Y )[v∗]]

which is dominated by E[l(θ, Y )] = Df (Pθ‖Pθ∗) via the last assumption stated in the
proposition. Therefore A6ii) is satisfied, and Theorem 2.4 applies.

D.4 Proof of Proposition 4.6

Proof. Note that V = ∇θ∗∇θ′
∗
E[l(θ∗, Y )] = V[∇θ∗l(θ∗, Y )]. We verify the conditions

of Theorem 3.4, for v∗ = V −1ζ , such that its conclusion becomes
√
n〈θ − θ∗, v∗〉 =√

n(θ − θ∗)
′ζ → N (0, ζ ′V −1ζ), which yields the Proposition via the Cramér-Wold

device. Note that l′(θ, λ, Y )[v, w] = v′d(X, θ)′λ(Z) + m(X, θ)′w(Z) − 1
2
λ(Z)′w(Z)

Hence assumption A4 follows from boundedness and Lipschitzness of d(X, ·), m(X, ·).
A5 holds by assumption. To verify A6i), notice that:

E[l′(θ, λ, Y )[v∗, λ
′θ
∗ [v∗]]− l′(θ, Y )] = E

[(
v′∗d(X, θ)−

1

2
λ′θ∗ [v∗](Z)

)(
λ− λθ∗

)
(Z)

]
= 0

where the last equality used the fact that E[v′∗d(X, θ)|Z] = 1
2
λ′θ∗ [v∗](Z). Towards

Assumption A6ii), note that we can apply a first-order Taylor expansion with mean-

value reminder twice, which yields for some θ̄, θ̃ on a path between θ∗ and θ:

E[l′(θ, Y )[v∗]−l′(θ∗, Y )[v∗]−〈θ−θ∗, v∗〉] = (θ̄−θ∗)′∇θ̃∇θ̃′E[l
′(θ̃, Y )][v∗](θ−θ∗) ≺ ‖θ−θ∗‖22

Given the identification assumption 2.5, we can use a second-order Taylor expansion
with mean-value reminder to show that ‖θ − θ∗‖22 ≍ E[l(θ, Y )− l(θ∗, Y )], which then
yields A6ii). Similarly, we can show A7ii) via a mean-value reminder:

E[(l′(θ, Y )[v]− l′(θ∗, Y )[v])2] = E

[(
(θ − θ∗)′∇θ̃l

′(θ̃, Y )[v]
)2]
≺ ‖θ − θ∗‖22
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We similarly can establish A7i) via

V[l′(θ, λ, Y )[v, λ′θ∗ [v∗]]− l′(θ, λθ∗, Y )[v, λ′θ∗ [v∗]]] ≺ E[(λ(Z)− λθ∗(Z))2] ≍ E[l(θ, λ, Y )− l(θ, λθ∗, Y )]

D.5 Proof of Proposition 4.4

Proof. A0 holds by assumption, and condition A1 is implied by Lipschitzness of Vθ, Pθ

in θ. Continuity of Vθ, Pθ, compactness of Θ and A0 further imply that there is some
0 ≤ M <∞ such that

sup
s,a,s+,θ

|Rθ(s, a) + βV (s+)− V (s)− logPθ(a|s)| ≤M

Given that λθ∗∗ ≡ 0 =⇒ l(θ∗, Y ) = 0, condition A2 then follows from

V[l(θ, Y )−l(θ∗, Y )] ≺ E[l(θ, Y )2] ≤ 2M2
E[λθ∗(s, a)

2] ≺ E[l(θ, Y )] = E[l(θ, Y )−l(θ∗, Y )]

as well as E[l(θ, Y )− l(θ∗, Y )] ≺ E[(λθ∗(s, a)−λθ∗∗ (s, a))2|(s, a) ∈ X̃ ]+P((s, a) 6∈ X̃ ) ≺
‖θ − θ∗‖2X̃ + P((s, a) 6∈ X̃ ), ∀X̃ ⊂ X̄ . A3 can be established analogously, hence the
conclusions of Theorem 3.2 hold.

D.6 Proof of Proposition 4.7

Proof. Note that λθ∗(x) = θ(x) − θ∗(x) follows from the first order conditions of the
adversary. Condition A0 is satisfied by assumption, and A1 follows from Lipschitzness
of m(Y, ·) and boundedness. Lipschitzness of m(θ, λ(x)) in λ(x) and boundedness
imply that l(θ, λ, Y ) = m(Y, λ) − θ(x)λ(x) − λ(x)2/2 is Lipschitz in λ(x). This
implies

V[l(θ, λ, Y )− l(θ, λθ∗, Y )] ≺ E[(λ(x)− λθ∗(x))2]
and together with λθ∗(x) = θ(x)− θ∗(x), it yields:

V[l(θ∗, λ
θ∗
∗ , Y )− l(θ, λθ∗, Y )] ≺ E[(θ(x)− θ∗(x))2]

Both bounds imply A3 and A2 respectively. The result follows because the loss
E[l(θ, Y )] is proportional to the squared L2 norm of θ − θ∗.
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