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Abstract

We quantify the effects of online vaccine skepticism on vaccine uptake and health complica-
tions for individuals not targeted by immunization campaigns. We collect the universe of Italian
vaccine-related tweets for 2013-2018, label anti-vax stances using NLP, and match them with
vaccine coverage and vaccine-preventable hospitalizations at the most granular level (municipal-
ity and year). We propose a model of opinion dynamics on social networks that matches the
observed data and shows that a vaccine mandate increases the average vaccination rate, but it also
increases the controversialness around the topic, endogenously fueling polarization of opinions
among users. We then leverage the intransitivity in network connections with “friends of friends”
to isolate the exogenous source of variation for users’ vaccine-related stances and implement an
IV strategy. We find that a 10pp increase in the municipality anti-vax stance causes a 0.43pp de-
crease in coverage of the Measles-Mumps-Rubella vaccine, 2.1 additional hospitalizations every
100k residents among individuals untargeted by the immunization (newborns, the immunosup-
pressed, pregnant women) and an excess expenditure of 7,311 euro, representing an 11% increase
in health expenses.
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1 Introduction

The wide diffusion of the internet and, more recently, social media has granted virtually unlimited

access to information that is not subject to fact-checking or editorial judgment. As a result, the ability

of consumers to discriminate between “good” and “fake” (or unsubstantiated) news has decreased

substantially. Additionally, social networks are heavily influenced by ideological “echo chambers”

(Cinelli et al., 2021), fueling polarization (Azzimonti and Fernandes, 2022, Flaxman et al., 2016,

Sunstein, 2001, 2017, 2018), ideological self-segregation (Berinsky, 2017, Gentzkow and Shapiro,

2011, Mullainathan and Shleifer, 2005) and misinformation spread (Allcott and Gentzkow, 2017).

The phenomenon of misinformation is deeply ingrained in our society, impacting political, eco-

nomic, and social well-being(Vosoughi et al., 2018). COVID-19 conspiracy aside, the link between

vaccines and autism is one of the most propagated pieces of fake news, stemming from A. Wakefield’s

1998 Lancet article on the trivalent Measles-Mumps-Rubella (MMR) vaccination (Jolley and Dou-

glas, 2014, Leask et al., 2006, Opel et al., 2011). Although the article has been retracted, and despite

overwhelming evidence supporting the safety and efficacy of vaccines, this misinformation continues

to be perpetuated (see among others Allcott et al., 2019, Chiou and Tucker, 2018). The rise of social

media has provided an unparalleled platform for the dissemination of misinformation about vaccines

(Burki, 2019). The fact-checking standards on social media are often lax, and the emotional appeal of

such messages can make them particularly effective in spreading quickly (Zhuravskaya et al., 2020).

Due to safety concerns, an increasing number of parents are choosing not to vaccinate their chil-

dren, consuming the benefits of the herd immunity granted by others (Esposito et al., 2014, Smith

et al., 2017). In Italy, as in many other countries, this has led to decreasing vaccination rates and

outbreaks of diseases such as measles. This has sparked a policy debate and led to the introduction

of legal measures that impose costs on individuals who choose not to vaccinate. Although vaccine

mandates curtailing individual freedom have always been controversial, opposed, and disputed, the

Italian healthcare department has argued that falling uptake poses a risk not only to the eligible but

also to vulnerable individuals who cannot be vaccinated.

In the ongoing conflict between personal interest and public health endeavors, it is natural to

ask what effects online skepticism about vaccines has on vaccination rates and vaccine-preventable
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diseases. If skepticism spread through social media has a sizeable impact on vaccine hesitancy, ad-

dressing it could help individuals make better decisions in their own best interest. Furthermore,

communicable diseases can have significant externalities, including higher hospitalization rates and

costs for unvaccinated individuals. It is thus worth considering the extent to which these externalities

impact individuals who are not targeted by vaccination campaigns.

In this study, we investigate the effects of online skepticism about vaccines on local public health

outcomes such as vaccination rates, vaccine-preventable hospitalizations, and relative costs. We use

Twitter’s Academic Application Programming Interface (API) data to analyze the spread of vaccine

skepticism and construct a measure of vaccine-related attitudes. This data includes all publicly avail-

able Italian tweets from 2013-2018. According to Kim (2022), Twitter data can be used to measure

and track public attitudes towards policy-relevant topics over time and across different locations.

This can provide valuable insight into how these attitudes evolve and where they are most prevalent.

We rely on a Natural Language Processing (NLP) transfer learning model. In particular, we build

our model as in AlBERTo, a pre-trained Bidirectional Encoder Representations from Transformers

(BERT) to distinguish vaccine-skeptic tweets from other tweets (Polignano et al., 2019). We treat ge-

olocated anti-vaccine Twitter messages as a proxy for the presence of the anti-vaccination movement

in Italian municipalities.

Next, we analyze how individual social media attitudes towards vaccines evolved in Italy using

a model of opinion dynamics in social networks. This model allows us to formalize the sources of

endogeneity that affect the relationship between the spread of anti-vaccine opinions on social media

and vaccine hesitancy. On the one hand, exposure to extreme opinions can influence an individual’s

stance (the “exposure effect”). On the other hand, people tend to form connections with like-minded

peers, particularly when the topic is controversial (the “link formation effect”). The endogeneity in

link formation among users poses a challenge for causal inference, and naive estimates of the impact

of exposure to online vaccine skepticism on vaccine hesitancy are likely to be biased.

In this context, we provide an estimate of the monetary effects of online vaccine skepticism on

society as a whole and on individuals who are not targeted by immunization campaigns. To measure

the exposure effect net of the link formation effect, we use an Instrumental Variables approach. We

exploit the complexity of the Twitter network structure and leverage the intransitivity of network
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connections, as described in (Bramoullé et al., 2009), to build a valid instrument. Under certain

assumptions, which we carefully examine, exposure to the vaccine-related stances of an individual’s

“friends of friends” can be considered an exogenous source of variation for an individual’s stance. We

assume that Twitter stances reflect individuals’ opinions on the overall utility of pediatric vaccines.

Since data on individual vaccine hesitancy is typically unavailable and cannot be linked to social

media accounts, we pair vaccine-related tweets with disease-specific vaccine coverage rates, vaccine-

preventable hospitalizations, and relative costs at the municipality level for the years 2013-2018.

Until 2017, Italy had four mandatory vaccines (for polio, diphtheria, tetanus, and hepatitis B, often

combined with Haemophilus influenzae type b and whooping cough), although this mandate was not

legally enforced. Vaccines for MMR, chickenpox, meningococcal, and pneumococcal diseases were

only strongly recommended, so their use was at the discretion of parents. Only in late 2017 did the

scope of mandatory pediatric vaccines in Italy expand and become legally enforceable upon school

enrollment, with a transitional period allowing parents to comply with the new requirements over the

following year. We focus on the period from 2013-2018, which allows for a significant amount of time

for Twitter vaccine stances to potentially impact vaccination rates before the vaccine mandate was

fully implemented. Importantly, within the administrative data on all Italian hospital discharges, we

distinguish between the pediatric target population and the non-target, vulnerable population (infants

aged 0-12 months, pregnant women, and immunosuppressed patients). This allows us to compute

the prevalence and costs of vaccine-preventable hospitalizations for those affected by the vaccination

campaign and its spillover effects.

We use a Mixed two-stage least squares approach to estimate the effects of online vaccine skep-

ticism on vaccinations and hospitalizations. In the first stage, we use the user-specific “friends-of-

friends” network, and in the second stage, we use municipality-level aggregated data on vaccinations

and hospitalizations. This allows us to account for the complex relationships between social media

activity and real-world health outcomes.

Our estimates consistently show that exposure to online vaccine skepticism reduced vaccination

rates for MMR, the vaccine that received the most coverage from the anti-vax movement. We find that

a 10 pp increase in average vaccine skepticism at the municipality level leads to a 0.43 pp decrease in

vaccination coverage. Furthermore, this increased skepticism leads to higher rates of hospitalization
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for vaccine-preventable diseases, as well as increased healthcare costs. Specifically, we find that a 10

pp increase in the average stance leads to 2.1 additional hospitalizations for every 100 thousand resi-

dents, as well as an excess expenditure of 7,311 euros, or an 11% increase in the respective healthcare

costs. We perform several robustness checks to control for the impact of Twitter algorithm changes,

local vaccine campaigns, and the impact of populist votes, and our results remain consistent. In ad-

dition to our baseline analysis, we present an alternative estimation strategy that addresses potential

concerns about the exogeneity of our instrument, specifically the intransitivity of users’ networks. Our

results using this alternative strategy are comparable to our baseline results in terms of both magnitude

and statistical significance. Finally, we examine the potential non-linear effects of lagged neighbor-

hood stances on individual user stances in order to determine whether our results have implications

for policymakers and public health agencies in terms of the measures that could be implemented on

social networks to communicate with citizens.

We find that exposure to the stances of friends-of-friends has a stronger effect on pro-vaccine users

compared to anti-vaccine users. This means that each unit change in the exposure stance is more effec-

tive at increasing vaccine hesitancy among pro-vaccine users rather than reducing it among vaccine

skeptics. Our findings also indicate that political debates and statements from trustworthy sources

can, on average, mitigate the negative effects of exposure to anti-vaccine viewpoints (or reinforce the

effects of exposure to pro-vaccine content). These results suggest that informative campaigns about

vaccines may be an effective and scalable intervention for shaping public health awareness.

While a growing body of literature examines the effects of fake news on vaccine hesitancy (Car-

rieri et al., 2019, Chiou and Tucker, 2018), anti-vaccine beliefs and behavior (Allam et al., 2014),

and improving immunization (Alatas et al., 2019), to the best of our knowledge, this is the first paper

that jointly (i) uses detailed data at a fine-grained geographical level on vaccination rates and hospi-

talizations; (ii) provides a data-driven approach to proxy users’ stance toward vaccine-related topics;

(iii) implements a causal identification strategy at the user level; and most importantly, (iv) quantifies

the monetary costs of online vaccine skepticism, distinguishing between the target population and the

externalities for the fragile individuals not subject to the vaccination campaigns.

Additionally, we show that micro-interactions among Italian users in the period before the exten-

sion and legal enforcement of the vaccine mandate in 2017 were governed by a relative consensus. In
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2017, the controversy around the mandate increased, leading to greater polarization and the formation

of echo chambers. This network structure may have been reinforced by the Twitter amplification al-

gorithm introduced in 2016, which we also found to have increased the effect of exposure to vaccine

skepticism by friends-of-friends networks. These findings are consistent with the evidence presented

by Acemoglu et al. (2021), who demonstrate that social media platforms interested in maximizing

engagement tend to design their algorithms to create more homophilic communication patterns, or

“filter bubbles.”

This work also contributes to the literature on the effects of vaccine mandates. Previous research

has shown that mandates can significantly impact vaccination uptake and decrease the incidence of

infectious diseases, such as pertussis, smallpox, chickenpox, and hepatitis A, with large long-term ef-

fects on affected individuals (Abrevaya and Mulligan, 2011, Carpenter and Lawler, 2019, Holtkamp

et al., 2021, Lawler, 2017). Taken together, our results suggest that counteracting the spread of pedi-

atric vaccine skepticism can have a significant impact on immunization. Forced medical interventions

are often seen as curtailments of individual freedom, which can lead to controversy and unintended

consequences. Athey et al. (2022) have recently shown that social media has had a significant impact

on self-reported beliefs and knowledge about COVID-19 vaccines through public health organiza-

tion campaigns on Facebook and Instagram. Additionally, Breza et al. (2021) found that mobility and

COVID-19 infection rates decreased as a result of randomly assigned exposure to Facebook messages

encouraging preventive health behaviors. Bailey et al. (2020) also showed that Facebook users with

friends exposed to COVID-19 were more likely to support social distancing and other public health

behavior measures. Our findings on the effects of vaccine skepticism on public health provide direct

evidence on the potential benefits of policies that raise awareness about the risks of infection with

communicable diseases and promote preventive immunization.

2 Institutional background

Historically, the discovery of antibiotics and advances in vaccine technology have been major contrib-

utors to the improved life expectancy that we enjoy today. They have allowed us to protect ourselves

from deadly infectious diseases, reducing their prevalence and saving countless lives. Paradoxically,

due to the past success of collective vaccination efforts, individuals may underestimate the value of
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immunization and be more willing to take the risk of being unprotected. The self-eroding nature of

vaccination can lead to fluctuations in vaccine coverage, which can affect the level of protection for

the entire community if herd immunity is not achieved (Siegal et al., 2009). As such, vaccine coverage

is a classic example of a public good, where individuals may prioritize their own interests over those

of the community when deciding whether or not to get vaccinated. This can lead to suboptimal partic-

ipation in collective vaccination efforts and factors that may influence an individual’s decision to get

vaccinated include their perception of the risk of disease, cognitive biases, and local epidemiological

conditions.

One of the turning points in the history of Italian vaccines was the eradication of smallpox be-

tween 1978 and 1998, followed by the introduction of hepatitis B and anti-pertussis vaccines. In the

early 2000s, the first national vaccination plans were introduced under the National Plan of Vaccine

Prevention (PNPV). The PNPV establishes a vaccine calendar and offers eligible individuals free

vaccines at Local Health Authorities (LHAs).1

Until 2017, the mandate for pediatric vaccines included four shots: polio, diphtheria, tetanus,

and hepatitis B, which are frequently combined with Haemophilus influenzae type b and whooping

cough as the so-called hexavalent or 6-in-1 vaccine. Vaccines for the trivalent MMR, chickenpox,

meningo- and pneumo-coccal diseases were only strongly recommended, meaning that parents could

choose whether or not to have their children vaccinated. Since 2012, when the Court of Rimini con-

troversially confirmed a link between the MMR vaccine and autism, immunization rates have begun

to decrease. The hesitancy has been fueled by the spread of non-scientific health information on the

internet and the availability of low-quality news outlets promoting anti-scientific views. The lowest

historical coverage rates were recorded in 2015, the year in which the Court of Bologna reversed the

2012 Rimini sentence (Carrieri et al., 2019). In response to falling immunization rates and a sharp

increase in measles cases in Italy, a strong political commitment against anti-vax movements led to

the approval of a new PNPV in 2017,2 which extended the scope of mandatory pediatric vaccines by

enforcing them upon school enrollment and introduced sanctions against anti-vax doctors.
1The regions implement public health policies through their health departments, while health protection and promotion

fall under the responsibility of the Departments of Prevention within the 101 LHAs (Azienda Sanitaria Locale). LHAs
covering a population of 590,000 each are divided into 711 districts with an average population of 84,000. LHAs manage
and deliver vaccinations free of charge to the eligible (pediatric population, the elderly, and other protected categories.).

2The Lorenzini’s Decree.
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Under the 2017 PNPV, the number of mandatory vaccinations increased from four to ten (adding

whooping cough, Haemophilus influenzae type b, measles, mumps, rubella, and chickenpox). Al-

though vaccine mandates curtailing individual freedom have always been controversial, opposed, and

disputed, the PNPV proposers argued that falling uptake was driven by anit-vax sentiment and cre-

ated sizable externalities, increasing the risk of infection not only for the eligible but also for fragile

individuals not targeted by the vaccination.

3 Data

We collected the majority of data on vaccine skepticism and related discussions from Twitter. Specif-

ically, we used the Twitter Application Programming Interface (API) to retrieve all publicly available

tweets written in Italian containing vaccine-related keywords and a wide range of information on the

users from 2013-2018.

We complement the Twitter data with hand-collected news-related data from newspapers and

official sources of information on topics related to vaccines, including vaccine-preventable disease

outbreaks, judicial cases, court rulings, and local or nationwide regulatory interventions.

On the health side, we use two primary data sources. The first one contains yearly information on

disease-specific vaccination rates provided by the Local Health Authorities (LHAs) and aggregated at

the municipal level for the period 2013-2018.

The second one is an administrative dataset on the universe of Italian hospital admissions The

second one is an administrative dataset on the universe of Italian hospital admissions, allowing us

to focus on vaccine-preventable conditions in both the target population and the population excluded

from the vaccination plan, such as infants aged 0-12 months, pregnant women, and immunosup-

pressed patients, aggregated at the municipality/year level for the period 2013 to 2016.

3.1 Twitter data

Twitter is the fourth most-used social media platform in Italy, after Facebook, Instagram, and LinkedIn,

with 8 million users in 2018. Together with TikTok, Twitter has recently seen the fastest growth in its
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user base. Twitter users tend to be older, with 39% of them being female and 61% being male.3 Twit-

ter is also the most followed by other news outlets, TV channels, and blogs, as it primarily focuses

on spreading information. In addition to its actual users, Twitter content is also spread across other

social media platforms, with 84% of all Twitter users also using Facebook, 80% using YouTube, and

88% using Instagram 4.

Given the role of Twitter data for the information spread, we exploit the Twitter Academic Re-

search product track to access the full archive of (as-yet-undeleted) tweets published on Twitter. In

addition to the text of the tweets, the API provides additional information about both the tweet and

the related user. Net of the text analysis of the tweets, we focus on mapping users in terms of their

geolocation and online network. Geolocation data can help us better understand the environments in

which target populations live (Martinez et al., 2018). We also use the API to retrieve the complete

list of users that each user in our vaccine sample follows and is followed by, which allows us to build

user-specific online networks.5 This allows us to study the interplay between users’ conversations on

Twitter and their local environments.

In February 2016, Twitter introduced an “algorithmic timeline” which ordered tweets according to

their relevance instead of appearing in the order they were posted. With this feature, Twitter intended

to more effectively target tweets to individual users.

Download and filtering We collect all tweets containing the Italian correspondents of any of the

following keywords: “vaccine(s)”, “vaccination”, “vaccinating”, “anti-vax”, “vax”.6 The current ver-

sion of the dataset was downloaded on April 23rd, 2021.

Each retrieved object contains i) the plain text of the tweet; ii) the unique tweet ID, the creation

date, the count of the associated replies, likes, mentions, retweets, hashtags, and multimedia contents,

as well as the tweet-specific location, when available; iii) the user contents: ID, Twitter handle, display
3AgCom - "Osservatorio sulle comunicazioni".
4Pew Research Center - "Social Media Use in 2021"
5To date, Twitter API v.2 allows us to retrieve the following/follower structure at the date of the download - which in

our case, is the period between May and September 2021. In this sense, we build the network-related variables using the
“equilibrium” network, which results from all the (endogenous) interactions across users during the 2013-2018 analysis
period.

6Specifically, we exclude tweets (mainly ads) referring to cow milk (“latte vaccino” in Italian). The specific query
reads “(vaccino OR vaccini OR vaccinazione OR vax OR novax OR vaccinarsi OR vaccinato OR vaccinati) -mozzarella
-latte lang:it”.
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name, short bio and a few metrics - the number of friends, followers, and tweets posted - a verified

status of the account, date when joined Twitter, and the location, when available (see Figure 1).7

Figure 1: Twitter objects
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Notes: The figure shows: i) tweet, ii) user and iii) place fields for each retrieved tweet related to the
keywords "vaccine(s)", "vaccination", "vaccinating", "anti-vax" and "vax".

We also collect information on when each account joined Twitter, as well as information on their

followers and following (hereafter friends). Followers are Twitter users who follow a specific user,

and Friends are the Twitter users that a specific user follows. We will discuss the specific aspects of

the latter group in more detail in subsection 5.1.

Data cleaning We extract tweets’ relevant content, excluding hashtags, special characters, emojis,

and multimedia items. We omit ex-post all tweets containing only links or mentions8 and those
7No personally identifiable information is included in this study.
8A tweet containing another user’s username, preceded by "@".
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produced by accounts that are temporarily unavailable due to violation of the Twitter media policy.9

We also disregard all tweets referring to pets’ vaccinations, those where the string “vax” is only

retrieved in a URL contained in the tweet, and those written in other languages.

Within the Twitter sample, we geocode tweets in three consecutive steps: first, we use the tweet-

specific geo-tag information ("Place fields" Figure 1); second, for the remaining tweets, we rely on

the geo-tag information of the users ("location" in "User Fields" Figure 1); finally, we exploit Twitter

users’ profile information with place-name-dictionaries (e.g. “live in Rome”). We map the geocoded

tweets to the Italian municipalities based on the latitude and longitude through geospatial shapefiles.10

Figure 9 in Table A shows tweets’ distribution across municipalities over time.

We distinguish between original tweets, retweets, and mentions - i.e., the first time an original

content appears on the social network, the “plain” copy, and a copy with a comment.11.

Descriptive Statistics Out of 2.04 million tweets, the initial screening process leaves us with a

sample of 2,017,539 tweets relative to 227,182 unique users, which through the process of geolo-

calization, is delimited to 830,253 tweets of 80,471 unique geotagged users, distributed across 4,220

municipalities between January 2013 and December 2018. This longitudinal user-specific sample is

strongly unbalanced, with only 4.04% of unique users present in the whole 6-year period, 7.13% in

5 years, 9.56 % in 4 years, 15.38% in 3 years, 25.35 % in 2 years, and 38.54 in 1 year only. Table 1

reports the main characteristics of the users (panel a), tweets (b), and activity (c) in our sample. On

average, users opened their accounts in 2012 and tweeted ten times; only 0.7% of them have a verified

account.12

9Since 2021, Twitter has applied labels to tweets that may contain misleading information about COVID-19 vaccines
and removed the most harmful misleading information from the service.

10Roughly 5% of tweets or users location falling outside the Italian territory is excluded.
11We screen tweets’ contents for prefixes "RT @", indicating reposting of an original tweet. We identify Twitter handles

of the original tweets’ creators by extracting the content following “@” and before the main text. Through this procedure,
we also identify replies and mentions to original and retweeted versions of the contents

12A verified Twitter user is an account of public interest, often belonging to well-known individuals in fields such as
music, acting, fashion, politics, religion, news, sports, and business.
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Table 1: Summary statistics: Twitter users.
median mean sd min max

(a) User characteristics
Tweets about vaccine 1.00 6.24 32.82 1.00 3,720
Total tweets 5,586.00 19,793.54 50,699.13 1.00 1,825,203
Total followers 335.00 3,692.14 51,951.40 0.00 3,262,940
Total friends 462.00 970.31 2,759.93 0.00 189,582
Account’s date of creation 2012 2.49 2006 2018
Verified accounts 0.007 0.084 0 1

(b) Tweets’ characteristics
Length of the tweet (number of characters) 102.42 42.05 0 306
Number of words 16.13 6.96 0 62
Retweets (%) 0.60 0.49 0 1
Replies (%) 0.10 0.30 0 1

(c) Tweets’ popularity
Retweet count 2.59 35.85 0.00 6696
Reply count 0.73 7.10 0.00 1106
Quote count 0.06 1.31 0.00 341
Like count 5.71 90.44 0.00 14,188

Notes: (a): summary statistics of 80,471 geotagged unique users tweeting on vaccines (2013-2018); (b):
summary statistics of 830,253 geotagged tweets cleaned by hashtag, "RT @", "@", url and emoji; (c):
Tweet-related popularity metrics of 328,879 original tweets.

In the sample, 60% of the tweets are retweets or mentions, while 10% are replied to. On average,

original tweets are retweeted 2.5 times, receive 0.7 replies, 1.6 likes and 0.06 quotes (Table 1).

In Figure 2, we plot the number of unique Twitter users in Italy over time. The bars show the total

number of Twitter users, the dashed line shows the number of users who contributed to the Twitter

debate on vaccines, and the solid line shows the number of users in the previous group who were

geolocalized. The number of users in all three categories shows an increasing trend and peaks at the

end of our analysis sample, reflecting the growing popularity of Twitter in the recent period.

Among the geolocalized tweets, 1% has an average of 1 user only tweeting about vaccines in a

year. In our analyses, we will disregard this first percentile of municipalities and test the sensitivity

of our results to this sample restriction in Appendix A.
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Figure 2: Number of unique users

Notes: The figure shows the absolute and geotagged users who tweeted vaccine contents in Italy (left-hand
axis) and the total number of Unique users in Italy as reported by AgCom (right-hand axis).

Anti- and pro-vax stances As the scope of the analysis is to study vaccine skepticism reflected in

the corpus of tweets, we rely on a Natural Language Processing (NLP) transfer learning model. In

particular, we build our model as in AlBERTo, a pre-trained Bidirectional Encoder Representations

from Transformers (BERT) model in Italian proposed by Polignano et al. (2019), initially developed

by Google.Specifically, we develop an anti-vax tweet classifier, which we call vaxBERTo, on top of a

large pre-trained neural network, providing the very “last mile” data needed to fine-tune the vaccine-

specific task, saving computational time and data needs.

First, we construct a training set of tweets pre-labeled as 0/1, with 1 indicating vaccine skeptic

content. As in Pierri et al. (2020), our training set is based on tweets from fake news users, pro-

vaccine activists, and mainstream media outlets, and is labeled accordingly. The training sample

consists of 43,472 tweets, split into 20,422 pro-vaccine tweets (46.98%) and 23,050 anti-vaccine

tweets (53.02%), created by a total of 108 unique users. We divide the sample into a training sample

consisting of 39,124 tweets (¥ 90% of the total) and a validation sample of 4,348 tweets to fine-

tune the training. Finally, we build a labeled test sample of 4,830 tweets to evaluate the model’s

performance on a different set of users than those included in the training sample. (See Appendix C
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for technical details.)

In NLP applications, the performance of a model is directly influenced by the choice of the training

sample. In our case, by building the training sample based on pro- and anti-vaccine users rather

than individual tweets, we are implicitly assuming that i) unlike “fringe” users on Twitter, whose

stance on vaccination can change over time, the users in our training sample consistently express the

same stance within their tweets; ii) there are characteristics of language, syntax, and structure that

distinguish pro-vaccine and anti-vaccine tweets. As an example, consider the two tweets shown in

Figure 3. In panel (a), a popular Italian fake news outlet falsely claims that a baby died as a result

of a vaccine. The tweet uses several linguistic constructs commonly found in fake news, such as

alluding to conspiracy (“nobody told us about”), attacking mainstream media outlets (“mercenaries,”

“accomplices”), and expressing doubts and mysteries (“whether or not a link exists”). 13 In contrast,

panel (b) shows a tweet from a mainstream media outlet reporting the death of a pediatric leukemia

patient from measles contracted from unvaccinated siblings. The language used in this tweet is plain

and unemotional, without the use of conspiracy theories or attacks on mainstream media outlets.

Once the model is trained, we classify all the tweets in our sample. Specifically, we generate a

label l· œ {0, 1} for each tweet · . Finally, we need to indentify the attitude of users. As in Cinelli

et al. (2021), we define the leaning of a user as the average leaning of their tweets. Let i be a user who

produces ai tweets, Ci = {c1, c2, . . . , cai}. The activity of user i is given by ai, and the leaning of each

tweet is given by its label l· . The individual stance of user i in year t is then their average vaccine

stance in that period, which we define as the fraction of tweets with anti-vaccine leaning (l· = 1)

within their vaccine-related tweets in year t. This is given by the following expression:

sit ©
qait

·=1 c·

ait
(1)

To make the individual stance of a user i more interpretable, we rescale it to a value between 0 and

100 (for example, a user with sit = 50 has an equal number of pro- and anti-vaccine tweets, while a

user with sit = 100 has only anti-vaccine tweets).
13These linguistic con structs have been analyzed by Michaels (2008) in the tobacco industry.
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Figure 3: Example of no-vax (left) and pro-vax (right) tweets used for training
(a) Anti-vax tweet

(b) Pro-vax tweet

Notes: Translation of Italian tweets is provided by Google.

3.2 Vaccination data

Through a Freedom of Information Act (FOIA) request, we gathered data on disease-specific vacci-

nation rates at the municipal/year level from the LHAs (Azienda Sanitaria Locale).14 In Italy, public

health policies are implemented by the regions through their health departments, while health pro-

tection and promotion are the responsibility of the Departments of Prevention within the 101 LHAs.

LHAs are divided into 711 districts, each covering a population of around 84,000 on average. They

are responsible for providing vaccinations free of charge to eligible individuals, such as children, the

elderly, and other protected categories.

The disease-specific vaccination rates represent the share of the target population that has re-

ceived the first dose of a vaccine recommended in the national vaccination schedule. The data cover

all vaccines included in the Italian routine pediatric immunization schedule: Diphtheria*; Hepatitis

B*, Tetanus*, Polio*, Haemophilus influenzae type B (HIB)**, Pertussis** (hexavalent conjugate

vaccine); Measles**, Mumps**, Rubella** (trivalent conjugate MMR vaccine), Meningococcal, and
14FOIA grants access to public data regarding data protection regulations.
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Pneumococcal. One asterisk indicates vaccines which were compulsory in Italy between 2013 and

2017, and two asterisks indicate vaccines made mandatory by the “Lorenzin’s Legge Vaccini” Law

Decree 73, 2017. 15

Table 2 shows the population-weighted average vaccination rates in the study period, along with

their median, standard deviation, and minimum and maximum values (mostly 100%). As expected,

the vaccination rates are strongly correlated across conjugated vaccines (with a pairwise correlation

of 0.657 for all hexavalent and MMR individual vaccines), but the levels vary substantially. The

hexavalent vaccine shows the highest rates (around 94%), likely because it includes four mandatory

shots, while the meningococcal vaccine has the lowest rate (81%).

Table 2: Descriptive statistics of vaccination rates (2013-2018)
Median Mean SD Min Max N

Hexavalent

Diphteria* 94.97 94.29 3.15 54.69 100.00 44,750
Hephatitis B* 94.80 94.15 3.19 54.69 100.00 44,750
Polio* 95.00 94.31 3.14 54.69 100.00 44,750
Tetanus* 95.00 94.38 3.13 54.69 100.00 44,777
Pertussis** 94.94 94.29 3.14 54.69 100.00 44,750
HIB** 94.64 94.04 3.17 54.69 100.00 44,749

Hexavalent 94.88 94.24 3.14 54.69 100.00 44,779

MMR
Measles** 91.05 89.52 5.97 10.72 100.00 44,750
Rubella** 91.00 89.50 5.97 10.72 100.00 44,750
Mumps** 91.00 89.48 5.96 10.72 100.00 44,750

MMR 91.02 89.50 5.97 10.72 100.00 44,752
Meningococcus 87.32 81.22 15.86 0.17 99.61 43,219
Pneumococcus 91.46 87.26 11.94 .17 100 43,167

Notes: Hexavalent and MMR vaccination rates across 7,929 Italian municipalities for
the period 2013-2018. Average values are weighted by the municipality population size.
* marks 2013-2017 set of compulsory vaccinations, ** indicates additional mandatory
shots introduced by the 2017 Law Decree 73.

3.3 Hospitalization data

The Hospital Discharge Data (SDO), sourced from the Italian Ministry of Health, provides informa-

tion on the universe of hospitalizations in public and publicly-funded private hospitals for the years

2013-2016. Italy’s universal public healthcare system is well-suited to our analysis, as it provides in-

dividuals with access to healthcare with minimal barriers. In addition, there are no differentials in the

expected cost of treatment that could affect vaccine uptake. The records contain socio-demographic
15Note that we do not consider the vaccination for Chickenpox in our analysis, as a significant portion of the eligible

population acquires immunity through natural infection, which also exempts them from the vaccine mandate for this
disease.
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information (age, gender, nationality, place of birth and residence, educational attainment) as well

as clinical data (diagnoses, procedures performed, hospital transfers, discharges) and hospitalization

details (hospital type and specialty). Hospital discharge records include information on the primary

diagnosis determining each hospitalization, as well as up to five secondary diagnoses.

We focus on the diagnosis of vaccine-preventable diseases in the vaccine-target population and

in fragile populations that are not targeted by vaccines, such as newborns, pregnant women, and pa-

tients with immunosuppressing conditions. These diagnoses are based on the International Statistical

Classification of Diseases and Related Health Problems v.9 (ICD-9) codes.16 Based on the SDO data,

we construct municipality-level yearly hospitalization rates and costs per 100,000 residents for both

the target and non-target populations. Table 3 provides a detailed overview of the hospitalization and

healthcare costs for different population groups.

Table 3: Descriptive statistics of hospitalizations due to vaccine-preventable diseases (2013-2016)
Median Mean sd Min Max N

Panel a: Hopitalizations
non-target population 14.71 22.21 30.95 0.00 3,202.85 31,760
non-target population (MMR) 0.00 4.99 17.58 0.00 2,846.98 31,760
non-target population (Hexav.) 10.40 16.99 22.02 0.00 355.87 31,760
non-target population (Meningo.) 0.00 0.02 0.26 0.00 29.02 31,760
non-target population (Pneumo.) 0.00 0.88 2.25 0.00 155.04 31,760
Children age 1-10 (MMR) 0.00 2.96 6.87 0.00 1,617.25 31,760
Children age 1-10 (Hexav.) 0.00 1.27 2.70 0.00 152.44 31,760
Children age 1-10 (Meningo.) 0.00 0.04 0.41 0.00 26.21 31,760
Children age 1-10 (Pneumo.) 0.00 0.50 1.76 0.00 132.04 31,760
Panel b: Healthcare costs
non-target population 38,581.69 66,477.60 116,320.65 0.00 59,880,842.11 31,760
non-target population (MMR) 0.00 15,381.55 96,931.58 0.00 59,880,842.11 31,760
non-target population (Hexav.) 46,275.59 83,151.57 119,925.38 0.00 14,819,697.72 31,760
non-target population (Meningo.) 0.00 150.92 3,976.38 0.00 411,341.22 31,760
non-target population (Pneumo.) 0.00 2,332.30 9,004.03 0.00 1,941,927.83 31,760
Children age 1-10 (MMR) 0.00 4,749.99 25,506.58 0.00 2,274,286.39 31,760
Children age 1-10 (Hexav.) 0.00 2,545.85 9,407.74 0.00 759,286.31 31,760
Children age 1-10 (Meningo.) 0.00 190.58 3,185.72 0.00 409,748.10 31,760
Children age 1-10 (Pneumo.) 0.00 1,255.36 5,365.51 0.00 259,504.65 31,760

Notes: The statistics refer to 7,940 municipalities for the time period between 2013-2016 and are weighted by
the municipality population size.

Figure 4 presents the monthly trends in hospitalizations among the vaccine-target population and

in fragile populations that are not targeted by vaccines. In general, the two groups’ trends for hexava-

lent, pneumococcus, and meningococcus are generally comparable. However, for the MMR vaccine,
16ICD-9 codes for vaccine-preventable diseases are: Rubella 056 and 6475; Measles 055; Diphtheria 032; Pertussis

033 and 4843; Meningococcal 036; Tetanus 037 and 7713; Polio 045–049; Hepatitis B 070[2-3]; Mumps 072; HIB 4822;
Pneumococcal 320[1-3] and 481.
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the hospitalization trends were opposite between January 2015 and January 2017, which was a period

marked by several measles epidemic outbreaks.

Figure 4: Hospitalization trends (2013-2016)

(a) MMR Hospitalizations (b) Hexavalent Hospitalizations

(c) Meningococcus Hospitalizations (d) Pneumococcus Hospitalizations

Notes: The trend for the vaccine-target population is represented by the red dashed line, while the vaccine-
untargeted fragile groups are represented by the black solid line.

4 Twitter stances and user interactions

Many topics discussed on social media platforms tend to follow typical patterns of attention, in which

long-term trends of relatively low interest or controversialness are interrupted by sudden spikes of

activity. These spikes are often triggered by exogenous shocks (such as unexpected news or events),

but on sophisticated social platforms, they can also be fueled endogenously by algorithms designed

to increase users’ engagement in the short term (Lorenz-Spreen et al., 2019). This is particularly true

for Twitter, where algorithmic amplification since 2016 in Italy has been designed to maximize users’

exposure to ephemeral, captivating arguments (Huszár et al., 2022).
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This combination of exogenous and endogenous drivers of attention and interactions can lead to

the radicalization of opinions among users when the level of controversy around a topic increases.

Users with polarized views tend to form links and cluster in echo chambers, which are more respon-

sive to further exogenous shocks and can lead to longer peaks of activity and even more extreme

positions.

Twitter stances and vaccination rates. Figure 5, panel (a) shows the dynamics of vaccine-related

daily tweets in our sample between 2013 and 2019. The average activity was relatively regular until

2017, when the introduction of the Lorenzin’s decree on the expansion of the vaccine mandate led to

longer and more heated debates (peaking at around 8,000 tweets per day around the approval date).

The debate became strongly politicized during the 2018 general election campaign, when populist

politicians expressed skepticism about the vaccine mandate.

Figure 5: Number of tweets, vaccination rates and anti-vax sentiment in Italy

(a) Number of tweets over time
(b) Vaccination rate and share of tweets anti-vax

geolocated

Notes: Panel (a) shows the time series of the number of tweets on vaccinations, 2013-2019. The dashed
reference lines report notable (i.e., covered by national media) events regarding vaccination. In particular,
they flag i) verdicts (green): the reversal of the Rimini’s Court sentence by the Bologna’s Appeal Court -
February 15th, 2015; the recognition of the inconsistency of the link between the MMR vaccination and
autism by the prosecutor of Trani - June 1st, 2016; the dismissal by the court of Milan of the appeal against
a sentence establishing the causal link between the vaccine and the severe encephalopathy developed by
in an infant - November 10th, 2016; ii) death (orange) of an infant following a mandatory vaccination
- May 25th, 2016 and of another infant affected by leukemia of measles contracted from non-vaccinated
siblings - June 23rd, 2017. The first grey shaded area marks the period of the debate, which preceded and
ensued the approval of “Lorenzin’s Law” (June 7th, 2017, solid black line). The second grey area followed
the general elections (March 4th, 2018) until the upcoming school starting date - a symbolic moment that
created political clashes between the Italian populist parties then ruling the government due to the vaccine
mandate’s enforcement on school enrollment. Panel (b) reports the yearly average values of hexavalent
(solid blue) and MMR (solid red) vaccine coverage rates, as well as the average Twitter anti-vax sentiment
(dashed black) as computed in Figure 3.1 recorded between 2013 and 2018.
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This period also saw a sharp increase in measles cases in Italy. In 2017, the expansion and legal

enforcement of mandatory vaccines under "Lorenzin’s Law" led to a moderate increase in MMR

coverage.

Figure 5, panel (b), shows the aggregate evolution of coverage rates for both the hexavalent and

MMR vaccines, along with the average anti-vax sentiment on Twitter between 2013 and 2018, as

computed in Figure 3.1. Since 2012, there has been a progressive decline in the coverage of both

vaccinations. On the one hand, the Rimini Court sentence in March 2012 formally confirmed the

causal link between the MMR vaccine and autism, contributing to the growth of anti-vax sentiment.

On the other hand, once collective vaccination efforts succeeded in eradicating certain infections, due

to myopia and self-interest, individuals were more likely to skip vaccinations, leading to suboptimal

uptake and fluctuations in immunization levels (Siegal et al., 2009). Coverage rates began to increase

again in 2015 when the appeal court reversed the Rimini Court’s sentence. This period also saw a

sharp increase in measles cases in Italy. In 2017, the expansion and legal enforcement of mandatory

vaccines under “Lorenzin’s Law” led to a moderate increase in MMR coverage.

It is important to note that the dynamics of the average Twitter anti-vax sentiment do not neces-

sarily correspond to vaccination rates. Vaccines serve as insurance against diseases, and individuals

engage in optimal behavior based on their perception of risk, which can be influenced by cognitive bi-

ases and local epidemiology. As a result, the correlation between coverage rates and anti-vax stances

may be distorted due to simultaneity and omitted variables.

The Model of Opinion Dynamics and Network Formation. We discuss and rationalize the evolution

of anti-vax stances on social media in Italy based on a model of social networks opinion dynamics

proposed by Baumann et al. (2020). The mechanics of the model allow us to formalize the sources

of endogeneity that pervade the relationship between the spread of anti-vax opinions on social media

and vaccine hesitancy, highlighting the role of the controversialness of vaccine-related topics. The

following paragraphs provide a brief overview of the most relevant features of the model, while its

complete representation is described in Appendix B.

In the model, there are two channels through which the spread of anti-vax content can affect vac-

cine hesitancy. On the one hand, exposure to extreme views can influence users’ stances (exposure

effect). On the other hand, the controversialness of a vaccine-related topic can endogenously exacer-
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bate polarization by influencing the process of network formation (link formation effect). Importantly,

the former channel represents the impact of anti-vax stances expressed on social media on vaccine

hesitancy, which is what we aim to measure. If individual exposure to anti-vax content on Twitter

were randomly assigned, our task would be relatively simple. However, due to the link formation ef-

fect, when a topic becomes controversial, users endogenously tend to interact with like-minded peers,

which affects the network topology and violates the assumption of randomness.

In the model, we consider a continuum of individuals i, each with their own stance on vaccinations

st
i = [s, s̄] that can range from unconditional support to hesitancy.17 Individual stances evolve over

time from initial positions s0
i , drawn from a distribution S0 ≥ Fs(0), with finite first and second

moments.

The opinion dynamics within the social network are entirely driven by time-varying interactions

among agents, where each agent’s i stance influences others in a monotonic manner, and this influence

“flattens” at the extremes. Importantly, the influence of individual stances on others is tuned by

controversialness, so that for controversial topics, even moderate opinions can capture the beliefs of

their peers.

Each agent is characterized by their propensity to interact with a certain number of other agents,

and the probability of interaction is driven by the concept of homophily (Bessi et al., 2016) - the ten-

dency for individuals to associate and bond with others who have similar beliefs and characteristics.

This is modeled as a decreasing function of the distance between opinions. Since we are interested

in capturing the possible exchange of opinions between users, we assume that links are the medium

through which information can flow. For example, if user i follows user j on Twitter, user i can see

tweets produced by user j, and there is a flow of information from node j to node i in the network.

The topology of the network can reveal the presence of echo chambers, where users are surrounded

by peers with similar views, and are therefore exposed to similar content with a higher probability. In

network terms, this translates into a node i with a given stance si being more likely to be connected

with nodes with a stance close to si.
17Throughout the paper and the model, we assume that the stance reflects individuals’ opinions on the overall utility

of vaccinations. Before COVID-19, the debate on vaccines in Italy focused almost exclusively on pediatric shots, where
parents make the vaccination decision on behalf of their offspring. We thus assume a one-to-one mapping between
parents’ and children’s (perceived) utility.
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Model Simulations and Data. Figure 6 shows the predictions of the simulated models. The heatmaps

show the distribution of stances for the users and their friends in a simulation for low controversial-

ness (– = 0.1 in panel a), relatively higher controversialness (– = 0.2 in panel b), and time-varying

controversialness (long periods of – = 0.1 with short-lived outbursts of – = 1 in panel c). The

colors in the heatmaps represent the density of users, with lighter colors indicating a higher number

of users. The marginal distribution of users’ opinions and their friends’ opinions are plotted on the x-

and y-axis, respectively. The simulation shows that users are more likely to connect with peers who

share similar opinions due to homophily.

In addition to homophily, higher controversialness strengthens the influence of peers’ opinions

on users who tend to form homogeneous groups. At the network level, this results in a correlation

between users’ and their friends’ average opinions. When controversialness is low (panel a), the

model converges to a bivariate Gaussian distribution centered at approximately (-.5,-.5); on the other

hand, when the model is characterized by higher controversialness (panel b), it converges to a bivariate

bimodal distribution with a high density of users with like-minded friends, resulting in two echo

chambers corresponding to opposite stances on vaccinations. In a more realistic simulation where

long periods of low controversialness are interrupted by short-lived, high-controversialness outbursts

(panel c), the model also generates echo chambers.

The figures below the heatmaps show the degree of polarization during the simulations. When

controversialness is low, there is no trend in polarization within the population, but polarization in-

creases with relatively high controversialness. Interestingly, with time-varying controversialness, po-

larization increases during the outbursts and remains stable at the new, higher level until the next

shift.
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Figure 6: Simulated distribution of stances

(a) Low controversialness (b) High controversialness
(c) Time-varying
controversialness

Notes: user (x-axis) and average friends’ (y-axis) distribution of stances in a simulated model when con-
troversialness is low (– = .1 in panel a), high (– = .2 in panel b), and low with short-lived outbursts
(– = 0.1 and – = 1 in panel c). In all models, the number of individuals is N = 500 and the periods are
T = 5 - divided in 100 subperiods. Initial values (s0) are randomly drawn from a gaussian distribution
with µ = ≠0.2 and ‡ = 0.5 to match the asymmetry of the initial opinions in the data.

Given the model simulations, in the figures below, we examine the evolution of the Italian vaccine

debate on Twitter. In Figure 7, we show the number of unique users (blue bars, 2013=100), unique

tweets (light blue bars, 2013=100), and the joint distribution of users’ and their friends’ observed

stances. Between 2013 and 2016, the activity was relatively stable. The number of tweets per user,

which can serve as a proxy for the degree of controversialness of the topic, was roughly constant, and

the heatmaps do not show any evidence of polarization. From 2017, when the vaccination mandate

was extended, the number of users and tweets significantly increased, and the heatmaps show the for-

mation of echo chambers. The two opposite clusters suggest an endogenous rise in the radicalization

of opinions among users. It is likely that the higher controversialness of vaccine-related topics was

reinforced by the Twitter amplification algorithm introduced in 2016, which magnifies the exposure

to topics that engage users’ attention. In fact, as argued by Acemoglu et al. (2021), social media plat-

forms typically interested in maximizing engagement tend to design their algorithms to create more

homophilic communication patterns (“filter bubbles”).
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Figure 7: Dynamics of Twitter activity on vaccination - 2013/2018

Notes: The blue bars correspond to unique users, and the orange bars to unique tweets on vaccination-
related topics between 2013 and 2018. The contour plots report the joint distribution of users’ and average
friends’ stances on vaccination. Colors represent the density of users: the stronger the red hue, the larger
the number of agents. The marginal distribution of users’ opinions and their friends’ are plotted on the
x and y-axis, respectively. To construct the figure, we exclude the users with less than 15 friends and 10
tweets/year in the sample to avoid social bots, as their inclusion would artificially generate echo chambers
- see, e.g., (Shao et al., 2018).

The evidence of endogenous link formation leading to echo chambers among users and their

friends poses a challenge for causal inference. Without adjusting for the systematic tendency towards

homophily, naive estimates of the exposure to online anti-vax content on vaccine hesitancy will in-

evitably be biased. This set of model predictions thus motivates an identification strategy capable

of estimating the empirical counterpart of the “exposure effect” of the spread of vaccine-skeptic

content on vaccine hesitancy, which we will address using an Instrumental Variables approach in

section 5.
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5 Empirical strategy

The aim of this paper is to investigate the impact that anti-vaccination attitudes on social media can

have on public health efforts to promote collective immunity. In the late-2000s, platforms like Twitter

became widely used, influencing the work of journalists and the distribution of various types of con-

tent. These platforms put audiences at the center of content discovery and distribution and make them

active participants in the production of news. The user-to-user sharing that is central to the social

media news distribution system can lead to the offline spread of viral content, potentially affecting the

real-life beliefs and behaviors of users.

One of the key assumptions underlying this paper is that Twitter anti-vaccination activity can be

used as a proxy for online anti-vaccination activism. Furthermore, we assume that the extent of anti-

vaccination persuasion among Twitter users living in Italian municipalities is representative of the

pressure exerted by vaccine skeptic activists on parents who use other media outlets, both online and

offline.

The goal of this paper is to quantify the relationship between exposure to the anti-vaccination

movement - specifically, the production and dissemination of vaccine skepticism online - and vac-

cination rates among children. We ideally assume the following linear relationship at the individual

(parent) level:

v≠it = —sit + Xi + Zc + �t + Áit (2)

where v≠it reflects vaccine hesitancy of the ith individual’s peers at time t, sit is the stance of indi-

vidual i, Xi are individual characteristics, Zc are local features and �t is the amount of information

available at each point in time, including policy-related interventions (e.g., vaccine mandates), new

scientific knowledge, and news related to vaccine-preventable diseases outbreaks. Without loss of

generality, we assume that there exists a one-to-one mapping between vaccine hesitancy and the ob-

served behavior toward vaccination - i.e., there is a threshold value vı = µ + – above which, ceteris

paribus, parents do not vaccinate their children. The parameter of interest — would capture the influ-

ence that individual i’s stance has on her peers’ decision to undertake pediatric vaccinations.

We face two challenges in estimating the relationship in (2). First, as discussed in section 4, the
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presence of homophily and the controversial nature of the vaccine topic can lead to the creation of

echo chambers on Twitter, where users with similar vaccine stances are more likely to interact with

each other. This endogeneity in the formation of social connections poses a challenge for our identifi-

cation strategy. To address this problem, we use an instrumental variables (IV) approach. We leverage

the local-average model of Bramoullé et al. (2009), which assumes the presence of intransitivity in

the friendship network. Our theoretical framework suggests that the observed correlation in vaccine

stances across users may be due to unobserved characteristics that are correlated with the endogenous

choice of friends - for example, user i may form a link with user j because they both hold similar

views on vaccines. We use the Twitter network structure and the intransitivity of network connections

to construct a valid instrument. User i’s “friends of friends” are not her direct connections (i.e., they

are not chosen endogenously to be part of her network), but they can still have an impact on her expo-

sure to vaccine skeptic content through their online interactions with her direct friends - for instance,

when a direct connection reacts to a friend-of-friend’s post (by retweeting or liking it), it will appear

in i’s feed. To capture this effect in our data, we construct ego networks centered around users who

engage in the Twitter vaccine debate. Within these user-specific networks, we measure each user’s

degree of indirect exposure to vaccine skeptic content. To avoid concerns about the potential endo-

geneity of the influence of indirect friends, we use a rich set of information about the chronology of

network creation, which is described in detail in subsection 5.1.

A second challenge is that data on individual vaccine hesitancy (vit) is typically unavailable and

cannot be linked to social media accounts. We therefore use the most granular data currently avail-

able on pediatric vaccinations in Italy, which are coverage rates at the municipal/year level. To bridge

the mismatch in the level of data aggregation, we link individual Twitter stances on vaccines with

municipal-level vaccination rates. To do this, we use a mixed two-stage least squares (M2SLS) strat-

egy, as explained in subsection 5.2. This approach was proposed by Dhrymes and Lleras-Muney

(2006) for grouped data. The following paragraphs explain our approach in more detail.

5.1 “Friends of friends” networks

For each user i, we identify two layers of connections: friends (lag 1) and friends of friends (lag

2). The latter constitute “incidental” connections (i.e., not chosen endogenously) in a directed graph-
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based network that describes each user’s social structure. Within the group of friends, we deliberately

focus only on those who were already in the direct network of the “ego” user before engaging in

any vaccine-related debate on Twitter. This ensures that the link between the user and the friend was

established before their involvement in the vaccine debate. Among this restricted group of friends, we

focus only on passive users: those who do not tweet about vaccines, but only react to others’ tweets

(by liking, retweeting, or replying). We exclude active users: those who create original tweets about

vaccines.

Within each user’s ego network, for each of her passive friends who were already part of her

network before she became active on Twitter in the vaccine debate, we define the friends of friends

group. We also ensure that the link between the user and the friends of friends was established before

their vaccine-related activity, by excluding those who created their account after the “ego” user or

whose first tweet about vaccines was published after the user’s first vaccine-related tweet.

Figure 8 illustrates the selection of friends and friends of friends for a “ego” user (@UserA). An

edge connects each pair of users. The gray nodes represent the links we use in our analysis, which are

the first-lag neighborhood and form a 1-step ego-centered network made up of passive friends (e.g.,

@FA1, @FA3). We then define the indirect exposure of @UserA as described by the blue nodes,

representing the second-lag neighborhood or friends of friends (e.g., @F12– and @F1—). The yellow

nodes represent the links we exclude due to their potential endogeneity. They are part of the first-lag

neighborhood and consist of active friends and their respective friends of friends (i.e., @FA2 and

@F2—).

.

Using our sample of vaccine-related tweets, we filter for the first layer of friends and identify

65,673,913 nodes. Among these, we identify 8,176,261 unique passive friends. As is typical on

social media, we see significant variations in the number of friends and followers: the vast majority

of users have only a few friends, while a few users are central nodes in the network.

The final sample of the second layer of friends consists of approximately 2 billion nodes, cor-

responding to an average of 12,556 friends of friends per user. In our sample of users engaged in

vaccine-related tweets, the median user has 469 passive friends and a median of 7,687 active friends

of friends. The user’s second layer of connections produces, on average, 142,261 tweets about vac-
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Figure 8: Example of Twitter Network.

�
@UserA

�
@FA3

�
@FA1

�
@F1–

�
@F1—

�
@FA2

�
@F12–

�
@F2—

Notes: The figure plots the architecture of our network: in white "Twitter unique user" (@UserA), in
gray "passive friend" (@FA1, @FA3) and "passive friends lag 2" (@F1–), in yellow "active friends"
(@FA2), in blue light "active friends lag 2" (@F1—, @F12–).

cines (see Table 4).

Table 4: Descriptive statistics of ego network
Median Mean sd Min Max

Friends 469 973.46 2,717.55 1.00 189,433
Friends of friends 7,687 12,556.24 14,078.73 1.00 139,508
Total friends of friends’ tweets with vaccine contents 59,535.50 142,261.09 186,460.83 1.00 1,685,355

Notes: The statistics refer to 80,471 geotagged unique users who tweeted on vaccines (2013-2018) for 132,190 obser-
vations.

Finally, for each set of friends of friends, we compute the average anti-vaccination stance. This

allows us to define each user i’s indirect exposure to the anti-vaccination stances of her N friends of

friends in year t as ffsit =
qN

·=1 s·

Nit
, where the value ranges from 0 to 100. This measure serves as

our instrumental variable in the estimation of the effect of the online anti-vaccination movement on

vaccine hesitancy.

5.2 The Mixed two-stage least squares estimation

In a naive OLS version of our estimates, without taking into account endogeneity, we would measure

the impact of anti-vaccination skepticism on Twitter and health outcomes at the municipality level as

follows:
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Vmt = —smt + T Õ
mt’ + C Õ

mt„ + “m + ◊t + Ámt (3)

where Vmt is either (one of) the vaccination rates, or the vaccine-preventable hospitalizations/healthcare

costs in municipality m in year t, smt is the average vaccine-related stance at municipality/year level,

T Õ represents vectors extracted from the Twitter corpus and the friends’ network: the sum of tweets

per municipality/year and the sum of friends of friends tweets per users’ municipality/year; C Õs are

socioeconomic characteristics (income per capita at municipality level, birth rate, the share of lower

secondary school attainment, the mean age of women at the birth of their first child at province level

and health costs per capita at regional level).18 Additionally, as there might be strong political com-

ponents to vaccination rates, in C Õ, we include an indicator variable for the rule of populist parties

at the local level.19 Several populist parties have raised concerns about vaccine safety (Guriev and

Papaioannou, 2022, Kennedy, 2019). We also include city and year fixed effects (“m and ◊t, respec-

tively). Finally, as public health measures and compliance with these measures might vary at the

regional level, we include a set of region-specific time trends flr ◊ t (region◊year).

As previously mentioned, this simple OLS fixed effects estimation is likely to produce biased

estimates due to important sources of endogeneity in our setting. Therefore, we use an Instrumental

Variables approach to identify an exogenous source of variation in exposure to anti-vaccination con-

tent on Twitter. In designing our approach, we want to take advantage of the granular level of detail

in our Twitter data and improve the efficiency of the first stage. However, our outcome measures

are available at the municipality level. To address this, we use an M2SLS approach, as proposed by

Dhrymes and Lleras-Muney (2006). The first stage of the M2SLS, estimated using weighted least

squares, is as follows:

First stage - (individual level)

sit = – + — ¯ffs
ind
it + TÕ

mt’ + CÕ
mt„ + “m + flr ◊ t + ◊t + Áit (4)

where sit is the Twitter stance on vaccines of a unique user i in year t. ¯ffs
ind
it denotes the aver-

18Birth rate, the percentage of people with at least lower secondary school, the mean age of females at first birth, and
health costs per capita data come from the Italian National Institute of Statistics. Per-capita income data comes from the
Ministry of Economy and Finance. Descriptive statistics are reported in Table A.2 in appendix A

19Following Albanese et al. (2022) methodology, parties coded as populist are the Movimento Cinque Stelle (Five Stars
Movement) and Lega Nord (Northern League). The data comes from the Ministry of the Interior.
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age Twitter stance on vaccines that the unique user i is indirectly exposed to through her friends of

friends stances as proposed in Figure 8. Both variables range between 0 and 100, with 100 indicat-

ing the maximum level of vaccine skepticism. Tmt are m’s Twitter metrics, while Cmt are municipal

characteristics. In our setting, there is a one-to-one mapping between the geotagged users and the mu-

nicipality they reside in or tweet from. Equation (4) allows us to compute ‚sit, which we can average

out at the municipal level to obtain the main regressor for the second stage, which reads:

Second stage - (municipal level)

Vmt = – + ⁄‚smt + TÕ
mt› + CÕ

mt„ + “m + flr ◊ t + ◊t + ÷mt (5)

where the outcomes of interest (Vmt) are the vaccination rate, the number of vaccine-preventable

hospitalizations in the non-targeted population, or their total cost. ‚smt is the averaged instrumented

regressor computed in the first stage weighted by the number of observations in the original cell

(number of users at municipality/year level), T mt is the average value of Twitter’s control variables

(T Õ
it), C Õ

mt is the vector of socioeconomic characteristics, “m, and ◊t are municipality and year fixed

effects that account for time-invariant differences between municipalities and flr ◊ t (region◊year)

controls for spatially-varying effects. All estimates are weighted by municipality population size. We

correct the variance-covariance matrix throughout the analysis by bootstrapping the standard errors.

In our main specification, the parameter of interest ⁄ captures the effect of anti-vax stances on the

vaccination rate.

6 Results

When presenting our results, we first review the baseline estimates of our IV strategy for vaccina-

tion rates, which we distinguish by disease type. This allows us to analyze the differential impact of

vaccine skepticism on mandatory and recommended vaccines. We then present the results on hospi-

talizations. We look at the number of hospitalizations for vaccine-preventable diseases and the related

costs, all rescaled for each 100 thousand residents. We also distinguish between hospitalizations for

the vaccine-targeted pediatric population versus those for non-target populations of vulnerable indi-

viduals (such as newborns, pregnant women, and immunocompromised patients).
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To begin, we run a set of regression tests to assess the random assignment of the IV with respect to

the contextual features of the user’s geolocalized municipality. We do this by regressing the average

Twitter stance on vaccines that user i in municipality m is indirectly exposed to through her friends of

friends stances ( ¯ffs
ind
it ) on municipality characteristics such as income per capita, birth rates, public

healthcare expenditure per capita, and education attainment. Our identifying assumption requires

that the variation in friends of friends stances is unrelated to the variation in these predetermined

characteristics of municipalities (after controlling for municipality and year fixed effects). Table 5

provides these balance tests, showing that almost none of the estimated correlations are significantly

different from zero, supporting the assumption that our model specification identifies a source of

variation unrelated to municipality characteristics.

Table 5: Balance test
(1) (2) (3) (4) (5) (6)

Health public Income Lower secondary Avg. mother’s Birth rate Populist party
cost per capita (AC) per capita (AC) school att. (%) age at birth

Panel a: geolocated in the same user’s municipality
¯ffs

ind
it -0.0211 -0.403 0.0001 0.0001 -0.0002 0.0002

[0.0246] [0.442] [0.0002] [0.0001] [0.0002] [0.0002]
110639 110639 110639 110589 110639 110639

Panel b: geolocated in municipalities different from the user’s municipality
¯ffs

ind
it -0.0001 -0.447 -0.0001 -0.0001 -0.00002 0.0001

[0.0126] [0.337] [0.0004] [0.0001] [0.0001] [0.0001]
131003 131003 131003 130817 131003 131003

Panel c: not geolocated
¯ffs

ind
it 0.0037 1.001 -0.00004 -0.00001 0.0001 0.0002

[0.0121] [0.912] [0.0002] [0.00003] [0.0001] [0.0002]
130977 130977 130977 130791 130977 130977

CITY and YEAR FE X X X X X X
ú p < 0.10, úú p < 0.05, úúú p < 0.01.
Notes: Standard errors (in brackets) are clustered at the municipality level.

The first stage results, shown in Table 6, suggest that exposure to the vaccine-related stances of a

user’s friends of friends network is a strong predictor of the user’s own anti-vaccination activity. A

one-unit increase in the anti-vaccination stance on the 0-100 scale leads to a 0.7-unit increase in the

individual’s vaccine-related stance, indicating that indirect exposure to anti-vaccination stances leads

users to engage in anti-vaccination activism.

The results are robust under a number of model specifications which we present in subsection 6.3.
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Table 6: Mixed 2SLS Individual - First stage.
(1) (2) (3) (4)
sit sit sit sit

( 30.31) ( 30.31) ( 30.31) ( 30.31)
¯ffs

ind
it (28.77) 0.703úúú 0.703úúú 0.704úúú 0.704úúú

[0.017] [0.017] [0.017] [0.017]
N 127754 127754 127754 127754
CONTROL (Twitter) X X
CONTROL (socioeconomics) X X
CITY and YEAR FE X X X X
Reg × Year X X X X
F-stat 1765.22 1763.52 1755.84 1757.86

ú p < 0.10, úú p < 0.05, úúú p < 0.01.
Notes: The numbers refer to an initial sample of 830,253 tweets to a population
of 80,471 unique users across 4220 municipalities. All estimates include city,
region and year fixed effects and region specific time trends fixed effect. Standard
errors (in brackets) are clustered on municipalities level. Mean values of sit and

¯ffs
ind
it in parentheses is weighted by population size.

6.1 Vaccination rates

When examining the impact of Twitter anti-vaccination activism on vaccination rates, we find no ef-

fect on the uptake of mandatory vaccines (see Table 7). The estimates for the various disease-specific

compulsory vaccination rates are identical, as all of the shots are delivered in a single hexavalent vac-

cine. For this reason, we report the estimates for the pool of vaccines. The average coverage rates are

given in brackets. The models reported in the table are the most demanding specifications, including

all controls and fixed effects. The coefficient estimates are not statistically distinguishable from zero

for both the OLS and M2SLS approaches.

On the other hand, when examining the effect of anti-vaccination social media activism on rec-

ommended vaccines, particularly the MMR shot, which has been most frequently linked to autism,

we find a statistically significant effect on coverage rates. We find that a 10 percentage point in-

crease in the municipality-level anti-vaccination stance leads to a 0.43 percentage point decrease in

the MMR coverage rate. This effect is only statistically significant in the M2SLS framework due to

the measurement error and endogeneity present in the OLS estimates.
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Table 7: Results of the OLS and the Second stage of the Mixed 2SLS - Vaccination rates
(1) (2)

OLS Mixed 2SLS
Vmt Vmt

Panel a: Hexavalent (94.06)
smt -0.0005 -0.002

[0.002] [0.015]
7239 7239

Panel b: MMR ( 89.53)
smt -0.005 -0.043úú

[0.003] [0.022]
7238 7238

Panel c: Menigococcal (81.32)
smt -0.006 -0.008

[0.007] [0.055]
7074 7074

Panel d: Pneumococcal (82.64)
smt -0.0001 -0.029

[0.007] [0.054]
7066 7066

CONTROL (Twitter) X X
CONTROL (socioeconomics) X X
CITY and YEAR FE X X
Reg × Year X X

ú p < 0.10, úú p < 0.05, úúú p < 0.01.
Notes: All estimates include city and year fixed effects as
well as region specific time trends. Standard errors (in brack-
ets) are clustered at the municipality level. Estimates as well
as averages of Vmt is weighted by the municipality population
size.

6.2 Hospitalizations

We then estimate the impact of anti-vaccination social media activism on hospitalizations due to

vaccine-preventable conditions. We distinguish between two groups: the target pediatric popula-

tion and non-target vulnerable individuals. This distinction is important from a policy perspective.

Hospitalizations for vaccine-preventable diseases among non-targeted patients measure the extent of

negative spillovers or by-products of not reaching herd immunity thresholds in local communities.

Quantifying the negative externalities of individuals opting out of immunization provides an objec-

tive argument in the policy debate on vaccine mandates that must be taken into consideration.

In Table 8, we estimate the effect on the number of hospitalizations and the average annual cost

for the two populations, expressed per 100 thousand residents. For vulnerable individuals (the non-

target population), we find that a 1 percentage point increase in the municipality-level anti-vaccination

stance leads to an additional 0.21 hospitalizations per 100 thousand residents (the baseline average is

22.21). This is also expressed in terms of excess healthcare expenditure of 731.1 euros, representing
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a 1.1% increase relative to the baseline. Specifically, in terms of hospitalizations due to measles,

mumps, or rubella (MMR), the same increase in vaccine skepticism is associated with 0.23 hospi-

talizations per 100 thousand residents (the baseline average is 4.99) and an additional expenditure

of 722.1 euros, corresponding to a 4.6% increase. When looking at hospitalizations among the tar-

get pediatric population, our estimates (column 5) suggest that a 1 percentage point increase in the

municipality-level anti-vaccination stance leads to an additional 0.145 hospitalizations per 100 thou-

sand residents (the baseline average is 2.96) and an excess expenditure of 366.9 euros, corresponding

to a 7.7% increase.

Table A.3 in appendix shows no significant results for non-target population and target pediatric

population hospitalized for diseases preventable by hexavalent, meningococcus and pneumococcus

vaccines, respectively.

Table 8: Results of the OLS and the Second stage of the Mixed 2SLS - Hospitalizations .
(1) (2) (3) (4) (5) (6)

OLS Mixed 2SLS OLS Mixed 2SLS OLS Mixed 2SLS
Vmt Vmt Vmt Vmt Vmt Vmt

non-target non-target non-target non-target Children Children
pop. pop. pop.(MMR) pop.(MMR) age 1-10 (MMR) age 1-10 (MMR)

Panel a: Hopitalizations
smt 0.0211 0.213ú 0.0182úú 0.234úúú 0.00712 0.145úú

[0.0159] [0.113] [0.00841] [0.0601] [0.00780] [0.0650]
Panel b: Healthcare costs
smt 129.8ú 731.1úú 71.96úú 722.1úúú 47.13ú 366.9úú

[66.39] [353.8] [30.92] [243.1] [25.95] [161.1]
N 3331 3331 3331 3331 3331 3331
CONTROL (Twitter) X X X X X X
CONTROL (socioec.) X X X X X X
CITY and YEAR FE X X X X X X
Reg × Year X X X X X X

ú p < 0.10, úú p < 0.05, úúú p < 0.01.
Notes: All estimates include city and year fixed effects as well as region specific time trends. Standard errors (in brackets)
are clustered at the municipality level. Estimates are weighted by the municipality population size.

6.3 Robustness checks

In addition to our main set of estimates, we conduct a series of sensitivity checks to confirm the

robustness of our findings. The additional estimates are reported in Table 9, Table 10, and Table 11.

The first columns report the baseline estimates, and the others report estimates that are robust to

various potential threats, as outlined below.

It is important to consider the effect of Twitter’s algorithmic amplification on the impact of vaccine
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stances on users. In 2016, Twitter introduced an algorithmic timeline that rearranges tweets based on

their relevance to the user. This feature likely amplifies the impact of indirect exposure on user stance

formation. To account for this change, in our IV strategy, we introduce an interaction term between

our instrumental variable, ¯ffs
ind
it , and a dummy variable (TWalg) that takes on a value of 1 from

2016 to account for the shift in the algorithm. The results in the second column of Table 9 show that

the role of the indirect impact of friends of friends’ stances increased after the algorithm change.

Additionally, Emilia-Romagna is a region that has experienced vaccine hesitancy and several

outbreaks of infectious diseases affecting non-vaccinated individuals (Gori et al., 2020). In response

to this, the authorities enacted the Regional Law n.19 on November 25th, 2016, which imposed a

vaccine mandate before the national implementation of the “Lorenzin Law” in 2017. This mandate

applied to public school and kindergarten enrollment. To analyze the interference of this policy shift,

in our IV strategy, we introduce an interaction term between our instrumental variable, ¯ffs
ind
it , and

a dummy variable (ER) that takes on a value of 1 from 2016 in Emilia-Romagna to account for the

implementation of the regional law. The results in column 3 of Table 1 show that the Emilia-Romagna

mandate did not affect how users in the region were influenced by their friends of friends’ vaccine

stances.

Finally, Italian populist parties have raised concerns about vaccine safety (Guriev and Papaioan-

nou, 2022, Kennedy, 2019). In our IV strategy, we introduce an interaction term between our instru-

mental variable, ¯ffs
ind
it , and a dummy variable (PP ) that takes on a value of 1 for the rule of populist

parties at the local level (column 3). As explained in section 5, we identify municipalities where may-

ors are affiliated with a populist party in order to test whether the impact of online activism is likely to

be enforced at the local level. If this is the case, the first stage estimate of the interaction term should

be positive and statistically significant, but it is not. This suggests that our identification strategy

strengthens the interpretation of our baseline results as being related to an online impact rather than a

parallel effect of offline movements.
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Table 9: Mixed 2SLS Individual - First stage.
(1) (2) (3) (4) (5)

Main Twitter algortithm Emilia Romagna Law Populist party Network distance
sit sit sit sit sit

(30.33) (30.33) (30.33) (30.33) (30.33)
¯ffs

ind
it 0.704úúú 0.528úúú 0.706úúú 0.691úúú 0.611úúú

[0.017] [0.035] [0.017] [0.022] [0.021]
¯ffs

ind
it ◊ TWalg 0.251úúú

[0.039]
¯ffs

ind
it ◊ ER 0.005

[0.0742]
¯ffs

ind
it ◊ PP 0.048

[0.043]
N 127,754 127,754 127,754 127,754 127,754
CONTROLs X X X X X
CITY and YEAR FE X X X X X
REG × year X X X X X
F-stat 1757.86 998.690 870.815 943.98 875.82

ú p < 0.10, úú p < 0.05, úúú p < 0.01.
Notes: The numbers refer to an initial sample of 830,253 tweets to a population of 80,471 unique users across 4220
municipalities. All estimates include city, region and year fixed effects and region-specific time trends fixed effects.
Standard errors (in brackets) are clustered at the municipality level. Mean values of sit in parentheses are weighted by
population size.

Finally, in order to address potential concerns about the exogeneity of the friends of friends net-

work, we offer an alternative estimation strategy. Our network has a hierarchical structure with unique

users, passive friends, and active friends of friends. If a user in a unique user’s friends of friends net-

work is linked to them through several direct friends, this can weaken the intransitivity assumption

behind our IV definition. To account for this, we propose an estimation strategy that penalizes our

estimates using weights defined as the inverse of the number of nodes a friend of a friend is distant

from the unique user. This is given by the following equation:

wi = 1
qn

j=1 fij
(6)

where fij is the number of nodes between the unique user i and each friend of a friend j. As

a result, this weight can be regarded as a measure of how long information will take to spread in

the network. This alternative set of results (column 4) in Table 9 shows that the reweighing slightly

decreases the first stage coefficient estimate, which remains comparable to the original estimate in

terms of both magnitude and statistical significance.

The second stage results relative to the for alternative estimation sets for vaccination rates are

reported in Table 10, and for hospitalization rates in Table 11. Columns 2-5 in both tables show that
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the main results (column 1) are robust to our additional results.

Table 10: Mixed 2SLS Individual - Second stage (Vaccination rate.
(1) (2) (3) (4) (5)

Main Twitter Emilia Romagna Populist Party Network
algortithm Law Law distance

Vmt Vmt Vmt Vmt Vmt

Panel a: Hexavalent (94.06)
smt -0.001 -0.001 -0.003 -0.00393 -0.001

[0.014] [0.017] [0.014] [0.0157] [0.014]
7239 7239 7239 7239 7239

Panel b: MMR ( 89.53)
smt -0.041úú -0.039ú -0.043ú -0.0440ú -0.028ú

[0.019] [0.024] [0.025] [0.0236] [0.013]
7238 7238 7238 7238 7238

Panel c: Menigococcus (81.32)
smt -0.040 -0.0113 -0.0109 -0.0127 -0.035

[0.043] [0.057] [0.058] [0.0552] [0.039]
7074 7074 7074 7074 7074

Panel d: Pneumococcus (82.64)
smt -0.010 -0.010 -0.018 -0.0386 -0.008

[0.018] [0.019] [0.021] [0.0594] [0.010]
7079 7079 7079 7079 7079

CONTROL (Twitter) X X X X X
CONTROL (socioeconomics) X X X X X
CITY and YEAR FE X X X X X
Reg × Year X X X X X

ú p < 0.10, úú p < 0.05, úúú p < 0.01.
Notes: All estimates include city and year fixed effects and region-specific time trends. Standard errors (in
brackets) are clustered at the municipality level. Estimates, as well as averages of Vmt, are weighted by the
municipality population size.
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Table 11: Mixed 2SLS Individual - Second stage (Hospitalizations).
(1) (2) (3) (4) (5)

Main Twitter Emilia Romagna Populist party Network
algortithm Law distance

Vmt Vmt Vmt Vmt Vmt

Non-target population
Panel a: Hopitalizations

0.213ú 0.231ú 0.204ú 0.215ú 0.220ú

[0.113] [0.121] [0.112] [0.112] [0.115]
Panel b: Healthcare costs

731.1úú 821.3úú 712.8úú 746.5ú 794.0úú

[409.8] [434.7] [406.6] [412.2] [411.0]

Non-target population (MMR)
Panel c: Hopitalizations

0.234úúú 0.256úúú 0.233úúú 0.231úúú 0.242úúú

[0.0601] [0.0675] [0.0596] [0.0603] [0.0621]
Panel d: Healthcare costs

722.1úúú 716.7úúú 725.1úúú 734.0úúú 743.7úúú

[243.1] [250.6] [242.8] [247.7] [247.1]

Children age 1-10 (MMR)
Panel e: Hopitalizations

0.145úú 0.150úú 0.145úú 0.146úú 0.142úú

[0.0650] [0.0664] [0.0651] [0.0653] [0.0659]
Panel f: Healthcare costs

366.9úú 428.7úú 366.5úú 363.6úú 390.2úú

[161.1] [171.8] [160.9] [163.9] [163.7]
3331 3331 3331 3331 3331

CONTROL (Twitter) X X X X X
CONTROL (socioeconomics) X X X X X
CITY and YEAR FE X X X X X
Reg × Year X X X X X

ú p < 0.10, úú p < 0.05, úúú p < 0.01.
Notes: All estimates include city and year fixed effects and region-specific time trends. Standard errors
(in brackets) are clustered at the municipality level. Estimates are weighted by the municipality population
size.

6.4 Non-linear effects and policy implications

Based on the results discussed in the previous section, we want to understand if our findings can

provide insights for policymakers and public health agencies regarding potential mitigation measures

that could be implemented on social networks to effectively communicate with citizens. As noted

in (Athey et al., 2022), advertising on social media became a widely used method to rapidly reach

large audiences during the COVID pandemic, and has been utilized by public health organizations to

convey important information and influence behavior.

To explore the potential policy implications of the vaccine-related Twitter interactions we observe

in Italy, we investigate whether there are any non-linearities in the effect of lagged neighborhood
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stances on user stances. Specifically, we look at whether the persuasiveness of friends-of-friends’

stances varies depending on where a user falls in the stance distribution (i.e., whether they are vaccine

supporters or skeptics). Additionally, on top of the network structure, we consider the role of random

events related to epidemics, scientific discoveries, court sentences, policies, and news in mitigating or

reinforcing the influence of vaccine stance exposure on user stances.

To speak to these issues, in the final part of our paper, we first re-run our main model specification

while classifying user stances into two binary categories: pro-vax users (those with an average anti-

vax stance of zero), and anti-vax users (those with an average anti-vax stance of one). This will allow

us to better understand the factors that influence vaccine attitudes among these two groups.

Table 12: Mixed 2SLS for pro-vax vs. anti-vax users - First stage.
(1) (2)

Proit Antiit

(0.495) ( 0.204)
¯ffs

ind
it (28.77) -0.0076 úúú 0 .0046úúú

[0 .0003] [ 0.0001]
N 127754 127754
CONTROL (Twitter) X X
CONTROL (socioeconomics) X X
CITY and YEAR FE X X
Reg × Year X X
F-stat 1765.22 1763.52

ú p < 0.10, úú p < 0.05, úúú p < 0.01.
Notes: The numbers refer to an initial sample of 830,253
tweets to a population of 80,471 unique users across 4220
municipalities. All estimates include city, region and year
fixed effects and region specific time trends fixed effect. Stan-
dard errors (in brackets) are clustered on municipalities level.
Mean values of Proit, Antiit and ¯ffs

ind
it in parentheses are

weighted by population size.
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Table 13: Results of the OLS and the Second stage of the Mixed 2SLS for pro-vax vs. anti-vax users - Vaccination rates
(1) (2)

Mixed 2SLS Mixed 2SLS
Promt Antimt

Vmt Vmt

Panel a: Hexavalent (94.06)
0.4567 0.0674

[1.4333] [2.1973]
7239 7239

Panel b: MMR ( 89.53)
3.9086ú -6.6162ú

[2.1978] [3.5315 ]
7238 7238

Panel c: Menigococcal (81.32)
0.5034 -1.6496

[4.8856] [8.2071]
7074 7074

Panel d: Pneumococcal (82.64)
2.7584 -4.2443

[5.3633] [ 8.4350]
7066 7066

CONTROL (Twitter) X X
CONTROL (socioeconomics) X X
CITY and YEAR FE X X
Reg × Year X X

ú p < 0.10, úú p < 0.05, úúú p < 0.01.
Notes: All estimates include city and year fixed effects as well
as region specific time trends. Standard errors (in brackets) are
clustered at the municipality level. Estimates as well as averages
of Vmt is weighted by the municipality population size.

According to the magnitude of the coefficient estimates presented in Table 12, the exposure to

friends-of-friends’ stances has a stronger effect on pro-vax users compared to anti-vax users. This

means that each unit change in the exposure stance is more likely to increase hesitancy among pro-

vax users rather than reduce it among anti-vax users. However, in the second stage (Table 13), the

actual effect on vaccine coverage is more strongly channeled through a shift of users towards anti-

vax stances, rather than pro-vax ones. This suggests that the relationship between online stances

and actual vaccine uptake is stronger for those at the top of the vaccine-related stance distribution.

Furthermore, our results show that the only vaccination that may have been impacted by the online

vaccine debate is the MMR vaccine, with no effect on the other vaccinations.

If anti-vax positions on social media are more likely to translate into actual changes in vaccine

coverage, a further question is how the network can be influenced to reduce users’ anti-vaccine beliefs.

To explore this, we hand-collect all of the significant events related to vaccines that were discussed

in the media during the period of our analysis. These topics include issues such as deaths of children
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allegedly caused by vaccines or a lack of vaccination, court rulings in favor of anti-vax or pro-vax

views, the dissemination of scientific evidence for or against vaccines, and political debates about

pro- and anti-vax stances. Following Athey et al. (2022), we manually classify these online debates

into four broad domains: vaccine efficacy, statements from trustful sources, politics and mandates,

and allegations that vaccines are unsafe.

Table Table 14 shows estimates of daily level user stances on vaccines, conditional on user and

daily date fixed effects. These estimates show how individual stances fluctuate as a function of their

friends-of-friends’ neighborhood stances on regular days, and on days when specific events related to

vaccines are debated on Twitter. The first column of the table shows that, after controlling for individ-

ual fixed tendencies and day-specific features of Twitter activity, individual stances tend to evolve in

response to the effect of their friends-of-friends’ neighborhood stances. Exposure to anti-vax content

tends to make individuals more lenient towards such stances. However, this relationship is mitigated

(reversed) on days when a statement in favor of vaccines is issued by a trustworthy source, such as

the World Health Organization, the academic or research community, the European Commission, or

a court. A similar pattern is observed on days when political debates about the usefulness of vac-

cines are discussed on Twitter. When we classify user stances into two binary categories (pro-vax

and anti-vax), we find that the effect of exposure to anti-vax content is mitigated to a greater extent

in the anti-vax category (column 3). Events related to statements from trustworthy sources and polit-

ical debates are generally able to offset the influence of exposure to anti-vax stances (or reinforce the

influence of exposure to pro-vax content). These estimates suggest that informative campaigns about

vaccines may be an effective and scalable intervention for shaping public health awareness.
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Table 14: User xposure to friends-of-friends stances and the role of online debates’ topics.
(1) (2) (2)
sit Proit Antiit

(30.31) (0.495) ( 0.204)
¯ffs

ind
it 0.2884úúú -0.3309úúú 0.2295úúú

[0.0693] [0.0757] [0.0728]
¯ffs

ind
it ◊ Efficacy -0.3425 0.3765 -0.3548

[ 0.2724] [ 0.2754] [0.2961]
¯ffs

ind
it ◊ TrustfulSource -0.3136úúú 0.2656úú -0.3805úúú

[ 0.0992] [0.1127] [0.1057]
¯ffs

ind
it ◊ PoliticsandMandate -0.1749úúú 0.0660 -0.3899úúú

[ 0.0530] [0.0408] [0.0589]
¯ffs

ind
it ◊ V accinesUnsafe -0.0697 0.1369 -0.0387

[ 0.2292] [ 0.2442] [0.2495]
N 531352 531352 531352
User FE X X X
Daily date FE X X X

ú p < 0.10, úú p < 0.05, úúú p < 0.01.
Notes: The numbers refer to an initial sample of 830,253 tweets to a pop-
ulation of 80,471 unique users across 4220 municipalities. All estimates in-
clude individual and daily date fixed effects. Standard errors (in brackets) are
clustered at the individual. Mean values of sit, ffsProit, and ffsAntiit in
parentheses are weighted by population size.

7 Conclusions

Italy’s pediatric vaccine coverage rates have seen significant changes between 2013 and 2018, in

part due to the spread of misinformation about the safety of vaccines. This vaccine hesitancy has

contributed to outbreaks of several infectious diseases, leading to the extension and legal enforcement

of a mandate for a large number of pediatric vaccines in 2017. Despite the decrease in immunization,

the low cost of engaging in debates has led to an increase in interaction rates among individuals.

Heterogeneous and bimodal distributions of opinions are common features of controversial issues like

pediatric vaccines. It is likely that the online activity of vaccine-skeptic users can affect the stances

of other users, but understanding the extent to which users tend to form endogenous links with like-

minded peers and the extent to which they are truly exogenously exposed to anti-vax activism is more

complex.

We use Twitter data to analyze the spread of novax propaganda across time and space (munici-

pality and year), distinguishing novax tweets using a Natural Language Processing pre-training for

Italian. Exposure to like-minded peers is likely to reinforce opinions and lead to the radicalization of

stances, particularly in the case of controversial issues. If segregation in the opinion space is reflected
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in interactions among users, echo chambers can emerge and individuals’ opinions can resonate with

those of their social network contacts. To formalize these ideas, we develop a model that combines

opinion dynamics, topic-related controversialness, and network formation, showing that controversial

topics can foster the creation of echo chambers, leading to opinion polarization and radicalization. As

predicted by the model and confirmed by our empirical data, micro-interactions among users around

controversial topics can lead to transitions from a relative consensus to opinion polarization and the

formation of endogenous links.

Due to the homophily and controversial nature of the vaccine topic, Twitter users tend to create

echo chambers and interact with peers who have similar vaccine stances. To address the endogene-

ity in link formation, we employ an instrumental variables (IV) strategy. Following Bramoulle et al.

(2009), we exploit exogenous variation in novax stances due to a user’s exposure to the stances of her

friends’ friends. We treat novax stances of local Twitter users as a proxy for the penetration of the

anti-vaccination movement in Italian municipalities, which is likely to affect other online social net-

works and the parallel offline novax propaganda. By pairing Twitter data with vaccine coverage rates,

as well as rates and costs of hospitalization due to vaccine-preventable diseases, we find that exposure

to novax propaganda caused a reduction in MMR immunization coverage in the period before the vac-

cine was mandatory. A 10 pp increase in the anti-vax stance caused a 0.43 pp drop in MMR coverage,

2.1 additional hospitalizations for every 100 thousand residents due to health complications among

fragile individuals who were not targeted by the immunization, such as newborns, immunosuppressed

patients, and pregnant women, as well as an excess expenditure of 7,311 euros, representing a 11%

increase in relevant healthcare costs. We did not find any effect of novax propaganda on mandatory

vaccines.

In addition to our main findings, we show that the exposure stance is more effective at increasing

vaccine hesitancy among pro-vaccine users rather than reducing it among vaccine skeptics. However,

we also show that political debates and statements from trustworthy sources can, on average, mitigate

the negative effects of exposure to anti-vaccine viewpoints. This suggests that informative campaigns

about vaccines may be an effective and scalable intervention for shaping public health awareness. If

vaccine skeptics are resistant to changing their views, pro-vaccine individuals may be influenced by

exposure to anti-vaccine viewpoints, hence providing them with accurate and reliable information can
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help to counteract the skepticism effect and reinforce the support for vaccination.

In conclusion, our findings suggest that while legally enforced preventive vaccination may address

the direct effects of novax propaganda on coverage rates and associated health costs, it may also lead

to potential negative effects typical of controversial topics, such as the creation of echo chambers

and the polarization and radicalization of opinions. Policymakers should take these potential conse-

quences into account when implementing vaccination mandates to prevent them from backfiring once

the legal enforcement of the policy is withdrawn. In fact, Baumann et al. (2021) suggest that for cer-

tain topics that overlap thematically, further evolution of controversialness can lead to the emergence

of ideological states with issue alignment. In their model, ideology emerges from uncorrelated polar-

ization simply by relaxing the assumption of topic orthogonality. While in our analysis of pediatric

vaccines from 2013 to 2018, the fake news related to vaccination was limited to the anti-scientific

views on the vaccine-autism causation, today the topic is no longer uncorrelated to other salient de-

bates. The controversy surrounding the COVID-19 pandemic has given rise to an ideological state

that covers a wide range of topics, including vaccines, face masks, mobility restrictions, and political

views, which have the potential to hinder a wide range of deliberative processes.
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Appendix A

Additional Tables

Table A.1: Ego-Network
User Friend Friend of friends Friend of friends included
@A if @FA1 no vaccine’s tweets and @F1– vaccine’s tweets X
@A if @FA1 retweets and @F1– vaccine’ tweets X
@A if @FA1 reply on vaccine and @F1– tweets on vaccine X
@A if @FA1 tweets on vaccine and @F1– tweets on vaccine 7
@A if @FA1 tweets on vaccine and @F1– no tweets on vaccine 7
@A if @FA1 reply on vaccine and @F1– no tweets on vaccine 7

Table A.2: Descriptive statistics of municipality’s characteristics
Median Mean sd Min Max

Avg. mother’s age at birth 31.92 31.82 0.31 30.32 32.81
Health public cost pc (AC) 1,911.00 1,903.89 56.37 1,662.00 2,515.00
Income pc (AC) 9,183.32 10,854.95 3,786.64 1,986.88 84,253.34
Lower secondary school attainment (%) 86.41 85.30 2.22 74.36 87.73
Birth rate (%) 7.30 7.38 0.64 5.40 10.70
Populist party 1.00 0.58 0.49 0.00 1.00

Notes: The statistics are weighted by the municipality population size.
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Results - Hexavalent, Meningococcus and Pneumococcus Hospitalizations

Table A.3: Results of the OLS and the Second stage of the Mixed 2SLS - Hospitalizations.
(1) (2) (3) (4) (5) (6)

OLS Mixed 2SLS OLS Mixed 2SLS OLS Mixed 2SLS
Vmt Vmt Vmt Vmt Vmt Vmt

(Hexav.) (Hexav.) (Meningo.) (Meningo.) (Pneumo.) (Pneumo.)
Non-target population

Panel a: Hopitalizations
smt 0.009 0.025 -0.0001 -0.0003 -0.0006 -0.021

[0.012] [0.092] [0.0002] [0.0009] [0.002] [0.015]
Panel b: Healthcare costs
smt 102.0 -628.4 -4.756 -20.81 -10.53ú -46.519

[100.6] [700.3] [3.976] [16.46] [6.103] [37.26]

Children age 1-10
Panel a: Hopitalizations
smt -0.00007 0.002 0.00005 0.0003 -0.002 0.009

[0.003] [0.016] [0.0006] [0.004] [0.002] [0.011]
Panel b: Healthcare costs
smt 12.74 -66.18 -0.528 10.36 -3.788 -37.99

[18.45] [49.21] [2.887] [14.90] [6.229] [42.28]
N 3331 3331 3331 3331 3331 3331
CONTROL (Twitter) X X X X X X
CONTROL (socioeconomics) X X X X X X
CITY and YEAR FE X X X X X X
Reg × Year X X X X X X

ú p < 0.10, úú p < 0.05, úúú p < 0.01.
Notes: All estimates include city and year fixed effects and region-specific time trends. Standard errors (in brackets)
are clustered at the municipality level. Estimates are weighted by the municipality population size.

Reduced Form

Table A.4: Reduced form - Vaccination rates.
(1) (2) (3) (4)
Vmt Vmt Vmt Vmt

Hexavalent MMR Meningococcus Pneumococcus
¯ffs

ind
mt 0.00239 -0.0297ú -0.00732 -0.0238

[0.01] [0.016] [0.038] [0.038]
N 7239 7238 7074 7066
CONTROL (Twitter) X X X X
CONTROL (socioeconomics) X X X X
CITY and YEAR FE X X X X
Reg × Year X X X X

ú p < 0.10, úú p < 0.05, úúú p < 0.01.
Notes: All estimates include city, region and year fixed effects and region-specific time trends
fixed effects. Standard errors (in brackets) are clustered on the municipality level. Estimates are
weighted by municipality population size.
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Table A.5: Reduced form - Hospitalizations.
(1) (2) (3)
Vmt Vmt Vmt

non-target non-target Children
pop. pop.(MMR) age 1-10 (MMR)

Panel a: Hopitalizations
smt 0.123úú 0.104úúú 0.0603ú

[0.0550] [0.0309] [0.0323]
Panel b: Healthcare costs
smt 383.7ú 326.7úú 147.0ú

[203.9] [146.2] [78.60]

(4) (5) (6)
(Hexav.) (Meningo.) (Pneumo.)

Non-target population
Panel c: Hopitalizations
smt 0.0266 -0.000222 -0.00549

[0.0432] [0.000484] [0.00793]
Panel d: Healthcare costs
smt -138.3 -5.515 -17.42

[340.2] [8.761] [21.84]

Children age 1-10
Panel e: Hopitalizations
smt 0.000486 0.0000780 0.00629

[0.00970] [0.00189] [0.00739]
Panel f: Healthcare costs
smt -32.78 5.163 0.478

[26.40] [7.744] [23.39]
N 5136 5136 5136
CONTROL (Twitter) X X X
CONTROL (socioec.) X X X
CITY and YEAR FE X X X
Reg × Year X X X

ú p < 0.10, úú p < 0.05, úúú p < 0.01. Notes: All estimates include city and
year fixed effects and region-specific time trends. Standard errors (in brackets)
are clustered at the municipality level. Estimates are weighted by the munici-
pality population size.
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Additional Figures

Figure 9: Tweets over time (2013-2018)

(a) Number of tweets (2013) (b) Number of tweets (2014) (c) Number of tweets (2015)

(d) Number of tweets (2016) (e) Number of tweets (2017) (f) Number of tweets (2018)

Appendix B

The Model of Opinion Dynamics and Network Formation.

The model builds on Baumann et al. (2020)’s work on endogenous polarization dynamics in social

networks. In the model we consider a continuum of individuals in a discrete, infinite time setting [t =

0, 1, .., Œ]. Each individual i has a stance on vaccinations st
i = [s, s̄] which spans from unconditional

support to hesitancy. We assume that the stance reflects individuals’ opinions on the overall utility of

vaccinations a one-to-one mapping between parents’ and children’s (perceived) utility.
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Individual stances evolve over time from initial positions s0
i , drawn from a distribution S0 ≥

Fs(0), with finite first and second moments; in particular, µ0 = E(s0
i ), stands for the average initial

stance in the society. To reflect the observed distribution of initial stances - on average pro-vaccines

- in the baseline simulations µ0 Æ 0 and initial stances are drawn from a Gaussian distribution.

We obtain qualitatively equivalent results when we move to a case where the initial distribution of

opinions is centered around zero (i.e., µ0 = 0).

The opinion dynamics within the social network are entirely driven by the interactions among

agents and are described by a system of N coupled differential equations:

ṡi = ≠si + I
Nÿ

j=1
Wij(t)tanh(–tsj) (B.1)

In Equation (B.1) I measures the strength of the interaction among users of the platform, W (t)

is a time-varying spatial contiguity matrix, whose ith, jth elements represent every link between in-

dividuals in the network - i.e., wij(t) = 1 if i interacts with j, wij(t) = 0 otherwise. The function

tanh(·) is the hyperbolic tangent function, which provides a sigmoidal influence function of peers on

individuals’ stances, ensuring that i) an agent’s i stance influences others monotonically and that ii)

such influence “flattens” in the extremes. Finally, –t is the degree of controversialness of the topic.

The contiguity matrix W (t) evolves according to an activity-driven (AD) temporal network (Perra

et al., 2012), where each agent is characterized by the propensity to interact with a share Êi œ [‘, 1] of

other agents, and the probability of an interaction is driven by homophily (Bessi et al., 2016) - that is

to say, individuals are more likely to interact with like-minded peers, and we model it as a decreasing

function of the (absolute) distance between i and j’s opinions, pij(t) = |si(t)≠sj |≠—q
j

|xi≠xj |≠— . Note that the —

parameter that informs the power law decay of interaction probability includes effects as diverse as

the endogenous preferences for homophily (i.e., to what extent individuals dislike the interaction with

people of different stances) or the exogenous settings embedded in the social networks’ algorithms -

e.g., how likely one’s content is to appear in a like-minded peer’s home newsfeed.
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