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ABSTRACT

We train an AI analyst that digests corporate disclosures, industry trends, and macroeco-
nomic indicators to the extent it beats most analysts. Human wins the “Man vs. Machine”
contest when a firm is complex with intangible assets, and AI wins when information is
transparent but voluminous. Analysts catch up with machines over time, especially after
firms are covered by alternative data and their institutions build AI capabilities. AI power
and human wisdom are complementary in generating accurate forecasts and mitigating ex-
treme errors, portraying a future of “Man + Machine” (instead of human displacement) in
financial analyses, and likely other high-skill professions.
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1. Introduction

Since the inception of artificial intelligence (AI) and as it continues to rise, AI has

constantly made human beings rethink their own roles. While AI is meant to augment

human intelligence, concerns abound that it could replace humans in increasingly skilled

tasks and thus displace jobs currently performed by the better-paid and better-educated

workers (Muro, Maxim, and Whiton, 2019). Such concern and the associated debates have

motivated a quickly growing literature. Recent works by Webb (2020), Acemoglu, Autor,

Hazell, and Restrepo (2022), Babina, Fedyk, He, and Hodson (2020), and Jiang, Tang, Xiao,

and Yao (2022) have all conducted large-sample analyses on the extent of job exposure

and vulnerability to AI-related technology as well as the consequences for employment and

productivity.

The existing literature has been mostly focusing on characterizing the type of jobs that

are vulnerable to disruption by AI’s evolution, as well as those it could create. In other words,

the sentiment of the existent studies mostly involves a theme of “Man versus Machine,” which

characterizes the contest between humans and AI, explores ways humans adapt, and predicts

the resulting job redeployments. In such settings, human beings are often rendered passive

or reactive—dealing with disruptions and looking for new opportunities defined by the AI

landscape. There has been relatively little research devoted to prescribing how skilled human

workers could tap into a higher potential with enhancement from AI technology, which is

presumably the primary goal for humans to design and develop AI in the first place. This

study aims to connect the contest of “Man versus Machine” (“Man vs. Machine” hereafter)

to a potential equilibrium of “Man plus Machine” (“Man + Machine” hereafter).

Our study could be motivated by the experience of chess grand master Garry Kasparov.

The story that IBM’s Deep Blue beat the then reigning grand master in 1997 is well-known.

Afterwards, multiple contests repeated in a similar setting killed any remaining suspense for

the outcome of Man vs. Machine in chess playing. What is far less known is that humans,

despite having lost interest in Man vs. Machine chess contests, have not lost interest in
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either the game or the machine. In fact, the encounter with Deep Blue was a catalyst for

people like Kasparov to pioneer the concept of Man + Machine matches, in which a chess

player equipped with AI assistance (a “centaur” player) competes against AI. Up to today,

the centaur has kept an upper hand against machines; and even more encouragingly, there

have been more and better human chess players with the advent of affordable AI-based chess

programs.1

If AI can help more humans become better chess players, it stands to reason that it can

help more of us become better at many skilled jobs, including pilots, medical doctors, and

investment advisors. In this study, we zoom into the profession of stock analysis, whose data

availability allows us to calibrate both Man vs. Machine and Man + Machine. Stock analysts

are among the most important information intermediaries in the market place (e.g., Brav

and Lehavy, 2003; Jegadeesh, Kim, Krische, and Lee, 2004; Crane and Crotty, 2020). Their

job, which requires both institutional knowledge and data analytics, has not been spared by

AI, as making powerful and fast predictions at a relatively low cost is at the technology’s

heart (Agrawal, Gans, and Goldfarb, 2018). More and more investors have begun to heed

AI-powered recommendations about stock picking and portfolio formation.2

To trace out the path from “Man vs. Machine” to “Man + Machine,” we decided to build

our own AI model for 12-month stock predictions so that we have a consistent and time-

adapted benchmark for AI performance that we understand and are able to explain. Target

prices and earnings are the two primary subjects of analyst forecasts; we choose the former

because the latter are subject to managerial discretion, as made manifest by a large body

of accounting literature on earnings management. Our “AI analyst” is built on training a

combination of current machine-learning (ML) tool kits using timely, publicly available data

and information. More specifically, we collect firm-level, industry-level, and macroeconomic

1Source of information: The Inevitable, by Kevin Kelly, Penguin Publishing Group, 2016. See also
“Defeated chess champ Garry Kasparov has made peace with AI,” Wired, February 2020.

2Sources: “What machine learning will mean for asset managers,” Robert C. Pozen and Jonathan Ru-
ane, Harvard Business Review, December 3, 2019. “How startup investors can utilize AI to make smarter
investments,” Jia Wertz, Forbes, January 18, 2019.
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variables, as well as textual information from firms’ disclosures (updated to right before the

time of an analyst forecast), as inputs or predictors, but we deliberately exclude information

from analyst forecasts (past and current) themselves. We resort to machine learning models

instead of traditional economics models (such as regressions) due to the advantages of the

former in managing high-dimensional unstructured data and in their flexibility in optimizing

and fitting unspecified functional forms. More recent development in the area also allows us

to mitigate overfitting and improve out-of-sample performance.

We select a set of state-of-the-art machine learning models and build our AI analyst

based on an ensemble model. Our AI analyst is able to beat human analysts as a whole:

the AI analyst outperforms 55.9% of the target price predictions made by all IBES analysts

during the sample period of 2001 to 2018. The machine’s advantage could arise from its

superior ability to process information, or its immunity from predictable human biases due

to incentives or psychological traits (e.g., Abarbanell, 1991; Stickel, 1990). To separate the

two, we compare AI forecasts with “debiased” analyst forecasts where biases are predicted

and then removed using machine learning (henceforth, “Machine-debiased Man” or “MDM”

forecasts). Such an improved version of human analyst still trails the machine (MDM only

outperforms AI in 48.2% of forecasts), suggesting that “correctable” biases explain around

69% of the Man-Machine gap.3

Despite the power of AI model, we are interested in knowing the circumstances under

which human analysts retain their advantage, in that a forecast made by an analyst beats

the concurrent AI forecast in terms of lower squared forecast error relative to the ex post

realization (i.e., the actual 12-month stock price). We find human analysts perform better

for smaller and more illiquid firms and those with asset-light business models (i.e., higher

intangible assets), consistent with the notion that such firms are subject to higher information

asymmetry and require better institutional knowledge or industry experience to decipher.

Analysts affiliated with large brokerage houses also stand a higher chance of beating the

3Since analysts outperform AI in 44.2% of the cases, the percentage attributable to bias correction is
(48.2 - 44.2)/(50 - 44.2) = 69%.
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AI, thanks to a combination of their abilities and the research resources available to them.

Analysts are more likely to have the upper hand when the firm is in a dynamically competitive

environment or is subject to higher distress risk, revealing again AI’s limitation in analyzing

uncertain and/or unfamiliar scenarios.4 As expected, AI enjoys a clear advantage in its

capacity to process information and is more likely to outsmart analysts when the volume of

public information is larger.

Just like the centaur chess player which Kasparov pioneered, the superior performance

of an AI analyst does not rule out the value of human inputs. If humans and machines have

relative advantages in information processing and decision making, then human analysts may

still contribute critically to a centaur analyst: a human analyst who makes forecasts that

combine their own knowledge and the outputs and recommendations from AI models. After

we add analyst forecasts to the information set of the machine learning models underlying

our AI analyst, the resulting “Man + Machine” model outperforms 55.8% of the forecasts

of the AI-only model. Thus, the AI analyst does not displace human analysts yet, and in

fact, an investor or analyst who combines AI’s computational power and the human art of

understanding soft information can still outpower AI itself.

We are thus interested in knowing when the incremental value of humans to a Man

+ Machine model is the highest, as manifested in the relative performance of that model

versus the pure AI model. Similar to previous findings, we find inputs from analysts are more

valuable when covering firms that are more illiquid and those with more intangible assets.

Moreover, analyst inputs have more incremental value when a firm faces higher distress risk.

Importantly, the incremental value of humans does not decrease as the volume of information

(hence the demand for processing capacity) increases, though this constitutes a disadvantage

for humans working alone. Similarly, analysts from small brokerage houses make a similar

level of contribution to the Man + Machine model compared to their counterparts from

4This is consistent with the limitation of current machine learning and AI models which still lack rea-
soning functions to handle unfamiliar situations well. Source: “What AI still can’t do,” Brian Bergstein,
MIT Technology Review, February 19, 2020.
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larger banks, suggesting that AI could potentially help level the disparity along professional

hierarchy. Importantly, the Man + Machine model avoids 76.3% of extreme errors5 made by

analysts and 32.2% of those by the AI (while with minimal creation of its own large errors).

To the extent that large errors are calamitous in many skilled professions, there is substantial

benefit in combining human and AI capabilities.

Finally, we resort to an event study to sharpen the inference of the impact of integrating

humans and machines in stock analyses. In recent years, the infrastructure of “big data” has

created a new class of information about companies that is collected and published outside

of the firms, and such information provides unique and timely clues into investment oppor-

tunities. An important and popular type of alternative data captures “consumer footprints,”

often in the literal sense such as satellite images of retail parking lots. Such data, which

have to be processed by machine learning models, have been shown to contain incremental

information for stock prices (Zhu, 2019; Katona, Painter, Patatoukas, and Zeng, 2022). We

build on data from Katona, Painter, Patatoukas, and Zeng (2022) on the staggered introduc-

tion of several important alternative databases and conduct a difference-in-differences test

of analysts’ performance versus our own AI model before and after the availability of the

alternative data. The underlying premise is that analysts who cover firms while using this

alternative data could be in the situation of Man + Machine, as they have the opportunity

to use the additional AI-processed information. Indeed, we find that post alternative data,

analysts covering affected firms improve their performance relative to the AI model we build

which serves as a benchmark. Furthermore, such improvement concentrates in the subset

of analysts who are affiliated with brokerage firms with strong AI capabilities, measured

by AI-related hiring using the Burning Glass U.S. job posting data6 and the classification

algorithm developed in Babina, Fedyk, He, and Hodson (2020).

5Extreme errors are forecast errors those above the 90th percentile of all analyst forecast errors on the
same firm in the past three years.

6Burning Glass is currently the leading data vendor of U.S. job postings. The postings are scraped from
websites, newsletters, and agency reports. They cover the period of 2007 and then 2010–2019. Acemoglu,
Autor, Hazell, and Restrepo (2022) show that Burning Glass data cover 60–80% of all U.S. job vacancies.
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Overall, this study supports the hypothesis that analyst capabilities could be augmented

by AI, and more importantly, that analysts’ work possesses incremental value such that they,

with the assistance of AI, can still beat a machine model that does not include human inputs,

analogous to centaur chess players’ outperforming machines. If there is some external validity

from chess and stock analysis to skilled workers in general, the inference from our study is

encouraging news for humans in the age of AI.

2. Literature, Data Construction, and Machine Learning Models

2.1. Relation to the Literature

Our work is related to the rapidly growing literature on the competition and threat to

human workers posed by new technology including robots and AI.7 This literature overall

finds that when low- or intermediate-skill jobs are replaced by machines, humans tend to

move to high-skill jobs that are more difficult to replace (Autor, Levy, and Murnane, 2003).

However, the most recent wave of AI innovations disrupt many high-skill jobs. Our study

focuses on humans’ relative advantage over machines and, more importantly, the potential

synergies between humans and machines.8 We envision a future in which AI and machines

can assist humans with the more tedious and quantitative tasks and democratize access to

information, allowing humans to be more creative and productive.9

A few recent and contemporaneous papers also study the impact of big data and AI in

7An incomplete list of recent papers includes Aghion, Jones, and Jones (2017), Acemoglu and Restrepo
(2018), Acemoglu and Restrepo (2019), Brynjolfsson, Mitchell, and Rock (2018), Webb (2020), Ray and
Mookherjee (2021), Cao, Cong, and Yang (2019), Acemoglu, Autor, Hazell, and Restrepo (2022), and Jiang,
Tang, Xiao, and Yao (2022).

8An example in a non-finance setting comes from sports. After trying video assistant referee (VAR)
technology for a few seasons, the English Premier League decided not to let VAR overpower referee judgment.
One main reason is that players will reverse-engineer the rules underlying the VAR decisions and play to
their advantage, such as committing more “low-degree” (to the machine) but atrocious (to humans) fouls.
This can be remedied by giving a human referee the final say. See “Why has the introduction of video
technology gone so badly in soccer?” James Reade, Forbes, December 10, 2020.

9Due to the complementary nature of AI and humans, the advent of AI technologies can potentially
create more jobs than they destroy. See “Artificial intelligence to create 58 million new jobs by 2022, says
report,” Amit Chowdry, Forbes, September 18, 2018.
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the financial industry. Abis (2022) studies how quantitative investment strategies influence

mutual fund performance. Abis and Veldkamp (2022) examine the change in labor shares in

the financial industry driven by the new data management and AI jobs. Coleman, Merkley,

and Pacelli (2022) compare the performance of robot analysts from fintech companies with

that of human analysts. Grennan and Michaely (2020, 2021) study how analysts perform

and adjust in response to the advent of AI-processed recommendations in the markets. Rossi

and Utkus (2021) compare human asset managers with robot advisors. Agrawal, Gans, and

Goldfarb (2019b) discuss the ambiguous impact of AI on labor given the elements of AI that

tend toward automating decisions versus enhancing human decisions. Jansen, Nguyen, and

Sham (2021) analyze human and machine decisions in loan underwriting. Cao, Jiang, Yang,

and Zhang (2022) study the impact of AI readership on corporate disclosure policies. Finally,

Pagliaro, Ramadorai, Rossi, Utkus, and Walther (2022) consider human interactions with

algorithmic wealth management advisors. Our paper differs from the existing literature in

that we explore the internal mechanism of the AI process we constructed ourselves instead of

market-level proxies,10 and aim to identify their relative advantages to, as well as synergies

with, humans using model inputs and outputs in our own hands.

We also contribute to the literature of building and assessing the performance of ma-

chine learning models in financial applications, such as in predicting asset prices (Gu, Kelly,

and Xiu, 2020, Brogaard and Zareei, 2022), robo-advising (D’Acunto, Prabhala, and Rossi,

2019), managing portfolios (Chen, Pelger, and Zhu, 2022; Cong, Tang, Wang, and Zhang,

2022), estimating values of artwork (Aubry, Kraeussl, Manso, and Spaenjers, 2022), fore-

casting earnings (van Binsbergen, Han, and Lopez-Lira, 2022; Cao and You, 2021, Silva

and Thesmar, 2021), making lending decisions (Liu, 2022), classifying and evaluating inno-

vations (Chen, Wu, and Yang, 2019; Zheng, 2022) and estimating bank risk (Hanley and

10For example, Grennan and Michaely (2020) resort to the amount of social media information as a proxy
for the AI research intensity for a stock, and focus on analysts’ response to the AI shock. This study, in
contrast, aims at decipher the nature of the AI shock.
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Hoberg, 2019).11 While the structure of our analysis shares similarity with some of the pa-

pers, notably Silva and Thesmar (2021) and van Binsbergen, Han, and Lopez-Lira (2022)

which calibrate biases in analyst expectations regarding earnings using author-developed AI

model, the primary research questions of our paper are different from theirs. Silva and Thes-

mar (2021) and van Binsbergen, Han, and Lopez-Lira (2022) focus on the term structure

of analyst biases, and link them to corporate actions such as security issuance, while our

ultimate goal is to explore the complementary value humans can offer in the age of AI once

we have a good understanding of their relative advantage.

In summary, our study contributes to the emerging literature studying the implications

of combining humans and machines in the financial markets.12 Given the increasing presence

of machines and AI beyond finance, we also hope that this case study contributes to a better

understanding of how technology can complement and improve humans, bringing to fruition

the original mission of AI development.13

2.2. Sample of Forecasts

Our sample of analysts’ 12-month target price forecasts builds on the Thomson Reuters

I/B/E/S analyst database using data from 1996 to 2018.14 We choose 12-month target price

forecasts because the target prices for other horizons are less than 1% of the volume of 12-

month forecasts after combining with our predictor data described below. After merging

I/B/E/S with CRSP and Compustat, the final sample consists of 948,054 12-month target

price forecasts on 6,190 firms, issued by 11,341 analysts from 820 brokerage firms.

11See also Cong, Liang, Yang, and Zhang (2020), Martin and Nagel (2022) and Goldstein, Spatt, and Ye
(2021) for surveys and discussions of methodologies.

12In different settings, Armour, Parnham, and Sato (2020) study the impact of AI and the associated
digital technologies on the law profession. They find that AI-enabled services will augment the capabilities of
human lawyers and also generate new roles for legal experts to produce such services. Brogaard, Ringgenberg,
and Rösch (2021) find that human floor traders can complement algorithmic traders in providing information
to the market in complicated environments.

13This echoes the mission of the Stanford Human-Centered AI Institute, “to advance AI research, educa-
tion, policy and practice to improve the human condition.” See https://hai.stanford.edu/about.

14The I/B/E/S coverage prior to 1996 was limited, with fewer than 2,000 target price forecasts in total.
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We choose to analyze analysts’ price forecasts instead of earning forecasts because earn-

ings are subject to managerial discretion or even manipulation. Earnings could also be

endogenous to analyst forecasts due to the well-documented feedback loop caused by the

managerial incentive to meet and beat analyst consensus (Abarbanell and Lehavy, 2003;

Doyle, Jennings, and Soliman, 2013). Prices are more difficult to control by insiders and

thus provide a more objective benchmark to assess performance of human analysts and ma-

chines.15 Unlike earnings forecasts which could target a fixed firm-quarter in the future

by the same analyst, forecasts in our sample are for 12-month moving windows. We thus

consider all such forecasts to be newly initiated instead of being revisions of some previous

forecasts.

2.3. Building the Information Set for the AI Analyst

Given our goal to build an AI analyst to compete with professional analysts, we need

to define the information set available to such a professional whenever a price forecast is

made. The unit of analysis in our main setup is a forecast on the 12-month stock price for

firm i by human analyst k on date t (in year u). The information set, It, would, in an ideal

setting, include all publicly available data and information up to t−. We assume that pro-

fessional analysts do not have access to material nonpublic information, which is essentially

the requirement of Regulation FD.16 We approximate It with firm and industry information

from CRSP and Compustat; textual information from firms’ SEC filings, including annual

reports (10-K), quarterly reports (10-Q), ad hoc disclosure of material corporate news and

developments (8-K), and other reports; and macroeconomic data from the Federal Reserve

Economic Data at the Federal Reserve Bank of St. Louis.

15While some studies document that analyst forecast revisions lead to stock price reactions (e.g., Stickel,
1991), such effects typically last much shorter than the 12-month horizon we examine in this study, and have
substantially diminished since 2003 due to markets that more efficiently incorporate information (Altinkilic,
Hansen, and Ye, 2016).

16Regulation FD (“fair disclosure”), implemented in 2000, generally prohibits public companies from
disclosing previously nonpublic, material information to certain parties unless the information is distributed
to the public first or simultaneously.
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To operationalize time adaptation, we adopt the following rolling-window approach. For

a given forecast made by a human analyst on date t in year u, all forecasts in the previous

three years u − 3, u − 2, u − 1 form the training sample.17 That is, data up to the dates

of those forecasts (but excluding the forecasts themselves) and the corresponding realized

prices were used to train our machine learning models. Moreover, if the past three years

include a “distress” year (defined by negative market return), we trace back to the first year

of the distress s and expand the training window to years s − 3, s − 2, s − 1, · · · , u − 1.

The benefit of this approach is that human analysts in a recession likely predict future prices

based on information over a full business cycle. Including the years before distress can mimic

the information used by human analysts. Moving to the estimation sample, we then feed

data available up to date t− 1 in year u into the trained model to make the 12-month-price

prediction at time t. Our AI analyst makes its first prediction in 2001. Though we allow

(public) information to be updated till t − 1, most of the information inputs came from

disclosed quarterly data from the previous eight quarters.18

2.4. Information and Variables as Inputs to Machine Learning

Firm Characteristics The firm characteristics fed into machine learning models are re-

trieved or processed based on information from standard databases accessed via WRDS,

especially CRSP/Compustat and Thomson Reuters Ownership databases. The first set of

predictors include stock prices at the end of the previous month as well as the stock prices

one to four years before the end of the previous month. The 12-month returns over the past

5 years are also included, together with the realized earnings within the past 3, 6, 9, 12, 24,

and 36 months. We also include a number of firm characteristics known to predict cross-

sectional differences of the stock prices. In particular, we include anomalies from each of the

17We have also trained the model with a five-year rolling window and obtained similar results. Downsides
from using a much longer training windows include the shrinkage of estimation period and added noise from
more distant historical data.

18Data that come in different frequencies, such as corporate news releases (8-K), are aggregated at the
quarterly level.
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six broad categories considered in Hou, Xue, and Zhang (2020): the momentum, value versus

growth, investment, profitability, intangibles, and trading frictions anomalies.19 Variables in

this group are constructed quarterly using information available at the previous quarter-end.

Industry Variables We compose a set of industry-level variables that capture competi-

tion, industry dynamics, and other factors relevant for firm valuation based on the existent

literature. These variables include (i) The competition measure from 10-Ks following Li,

Lundholm, and Minnis (2013), which captures the degree of competition resulting from ri-

valry within and across industries as perceived by the management; (ii) the product market

fluidity measure following Hoberg, Phillips, and Prabhala (2014), which quantifies the prod-

uct market poaching threat posed by the movement of competitors toward the focal firm;

(iii) industry affiliation with the Fama-French 48 industries (48 indicator variables); (iv)

industry size, measured by the number of firms in the Fama-French 48 industry within the

past 3, 6, 9, 12, 24, and 36 months; and (v) equally weighted industry average earnings per

share realized within the past 3, 6, 9, 12, 24, and 36 months.

Macro Variables Macroeconomic and stock market development are common factors to

all firms’ valuation and returns (e.g., Fama and French, 1989; Chen, Roll, and Ross, 1986).

For this category, we include the following variables: (i) Industrial Production Index; (ii)

Consumer Price Index; (iii) Crude oil price (WTI); (iv) three-month treasury bill rate; (v)

ten-year treasury constant-maturity rate; and (vi) The BAA–AAA yield spread. These macro

variables are obtained from the Federal Reserve Economic Data at the Federal Reserve Bank

of St. Louis on a monthly frequency.

Textual Sentiment Information One leading strength of AI over human beings is the

former’s ability to digest large volume of information. One new edge that machine learning

models boast over traditional statistical methods is the capacity to process unstructured

19We list all variables serving as inputs into the machine learning models, their definitions, and sources
in Table A1 in Appendix A.
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textual data based on firms’ SEC filings, including annual reports (10-K), quarterly reports

(10-Q), corporate news (8-K), and other reports. The new developments allow researchers

to quantify information which was considered qualitative or “soft,” commonly termed “sen-

timents.”

Two different sets of sentiment variables from textual data serve as inputs to our AI

analyst. The first is based on the Loughran and McDonald (2011) sentiment, which has

been widely used in the academic literature. We calculate the frequency of positive and

negative sentiment words from the firm-issued SEC filings following Loughran and McDonald

(2011). The second set of machine-learning-based sentiment variables follow Cao, Kim,

Wang, and Xiao (2020), who trained a deep-learning neural network model to incorporate

contextual information and syntactic relations between performance-related words. The

second approach aims to isolate managerial sentiment related to the firm’s future performance

from sentiment regarding other issues (such as location and weather).

2.5. Potential Factors for the Relative Performance of AI and Human Ana-

lysts

A main objective of the study is to assess the factors that contribute to the relative

performance of AI vs. humans as well as the synergy between the two. We hypothesize that

these factors are related to the information environment of the firm, industry, and analysts.

Needless to say, equity analysts are often evaluated along dimensions other than forecast

accuracy, such as promoting investment banking or trading businesses, and intermediating

between firms and large investors. We focus on forecast accuracy, not only because it is objec-

tive and quantifiable, but also because it represents a primary quality in analyst evaluation

(Stickel, 1992; Desai, Liang, and Singh, 2000).

We first consider the following firm-level variables: the Amihud Illiquidity measure (Ami-

hud, 2002), which is the ratio of absolute daily stock return to the daily trading volume (in

dollars); Log Market Cap, the logarithm of market capitalization; Standard Deviation of
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Earnings; # 8K Reports, which is the number of 8-K reports filed each year and repre-

sents the volume of available information about the firm; and Intangible Assets, defined as

the first principal component of four proxies: intangible assets minus goodwill divided by

total assets, one minus the ratio of PP&E to total assets, organization capital scaled by

assets, and knowledge capital scaled by assets. The last two measures, derived from the

accumulation of SG&A and R&D expenditures, are constructed following Ewens, Peters,

and Wang (2022) (see e.g., Eisfeldt and Papanikolaou, 2013, 2014; Peters and Taylor, 2017;

Falato, Kadyrzhanova, and Sim, 2020 for the modeling and development of these and related

measures of intangible capital).

We further include a number of variables that characterize the information environment

and resources for analysts: Star Analyst represents an “all-star” status awarded by the

Institutional Investor magazine at the beginning of the year;20 # Analysts in Brokerage

Firm is the number of analysts and proxies for the size and resources of the brokerage

firm; % Institutional Holdings is the 13F institutional holdings as a percentage of shares

outstanding, which can reflect the prevalence of informative investors; Book Leverage is

constructed following Fama and French (1992) and proxies for firms’ financial exposure to

distress shocks (Babina, 2020); Fluidity represents the competition firms face in the product

markets by tracing changes in rival firms’ products relative to the firm’s products (Hoberg,

Phillips, and Prabhala, 2014); and Time Trend equals the number of years elapsed from the

beginning of the sample (2001). The final set of variables are related to analysts’ access to

alternative data and AI resources, which will be introduced in Section 5.3. Table 1 presents

the summary statistics of variables.

[Insert Table 1 here]

20See more details at https://www.institutionalinvestor.com/research.
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2.6. Machine Learning Models

There are a number of candidate machine learning models developed in recent decades

to build our AI analyst, including lasso, elastic-net, support vector machines, random forest,

gradient boosting, and long short-term memory neural networks. Because the machine

learning models are essential tools but not the ultimate objectives of this study, we provide an

overview in Appendix B of the models referenced where we focus on the economic intuition

of each methodology’s mechanism and strength without going into technical details. For

further details, we refer the reader to the most representative references in this field; for

example, Hastie, Tibshirani, and Friedman (2009) and Goodfellow, Bengio, and Courville

(2016). Of the models considered, random forest, gradient boosting, and long short-term

memory neural networks are the state-of-art nonlinear models that have been increasingly

used and proved of their advantage over the other methods in the existent literature of

computer sciences, finance, and other disciplines. Our main AI model thus is built as an

ensemble of these three models, i.e., adopts the mean prediction of the three models.21

Our candidate machine learning models strive to be at the leading edge of AI practice

in investment management. They are similar to those covered in two prominent industry

reports: The JP Morgan Big Dada and AI Strategies report and the report on Artificial

Intelligence in Asset Management by the CFA institute, and are also favored in the current

industry practice.22

21While the model selection was based on the literature review and reasoning, we nevertheless evaluate
the performance of all candidate models for each year on a rolling basis. For each given year, we take the
prior three years and split it into a training sample (first two years) and a testing sample (the third year).
We train the model parameters over the training sample and then evaluate the model performance on the
testing sample. Results are shown in Internet Appendix Table IA1. Perhaps not surprisingly, the three
models turn out to be the best performing ones.

22These reports can be found at the following links: https://www.cognitivefinance.ai/
single-post/big-data-and-ai-strategies and https://zonavalue.com/wp-content/uploads/2020/
09/CFA-Institute-artificial-intelligence-in-asset-management.pdf. We have presented and dis-
cussed our paper and models with about half a dozen teams who are leaders in AI-directed investments.
Most importantly, we confirmed with these teams that the rates at which AI models beat human analysts
are on par with the current state-of-art.
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3. Construction and Performance of the AI Analyst

Our ultimate goal is not to build an AI analyst per se, but to analyze the relative strength

as well as the synergy between machines and humans. Such a goal, however, sets the premise

that the AI analyst at hand needs to be strong enough to compete with, or even beat, human

analysts. This section describes how we build an AI analyst of that calibre.

3.1. The Predictive Models

For each stock i at time t, where t is the day when an analyst makes a forecast, FMan
i,j,t

(wherein i, j, t are indices for the stock, the analyst, and the date, and the superscript

Man indicates human as opposed to AI), of the 12-month target price, our model makes

an attempt at predicting the same target; that is, the stock price Pi,T (t), wherein T (t) is

the last trading day of the 12-month forward price from time t. Included in the predictive

information set is all public information (as described in Section 2 and Appendix A) up to

t−. We summarize the prediction model as

log(Pi,T ) = FAI
i,t + εi,t, F

AI
i,t = ft−(Xi,t−). (1)

Here, ft− is the prediction function for all stocks at time t−. This is consistent with asset

pricing models with conditioning information; that is, we assume there is a uniform prediction

model for every stock at a given time while allowing the model to be time-varying. In (1),

stock price is expressed in natural logarithm in order to rule out explosive variables and

ensure the usual regularity conditions for the model estimate to converge.

Next, we compare the AI forecast FAI
i,t and the analyst forecast FMan

i,j,t in terms of their

accuracy relative to the ex post realized price Pi,T . AI beats human if |FAI
i,t − log(Pi,T )| <

|FMan
i,j,t −log(Pi,T )|, and vice versa. We define Beat to be an indicator variable for AI winning.

Moreover, we define FAI
i,t > FMan

i,j,t to be a “buy” signal and the opposite condition to be a

“sell” signal. Figure 1 shows the relative performance of AI vs. human analyst forecasts over
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time.

[Insert Figure 1 here]

Out of 820,099 forecasts made from 2001 to 2018, the average human analyst is only

able to beat the AI 44.1% of the time. The p-value for the percentage to be drawn from

a distribution with the neutral probability of half for this sample size is less than 0.01%.

However, the human analyst disadvantage is volatile from year from year, ranging from

25.9% in 2001 to 51.8% in 2010 with an overall positive drift, as shown by the trend-fitted

line. We conjecture (which will be tested) that the waning advantage of the AI analyst

is precisely because human analysts have been adapting to technology. Not only analysts

increasingly have access to and are assisted by improving technologies in data collection,

statistical packages, and machine learning tools, but also they could specialize and move

their coverage to firms that are less followed by machine (Grennan and Michaely, 2020).

3.2. Contribution of Variables to the AI Prediction

In this section, we examine the contribution of different groups of input variables to the

predictions of the AI model. We divide the features into six groups: returns (in the past five

years), firm characteristics, earnings (past firm and industry earnings), industry information,

macroeconomic variables, and variables using textual information. The contribution from

each group is the difference in forecast performance between the full information model and

one that omits the given group. Specifically, we compute the percentage of times that the

AI model with complete information beats the model that is otherwise the same except

excluding that given set of information. A probability of 50% reflects neutrality in relative

performance. We then scale the percentages representing the incremental effect of each group

(i.e., above 50%) by the total sum so that they sum up to unit. Figure 2 presents the results.

[Insert Figure 2 here]
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Each group of features contributes substantially to the AI prowess. Firm-specific infor-

mation from past earning variables and firm characteristics contribute the most (23.7% and

22.4%, respectively), followed by the industry (17.6%) and macro (16.5%) indicators. The

10.4% contribution from textual information highlights the importance of qualitative infor-

mation. It is perhaps not surprising that information from the stock market (past returns)

claims the lowest share (9.5%), as their contribution should be minimal if the stock market

is close to being informationally efficient.

3.3. Debiased Analysts vs. AI

It has been well documented that analysts exhibit biases in their forecasts (e.g., Abar-

banell, 1991; Stickel, 1990). There are a multitude of explanations of such biases, including

the incentive to issue more favorable forecasts for corporate clients of the analysts’ affiliated

brokerage firms (Michaely and Womack, 1999), the need to obtain access to information from

the management (Lim, 2002), and human psychological traits (e.g., DeBondt and Thaler,

1990; Hirshleifer, Levi, Lourie, and Teoh, 2019). A natural question thus arises: Could hu-

man underperformance relative to AI be remedied simply by “debiasing” analyst forecasts

with a machine learning model (henceforth, “Machine-debiased Man” forecasts or “MDM”),

or will the human shortfall remain after such a procedure in which case it would be due to

the limitation in human ability to acquire and process information? A comparison of MDM

forecasts with the AI analyst would reveal the nuance regarding the innate predictive ability

of analysts after filtering out their predictable biases.

In constructing the MDM forecasts, we first predict the analyst forecast errors in the

next period with all current information, analogous to Equation (1).

FMan
i,j,t − log(Pi,T (t)) = g(Xi,t−, Zi,t−) + εi,t, (2)

where we include all variables Xi,t− that we have employed to predict target prices, and a set
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of analyst and brokerage-firm characteristics Zi,t−, including the mean and standard error

of analysts’ past prediction biases, analysts’ experiences (number of years covering the firm,

the industry, or any public firm), analysts’ efforts (whether the analysts provide forecasts of

additional information such as sales or cash flows), and brokerage firm size proxied by the

number of analysts. We use the same procedure as in Section 3.1 to train the same machine

learning model and then estimate (2). The MDM prediction is then the analyst prediction

FMan
i,j,t minus the corresponding bias as predicted by the machine learning model. To compare

the MDM with AI, we plot the MDM beat ratio, or the frequency of MDM forecasts beating

AI forecasts, in each year from 2001 to 2018 in Figure 3. As expected, MDM exhibits

better performance than the raw forecasts and beats the AI more frequently than human

analysts alone in most years. Over the entire sample, MDM beat AI analysts in 48.2% of the

cases, an over four percentage-point improvement over humans without debiasing. Since pre-

debiased analysts outperform AI in 44.2% of the cases, we estimate that correcting human

biases (without additional information about firm fundamentals) could eliminate around

69% (= (48.2− 44.2)/(50− 44.2)) of the Man-Machine gap.

[Insert Figure 3 here]

3.4. AI vs. Analysts with Persistent Performance

Analysts are a large group with heterogeneous skill levels such that forecast performance

would be persistent if skills were innate. Moreover, the market recognizes, at least partially,

the relatively more skilled analysts by responding more strongly to their forecasts or recom-

mendations (Chen, Francis, and Jiang, 2005; Li, 2005; Mikhail, Walther, and Willis, 2007).

Thus, a higher hurdle is for our AI analyst to beat the subset of skilled analysts. We assess

the relative performance with respect to the higher hurdle with two tests. First, we sort all

analysts into the top and bottom halves based on their average prediction error (normalized

by stock prices) over a past period with length ranging one, two, three, four, and five years.

We then track the percentage of their future forecasts that beat our AI analyst during each
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time period. In the second test, we repeat the same procedure except selecting the analysts

that are among top and bottom quantiles each year during the past one, two, three, four

and five years. The second specification is more demanding on persistent skills as only about

7.3% of the analysts are able to stay at the top half in each year for a five-year period. Table

2 reports the results.

[Insert Table 2 here]

Results in Table 2 show that the AI comfortably beats the analysts in the low-skill

quantiles. It is basically neck and neck to the more successful analysts and is almost even

with analysts (analyst beat ratio of 49.9%) who demonstrated superior performance in each

of the past five years, an excellence only achieved by less than one tenth of all analysts.

3.5. Performance of Portfolio Following AI Recommendations

Analysts make forecasts as a way to advise portfolio formation or turnover. The perfor-

mance of a portfolio following the analyst advice is thus a natural metric for analyst skill.

For the same reason, we can form portfolios based on the different opinions between the AI

and human analysts. The performance of the resulting portfolio is testament of their relative

proficiency. Our approach is different from the usual one which follows analyst directional

recommendations as our model requires a clear investment horizon that is lined up with the

horizon of the signal (i.e., 12-month price target).

In each month, we gather all predictions made by all analysts and the corresponding AI

forecasts in past 30, 60, 90, and 360 days. For each pair of predictions, if the AI predicts a

higher (lower) price, it is considered as a buy (sell) signal. During the given time horizon,

the portfolio will long the stock if there are more buy than sell signals, and short the stock

otherwise. The portfolio is equal weighted. In a monthly (or six-monthly) rebalanced port-

folio, we hold the position for one month (six months), or until the signals reverse, whichever

is earlier. The portfolio contains 620 to 1,150 stocks with signals from past 30 days to 360
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days.23 Table 3 Panel A reports the performance of the monthly rebalanced long-short port-

folio in terms of average return and alpha estimated using Fama-French three-factor, Carhart

four-factor, Fama-French five-factor and Fama-French six-factor models.

[Insert Table 3 here]

Results in Table 3 are highly encouraging in that the AI is able to generate superior

returns/alpha, relative to analysts, on the order of 75 to 166 basis points monthly, significant

at less than the 5% level in all cases. To the extent that our portfolio approach compares the

AI with all human analysts, our result implies that the AI forecast is superior to the analysts’

consensus. When we separately examine the long and short portions of the portfolio, we

discover that the superior returns are significant (all at the 1% level) only on the long side

(for which transaction costs are lower). Such an asymmetry could be driven by the well-

documented positive bias in analyst forecasts (Lim, 2002). While AI forecasts contain no

average directional bias, we confirm that the median analyst price forecast in our sample

contains an 8.0% positive bias. In such a scenario, signals are not as informative when

analysts are more optimistic than the AI.

Then a natural question arises as whether analyst bias is the key reason making AI

superior to humans. Indeed, van Binsbergen, Han, and Lopez-Lira (2022) show that ana-

lyst expectations are significantly upward biased relative to a statistically optimal unbiased

machine-learning benchmark. While we confirm that a bias similar to that in van Binsber-

gen, Han, and Lopez-Lira (2022) exists in price target forecasts, the objective of our analysis

is to show that the machine out-performance goes beyond correcting human directional bias.

With the earlier build-up (Section 3.3), we can readily compare the portfolio performance

between the MDM (which corrects analyst bias using a machine learning model) and the

AI. We observe that the AI still generates a superior (monthly) return or alpha of 39 to 75

basis points relative to the MDM. Therefore, around half of the superior performance of the

23The average monthly turnover rate of the monthly rebalanced portfolios ranges from 8% to 52%; and
that for the six-monthly rebalanced portfolio is 5% to 10%.
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AI can be attributed to its true capability in processing data, and the other half to the AI’s

absence of predictable biases.24

3.6. Combined Wisdom of Man + Machine

Results from the previous sections suggest that the analyst profession could be seriously

disrupted by AI technology. However, the superior performance of the AI analyst does not

rule out the possibility that analyst forecasts contain information that is incremental to AI-

produced forecasts. In other words, if analysts possess information that is not picked up by

the AI, then the AI forecast is not sufficient to replace the analyst forecast, even though

analysts lose to AI in forecasting accuracy. An investor who combines the wisdom of both

should attain even better performance.

To assess the performance of the combined analytical power, we consider adding the

analyst forecasts to the information set for our machine learning model. That is, the in-

formation set It now includes the analyst forecasts, Fi,j,t, made on the same firm i during

the 90-day window ending on date t. In particular, we obtain analyst and brokerage-firm

characteristics (including analysts’ experiences, analysts’ efforts, and the number of analysts

in the brokerage firm), consensus and mean square error of the forecasts by analysts in the

previous 90 days, current analysts’ predictions, MDM predictions, and the consensus pre-

dictions from analysts with the lowest 50% errors over the last five years and build a “Man

+ Machine” hybrid analyst using the ensemble model. We find that the hybrid analyst

outperforms human analysts 57.8% of the time and AI-alone forecasts 55.8% of the time.

Figure 4 plots the relative performance of the hybrid analyst (Man + Machine) vs. the

plain AI (Machine). Interestingly, Man + Machine outperforms plain Machine in 16 out of

18 years (the beat ratios for two other years are 48.3% and 49.5%, which are fairly close

to 50%). Such outperformance, which captures the incremental value of human analysts

24For details about MDM, please see the Internet Appendix Table IA2. We also show that the results
are robust to the frequency of rebalancing and trading cost considerations. When the portfolio is rebalanced
semi-annually (Table IA3), the above findings remain.
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to machines, increases with time. The combined results portray a bright future for Man +

Machine: not only does the combination attain better performance than either side alone,

but also, the incremental value of humans does not weaken with the technology. Moreover,

the beat ratio of the hybrid analyst is always higher than that of human analysts for all 18

years, suggesting the power of the human and AI combination over humans alone.

[Insert Figure 4 here]

4. Man vs. Machine: Relative Advantages

4.1. Determinants of Relative Performance

In this section, we strive to understand when human analysts perform better than the

AI and when otherwise. Such understanding will help “unbox” the black box associated

with AI or machine learning and provide intuition and guidance on the applicability of AI

for researchers and investors.

We consider a number of variables at the analyst, firm, and industry levels that are

potentially relevant for the performance of human analysts and AI. These are defined in

Section 2.5. We group these variables into several classes. First, we consider a number

of proxies for information asymmetry or opacity, including Amihud Illiquidity, Log Market

Cap, Standard Deviation of Earnings, and % Institutional Holdings. Second, we include

variables representing the volume of information (# 8K Reports) and the tangibility of

information (Intangible Assets and Fluidity). Third, we examine several variables that affect

the information and resources available to the analyst, such as # Analysts in Brokerage Firm

and Star Analyst. Finally, we consider Book Leverage, highlighting financial exposure of firms

to shocks (Babina, 2020), and Time Trend, which can help capture temporal patterns.

For each target price forecast, we define two variables that measure the relative per-

formance of humans vs AI. First, the indicator variable Analyst Beats AI equals one if the

absolute value of forecast error of the analyst is smaller than that of the AI, and zero other-
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wise. Second, the continuous measure Forecast Error Difference is the difference between the

squared prediction error (of log price as defined in Equation (1)) of the AI and that of the

analyst, scaled by the maximum of these two prediction errors if the difference is non-zero.

A positive and large value of Forecast Error Difference is in favor of analyst accuracy.

We estimate the following regression on the panel data of firm i, analyst j, and date t

to understand the determinants of the relative strengths of humans and AI,

Relative Performancei,j,t = X ′i,j,tβ + αi + αj + αyear + εi,j,t, (3)

wherein the dependent variable Relative Performance is either Analyst Beats AI or Forecast

Error Difference. The vector of independent variables, Xi,j,t, includes those discussed in

Section 2.5, and αi/αj and αyear represent firm/analyst and year fixed effects, respectively.

The results are reported in Table 4.

[Insert Table 4 here]

Table 4 shows that, controlling for year and firm fixed effects, humans are more likely to

outperform when covering illiquid and small firms and those with higher intangible assets,

consistent with the notion that such firms are subject to higher information asymmetry

and require deeper institutional knowledge to understand. On the other hand, equipped

with vast processing power, AI performs better for firms with a larger volume of disclosed

information, as proxied by # 8K Reports each year. Star analysts are more likely to have a

lower forecast error relative to AI, compared with non-star analysts, justifying their stardom.

Analysts working for larger brokerage firms perform better, potentially because of the more

abundant resources and research capacity at such places as well as a positive match between

analyst skill and brokerage house prestige. Humans perform better when the focal firm is

subject to higher financial distress risk, captured by book leverage, and when the firm faces

higher dynamically competitive pressure, measured by fluidity, suggesting that the AI has

more difficulty handling more uncertain scenarios. Analysts also perform better for firms
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with higher institutional holdings, possibly because analysts are immersed with information

produced and processed by institutional investors, including brokerage houses. Finally, when

year fixed effects are not included, we are able to uncover the time trend of the comparative

performance, showing that human advantage increases with time. This is probably due to

the fact that human analysts are increasingly assisted by AI and big data technologies.

4.2. Disagreement between Man and Machine

An equally important question is whom we should trust more if and when humans and

machines disagree. To start with, Figure 5 plots the annual time series of the average squared

differences in (logged) forecasts between analysts and AI. Interestingly, we find that the man-

machine disagreement has been on a downward trend, possibly because analyst forecasts

increasingly incorporate insights from big data and AI tools. Further, the disagreement tends

to be high before economic crises, when high investor sentiment may exert a disproportional

influence on analysts.

[Insert Figure 5 here]

We next examine the relative performance of Man vs. Machine precisely when they

disagree to a large degree. Gaining an understanding into such situations has significant

implications for AI-guided decision making including investment. For each pair of forecasts,

we define an indicator variable, Disagreement, to be one if the magnitude of the disagreement

between the analyst and our AI model is above the 90th percentile among all forecasts on

the same firm over the past three years. Such benchmarking ensures that the disagreement

could be measured on a similar scale. Conditional on the existence of a Disagreement, we

further define two sub-indicators, Machine wins and Man wins, depending on which side

has a lower absolute prediction error. We then relate these outcome variables to the set of

regressors, with results reported in Table 5. Because the regressions involve high-dimensional

fixed effects, we apply the linear probability model.
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[Insert Table 5 here]

The first two columns of Table 5 examine the relation between the occurrence of Dis-

agreement and the underlying firm and analyst attributes and economic conditions, with

firm fixed effects (column (1)) or double firm/analyst fixed effects (column (2)). Overall

results indicate that large disagreement is more likely when either the human or machine

is expected to have a clear advantage (as discussed in Table 4). For example, the analyst

and AI disagree when AI is expected to outperform: firm information is voluminous (higher

number of 8-K reports), or analysts do not enjoy the resources of large brokerage houses.

They also disagree more strongly when the human is expected to do better: high intangible

assets, or more fluid product market competition. While these cases are pooled in columns

(1) and (2), they become separated in columns (3) to (6) where all disagreement cases are bi-

furcated into “Machine wins” and “Man wins” in columns (3) to (6),25 and we observe some

additional interesting results. For example, more 8-K reports are associated with signifi-

cantly more “Machine wins” but no fewer “Man wins” in disagreement (both are relative to

the base state of no disagreement). In contrast, institutional ownership significantly boosts

the chance of “Man wins” but does not lower “Machine wins.” The asymmetric effects echo

the sources of relative human or machine advantages examined in Table 4.

5. Man + Machine: Combining Strengths and Incremental Con-

tributions

5.1. Incremental Value of Analysts in Forecasts Made by Man + Machine

Acknowledging that Man + Machine is superior to either the human or machine alone,

it is still instructive to understand the respective incremental values of the human and

25In the “Machine wins” regressions, the observations of “Man wins” in disagreement are excluded because
they are not part of the control sample. The same for the “Man wins” regressions. A nested multinomial
regression could test all parallel states in a full sample, but such a regression is not able to incorporate
high-dimensional fixed effects.
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the machine in the combination. Analogous to the previous section, we define relative

performance measures of the hybrid analyst vs the AI to capture the incremental value

of humans. We then reestimate Equation (3) with these relative performance measures as

dependent variables. Table 6 presents the results.

[Insert Table 6 here]

Similar to the previous findings, we find inputs from analysts are more valuable when

covering firms that are more illiquid and firms with more intangible assets and earnings

volatility. Moreover, analyst inputs have more incremental value when they are stars and

when firms have higher distress-risk exposure (book leverage). The institutional holding

percentage also helps the hybrid model beat AI analyst.

We note that while analysts in larger brokerage firms perform better than other analysts

when pitted against the AI (Table 4), that advantage does not hold versus the Man +

Machine model. Such a contrast in the results highlight that democratizing AI technology

levels the playground: when we let all analysts (from large and small brokerage houses) be

equipped with AI assistance in the Man + Machine model, disparity in institutional resources

does not significantly affect the incremental value of human inputs.

5.2. Can Man + Machine Avoid Extreme Error?

As in many other skilled professions, extreme forecast errors could be calamitous to

the reputation of the forecasters and to the welfare of the recipients of investment advice.

However, as the common saying “to err is human; to forgive is divine” goes, machine errors

are far less tolerated than human mistakes (Prahl and Swol, 2017). We are thus interested

in the resilience of Man + Machine against extreme errors, a quality which would be crucial

for the future of the combination, in addition to its superior average forecast accuracy.

To set the stage, we benchmark the forecast error of each forecast to the 90th (or 75th, as

a sensitivity check) percentile of squared prediction errors from all analysts on the same firm
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over past three years. Such a setup leads to four outcomes with regard to who commit(s)

an extreme error: (1) both the analyst and the AI model (“Both”); (2) Analyst; (3) AI;

and (4) neither commits an extreme error (“Neither”). We examine these four scenarios and

compute their empirical frequencies.26 We then compute the unconditional and conditional

probabilities that the Man + Machine model can avoid the extreme error committed in the

first three scenarios and, equally importantly, the probability that Man + Machine creates

an extreme error in the fourth scenario. All probabilities are reported in Table 7.

[Insert Table 7 here]

We discover that the analyst and the AI are about equally likely to make extreme errors

(10.8% and 12.4% using the 90th percentile threshold).27 There is a further probability of

2.5% that both make lousy forecasts. It turns out that the Man + Machine model can

help avoid 76.3% of extreme errors made by human and 32.2% of those by AI. Even when

both analysts and AI seem to be out of the ballpark, their combination still manages to

bring 15.1% of such cases back to a reasonable range. Furthermore, Man + Machine only

creates its own extreme error in 1.3% of the “Neither” scenario. The overall results present

a significant complementary benefit of combining human and AI capabilities.

5.3. Impact of Man + Machine: An Event Study

In this section, we resort to an event study to sharpen the inference of the impact of

integrating man and machine in stock analyses. In recent years, the infrastructure of “big

data” has created a new class of information about companies that is collected and published

outside of the firms and which can provide unique and timely clues into market demand,

26These four cases are not mutually disjoint, as the “Analyst” (scenario 2) and “AI” (scenario 3) cases both
include the “Both” cases (scenario 1). We adopt this convention to evaluate how the Man + Machine model
performs in terms of avoiding extreme errors relative to Man/Machine, independent of the counterparty’s
performance. Untabulated, we also conduct the same analysis for four disjoint scenarios, i.e., “Both,”
“Analyst Only,” “AI Only,” and “Neither,” and find qualitatively similar results; in fact, the Man + Machine
model corrects an even greater fraction of extreme errors committed by analysts alone.

27A sensitivity analysis using the 75th percentile yields qualitatively similar results.
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profit prospects, and investment opportunities. An important and popular type of such

alternative data captures “consumer footprints,” often times in the literal sense such as

satellite images of retail parking lots. Such data, which have to be processed by machine

learning models, have been shown to contain incremental information for earnings and stock

prices conditional on corporate disclosure and news coverage (Zhu, 2019; Katona, Painter,

Patatoukas, and Zeng, 2022). Chi, Hwang, and Zhang (2022) show that analysts who use

alternative data more frequently have more precise forecasts.

We build on data from Katona, Painter, Patatoukas, and Zeng (2022) on the staggered in-

troduction of several important alternative data bases, and conduct a difference-in-differences

test of analysts’ performance versus our AI model before and after the availability of the

alternative data on specific firms. The underlying premise is that analysts who cover firms

that are served by the alternative data are potentially in the situation of Man + Machine, as

they have the opportunity to use the additional, AI-processed, information. We define two

variables based on the staggered introduction of alternative data coverage. The first is Alt

Data Covered, which is one if satellite imaging data are available for the firm at any point

in our sample period (based on the list of covered firms and coverage start dates in Table

A1 in Katona, Painter, Patatoukas, and Zeng, 2022), and if the firm is in an industry with

a retail footprint,28 and zero otherwise. The second variable is Post, which is an indicator

variable that is one if satellite data are currently available (based on coverage start dates in

Table A1 in Katona, Painter, Patatoukas, and Zeng, 2022), or if the firm is not listed in that

table but the date is after 2014,29 and zero otherwise. In our analysis, a firm is “treated” by

the alternative data if it is an Alt Data Covered firm and the time is Post the coverage. In

the panel, we define a firm(i)-analyst(j)-year(t) triple to be an observation in the “treated”

status if alternative data about firm i became available prior to year t. The rest of the

28We define industries with retail footprints to be those that rely mainly on retail traffic, such as the
entertainment, healthcare, personal services, retail, restaurant, and hotel industries. Specifically, these
include industries 6, 7, 11, 33, 40, 42, 43, 44, 45, and 46 in the Fama-French 48-industry classification.

29Based on anecdotal evidence from news and discussion with industry experts, 2014 is the year most
alternative data became widely available.
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observations are in the control subsample. Moreover, we only include an observation if the

brokerage house with which analyst j is affiliated is covered by the Burning Glass job posting

data any time during [t− 3, t].30

Alternative data tend to be large in volume and unstructured. Such data are hard to

process with traditional tool kits. Commercial data vendors may preprocess the alternative

data; for example, by converting satellite imaging data into car counts for each business

location. However, substantial additional analysis is still needed to render such data useful

for stock analysis. Whether analysts covering the alternative data “treated” firms could

capitalize on the novel information source depends on the AI resources in their workplace.

We measure AI resources that analysts have access to by the variable AI Hiring, which is

the ratio of the number of AI jobs to the total number of job postings using the Burning

Glass U.S. job posting data and following the classification algorithm developed in Babina,

Fedyk, He, and Hodson (2020).

We estimate the following difference-in-differences model,

Analyst Beats AIi,j,t = β1Treati,t × AI Hiringj,t

+ β2AI Hiringj,t + β3Alt Data Coveredi

+ β4Treat+ Controlsi,j,t + αi + αyear + εi,j,t. (4)

Here Treati,t = Alt Data Coveredi × Posti,t. Note that Alt Data Covered and Post are

indexed by firm i and date t while AI Hiring is indexed by the analyst j (or the brokerage

firm associated with the analyst) and date t. Table 8 reports the results. The sample here is

smaller than those in Tables 4 and 6 due to the requirement that the AI Hiring be observable.

[Insert Table 8 here]

Columns (1) and (2) of Table 8 show that analysts associated with brokerage houses with

greater AI capabilities generally perform better against our AI model, a piece of direct evi-
30The reason for this restriction is to ensure that the information about AI hiring is reasonably accurate,

as we cannot infer AI hiring in case of missing data.
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dence that humans complemented by AIs enjoy a step up in predictive capabilities. Columns

(3) and (4) show that post alternative data, analysts covering affected firms improve their

performance relative to the AI model, but only significantly so when interacting with AI

Hiring.31 In other words, the improvement of predictive performance post alternative data

concentrates in the subset of analysts who are affiliated with brokerage firms with strong AI

capabilities. Overall results suggest that augmenting humans with new technologies consti-

tutes a promising direction for the analyst profession.

6. Concluding Remarks

In this paper, we build an AI analyst to digest corporate disclosure and other informa-

tion (qualitative and quantitative), and to perform forecast tasks similar to those of stock

analysts. Our AI analyst is able to beat the majority of human analysts in stock forecasts.

A portfolio following the difference between AI and analyst forecasts generates a monthly

abnormal return of more than 75 basis points. In the contest of “Man vs. Machine,” we

find that the relative advantage of such an AI analyst is stronger when information is more

transparent and voluminous. Human analysts remain competitive when critical information

requires institutional knowledge (such as the nature of intangible assets). The edge of the

AI analyst over human analysts declines over time, especially when analysts gain access to

alternative data and to in-house AI resources. Combining AI and the art of human experts

produces the highest potential in generating accurate forecasts in settings wherein the two

skills are complementary, suggesting a future of “Man + Machine” in high-skill professions.

The complementarity between humans and machines documented in this study also

provides guidance about how humans can survive and thrive in the age of machines. For

example, reforming education and professional training to strengthen soft skills and creativity

can help human professionals to better prepare for the incoming future.

31In these specifications, we do not simultaneously control for firm and analyst fixed effects due to insuf-
ficient variation in the pairing during the few years around the event
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Figure 1: Man vs. Machine: The Performance of Analysts vs. AI

This figure plots the beat ratio, or the proportion of analysts’ price forecasts that are more accurate
than the corresponding AI price forecasts in each year. The blue line in the middle plots the annual
beat ratios, and the surrounding blue-dotted lines indicate the 95% confidence interval of the beat
ratio. The red line gives the best linear approximation of the time-series trend in beat ratios. The
shaded grey bars represent the NBER recessions.
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Figure 2: Contribution of Groups of Variables to the AI Prediction

This figure plots the contribution of each group of features to the AI model’s price prediction. The
features are divided into six groups: Firm Returns (past returns of stocks), Firm Characteristics,
Earnings (past firm and industry earnings), Industry Variables, Macro Variables, and Textual
Variables. The contribution from each group is the difference in forecast performance between the
full information model and one that omits the given group. Specifically, we compute the percentage
of times that the AI model with complete information beats the same model but without the given
set of information; a probability of 50% indicates no difference. We then scale the percentages (in
excess of 50%) representing the incremental effect of each group by the total sum so that they sum
up to unit.
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Figure 3: Man + Machine: The Performance of Machine-Debiased Analyst vs. AI

This figure plots the proportion of machine-debiased analyst (MDM) price forecasts that are more
accurate than the machine recommendations alone on an annual basis. The blue line in the middle
gives the annual machine-debiased analyst beat ratios, the blue-dotted lines above and below are
the 95% confidence interval of the beat ratio, the green line represents the analyst beat ratios, and
the red line gives the best linear approximation of the trend in beat ratios. The shaded grey bars
represent the NBER recessions.
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Figure 4: Man + Machine: The Performance of AI-assisted Analysts vs. AI

This figure plots the proportion of AI-assisted analyst price forecasts that are more accurate than
the AI recommendations alone on an annual basis, or the “beat ratio.” The blue line in the middle
gives the annual AI-assisted analyst beat ratios, the blue-dotted lines above and below are the 95%
confidence interval of the beat ratio, and the red line gives the best linear approximation of the
trend in beat ratios. The shaded grey bars represent the NBER recessions.
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Figure 5: Man vs. Machine: Disagreement

This figure plots the disagreement between man and machine. The disagreement is defined as the
squared difference between the log prices predicted by the analysts and the AI. Each year, the
average value of the disagreement is calculated. The blue line in the middle gives this average
disagreement, the blue-dotted lines above and below are the 95% confidence interval of the dis-
agreement, and the red line gives the best linear approximation of the trend. The shaded grey bars
represent the NBER recessions.
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Table 1: Summary Statistics

This table reports the summary statistics of key variables. The firm-level, industry-level, and
macroeconomic variables are defined in Section 2.5. The AI and alternative data variables AI
Hiring, Alt Data Covered, and Post are defined as follows. AI Hiring is the ratio of the number
of AI jobs to the total number of job postings. Alt Data Covered is an indicator variable equal to
one if alternative data are available for the firm by the end of the sample. Post is an indicator
variable equal to one if a “treated” firm has been covered by alternative data by the given year.
For “untreated” firms, Post is coded one if the year is after 2014. The mean, median, standard
deviation, 25 percentile, 75 percentile, and number of observations are reported in the table.

Variables Mean Median Std P25 P75 N

Panel A. Firm-level, industry-level, and macroeconomic variables

Amihud Illiquidity 0.44 0.01 61.55 0.00 0.02 291,331
Market Cap 8.00 7.91 1.67 6.81 9.14 291,331
Standard Deviation of Earnings 0.19 0.11 0.30 0.06 0.22 291,331
% Institutional Holdings 0.66 0.77 2.03 0.53 0.90 291,331
# 8K Reports 2.77 1.00 15.62 0.00 2.00 291,331
Intangible Assets 0.02 -0.14 1.14 -0.42 0.14 291,331
Fluidity 7.16 6.46 3.60 4.52 9.10 291,331
# Analysts in Brokerage Firm 3.45 3.53 0.91 2.89 4.11 291,331
Star Analyst 0.47 0.50 0.21 0.34 0.60 291,331
Book Leverage 1.28 1.08 0.58 0.91 1.39 291,331

Panel B. AI and alternative data variables

AI Hiring 0.43 0.00 4.73 0.00 0.00 51,469
Alt Data Cover 0.03 0.00 0.17 0.00 0.00 51,469
Post 0.45 0.00 0.50 0.00 1.00 51,469
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Table 2: Persistence of Performance of AI Analyst

Each year, analysts are sorted by mean squared prediction errors of log prices based on the past
one, past two, and up to five years. If the mean squared error over the last year is below (above)
the median during the specified past period, the analyst is in the top (bottom) in the current year.
In Panel A, the sorting is based on the full period of the past one, two, . . ., five years. In Panel B,
the sorting requires that an analyst be in the top half in each of the past one, two, . . ., five years to
be placed in the “top” group. Both panels report the analyst beat ratio, i.e., the number of times
analysts beat AI, as a proportion of total number of predictions.

Panel A: Analyst beat ratio sorted by analysts who are above/below median

1 year 2 years 3 years 4 years 5 years

Analyst top 47.93% 47.77% 47.68% 47.63% 47.60%
Analyst bottom 41.60% 41.69% 41.74% 41.79% 41.82%

Panel B: Analyst beat ratio sorted by analysts who are above median each of the past years

1 years 2 years 3 years 4 years 5 years

Analyst Persistent top 47.93% 48.66% 49.33% 49.42% 49.88%
Analyst Persistent bottom 41.60% 41.42% 41.09% 40.94% 41.05%
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Table 3: Portfolio Performance following Machine vs. Man Recommendations: Monthly
Rebalancing

In each month, we gather all predictions made by all analysts and the corresponding AI forecasts in the past
30, 60, 90, and 360 days. For each pair of predictions, if the AI predicts a higher (lower) price than the
analyst, it is considered as a buy (sell) signal. During the given time horizon, the portfolio will long the stock
if there are more buy than sell signals, and short the stock otherwise. The portfolios are equal weighted and
rebalanced monthly, i.e., a position is held for one month or till the signals reverse. The monthly percentage
returns of the long-short, long-leg (stocks only with a buy sign) and short-leg portfolios (stocks only with a
short sign) as well as the alphas generated from the FF3, FFC4, FF5, and FF6 models are presented. The
OLS standard error is used to construct t-stats. The t-stats are reported in parentheses. ***, **, * denote
statistical significance at the 0.01, 0.05, and 0.10 levels (two-tailed), respectively.

Portfolio returns – AI vs. Analyst

AI vs. Analyst

Long-Short 30 day inform 60 day inform 90 day inform 360 day inform

Monthly returns Ret 1.39*** 1.51*** 1.49*** 1.05***
(3.10) (3.54) (3.59) (3.77)

FF3 1.47*** 1.62*** 1.58*** 1.16***
(3.28) (3.74) (3.77) (4.22)

FFC4 1.53*** 1.66*** 1.61*** 1.15***
(3.43) (3.84) (3.86) (4.16)

FF5 0.96** 1.14*** 1.14*** 0.75***
(2.34) (2.89) (2.98) (3.20)

FF6 1.03** 1.19*** 1.18*** 0.76***
(2.52) (3.03) (3.11) (3.25)

Long-Leg 30 day inform 60 day inform 90 day inform 360 day inform

Monthly returns Ret 2.02*** 2.13*** 2.12*** 1.81***
(4.30) (4.56) (4.61) (5.07)

FF3 1.38*** 1.44*** 1.40*** 1.16***
(4.71) (4.92) (5.00) (9.90)

FFC4 1.47*** 1.51*** 1.47*** 1.21***
(5.10) (5.21) (5.28) (10.51)

FF5 1.21*** 1.28*** 1.27*** 1.00***
(4.39) (4.68) (4.83) (9.85)

FF6 1.27*** 1.33*** 1.31*** 1.03***
(4.73) (4.92) (5.07) (10.62)

Short-Leg 30 day inform 60 day inform 90 day inform 360 day inform

Monthly returns Ret 0.63 0.62 0.62 0.76
(1.13) (1.14) (1.16) (1.56)

FF3 -0.09 -0.18 -0.18 0.00
(-0.30) (-0.60) (-0.61) (-0.01)

FFC4 -0.06 -0.15 -0.14 0.06
(-0.20) (-0.50) (-0.51) (0.25)

FF5 0.24 0.14 0.12 0.24
(0.84) (0.51) (0.47) (1.16)

FF6 0.24 0.14 0.13 0.27
(0.84) (0.51) (0.48) (1.29)
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Table 4: Man vs. Machine: The Relative Advantage of Analyst vs AI

This table presents the coefficients and t-stats of regressing the Analyst beats AI indicator (Panel A)
and the Forecast Error Difference: Analyst vs. AI (Panel B) on the firm-level, industry-level, and
macroeconomic variables presented in Table 1. Analyst beats AI is an indicator variable equal to
one if the analyst beats the AI. Forecast Error Difference: Analyst vs. AI is defined as the difference
between squared prediction errors between the AI and the analysts, divided by the maximum value
of these two prediction errors. The number is positive if the analyst has smaller squared error, i.e.,
analyst beats AI. The t-statistics are based on standard errors clustered at the firm level. ***, **,
* denote statistical significance at the 0.01, 0.05, and 0.10 levels (two-tailed), respectively.

Panel A: Analyst beats AI

Variables

Amihud Illiquidity 0.228** 0.189*** 0.033 -0.024
(2.52) (2.66) (0.36) (-0.33)

Market Cap -0.064*** -0.037*** -0.086*** -0.053***
(-9.90) (-5.87) (-12.65) (-8.00)

Standard Deviation of Earnings -0.050 -0.064 0.045 0.049
(-0.44) (-0.53) (0.43) (0.42)

% Institutional Holdings 0.050 0.072*** 0.059* 0.075***
(1.04) (2.68) (1.66) (3.62)

# 8K Reports -0.485*** -0.554*** -0.400*** -0.525***
(-4.40) (-4.88) (-3.42) (-4.29)

Intangible Assets 0.031*** 0.029*** 0.039*** 0.037***
(2.99) (2.97) (2.84) (2.79)

Fluidity 0.539*** 0.116 0.800*** 0.374**
(3.73) (0.74) (4.78) (2.02)

# Analysts in Brokerage Firm 0.142 0.421*** -0.253 0.157
(1.06) (3.24) (-0.60) (0.37)

Star Analysts 0.455 0.486 -0.494 -0.478
(0.99) (1.07) (-0.89) (-0.87)

Book Leverage 0.064** 0.059** 0.099*** 0.098***
(2.17) (2.54) (5.19) (4.71)

Time Trend 0.013*** 0.009***
(13.64) (7.84)

Year Fixed Effect No Yes No Yes
Firm Fixed Effect Yes Yes Yes Yes
Analyst Fixed Effect No No Yes Yes
Observations 291,331 291,331 291,331 291,331
Adjusted R-squared 0.109 0.121 0.165 0.174
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Panel B: Forecast Error Difference: Analyst vs. AI

Variables

Amihud Illiquidity 0.532*** 0.462*** 0.333*** 0.231***
(4.41) (5.11) (2.83) (2.63)

Market Cap -0.104*** -0.061*** -0.138*** -0.087***
(-10.16) (-6.09) (-13.11) (-8.36)

Standard Deviation of Earnings 0.043 0.007 0.148 0.138
(0.28) (0.04) (0.98) (0.76)

% Institutional Holdings 0.051 0.080* 0.073 0.090***
(0.72) (1.96) (1.40) (2.89)

# 8K Reports -0.745*** -0.853*** -0.593*** -0.802***
(-4.32) (-4.85) (-3.23) (-4.22)

Intangible Assets 0.048*** 0.045*** 0.064*** 0.061***
(2.95) (2.92) (2.98) (2.92)

Fluidity 0.766*** 0.169 1.112*** 0.505*
(3.26) (0.65) (4.14) (1.69)

# Analysts in Brokerage Firm 0.096 0.538*** -0.325 0.311
(0.47) (2.72) (-0.48) (0.46)

Star Analysts 1.159* 1.197* 0.129 0.156
(1.66) (1.73) (0.16) (0.19)

Book Leverage 0.114*** 0.109*** 0.124*** 0.125***
(2.97) (3.40) (4.15) (4.00)

Time Trend 0.021*** 0.015***
(14.23) (8.13)

Year Fixed Effect No Yes No Yes
Firm Fixed Effect Yes Yes Yes Yes
Analyst Fixed Effect No No Yes Yes
Observations 291,331 291,331 291,331 291,331
Adjusted R-squared 0.136 0.148 0.199 0.207
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Table 5: Disagreement between Man and Machine

This table presents the coefficients and t-stats of regressing the Disagreement indicator on the firm-
level, industry-level, and macroeconomic variables presented in Table 1. For each pair of forecasts,
we define the indicator variable Disagreement to be one if the magnitude of the squared difference
between the log predicted prices of the analyst and our AI model is above the 90th percentile among
all forecasts on the same firm over the past three years. Conditional on Disagreement being positive,
we further define two sub-indicators, Machine wins and Man wins, depending on which side has
lower absolute prediction error. We report regression results with these outcome variables. In
the Machine wins regressions, the observations of Man wins in disagreement are excluded because
they are not part of the control sample, and vice versa for the Man wins regressions. To calculate
t-statistics, standard errors are clustered at the firm level. ***, **, * denote statistical significance
at the 0.01, 0.05, and 0.10 levels (two-tailed), respectively.

Disagreement Disagreement & Disagreement &
Variable Machine wins Man wins Machine wins Man wins

Amihud Illiquidity -0.013 -0.199*** -0.277*** 0.112*** -0.537*** 0.030
(-0.48) (-6.23) (-7.09) (3.57) (-11.79) (0.47)

Market Cap 0.001 0.002 0.004** -0.004*** 0.007*** -0.005***
(0.34) (0.89) (2.51) (-3.53) (2.91) (-2.99)

Standard Deviation of Earnings -0.118 -0.130 -0.092 -0.035*** -0.112 -0.022*
(-0.78) (-0.48) (-0.58) (-4.39) (-0.40) (-1.80)

% Institutional Holdings 0.024*** 0.060*** -0.056 0.088*** 0.684 0.093***
(3.83) (16.73) (-0.13) (9.26) (1.17) (20.45)

# 8K Reports 0.205*** 0.214*** 0.223*** 0.005 0.212*** 0.024
(2.90) (2.68) (3.49) (0.11) (2.96) (0.51)

Intangible Assets 0.004* 0.001 -0.418*** 0.085* -0.532*** 0.129**
(1.84) (0.34) (-5.71) (1.68) (-6.25) (2.19)

Fluidity 0.177*** 0.214*** 0.087* 0.115*** 0.076 0.174***
(3.51) (3.03) (1.86) (2.69) (1.22) (3.14)

# Analysts in Brokerage Firm -0.956*** -0.458* -0.671*** -0.386*** -0.249 -0.296*
(-10.79) (-1.90) (-9.21) (-7.13) (-1.21) (-1.83)

Star Analysts -0.498* -0.269 -0.450* -0.078 -0.275 -0.043
(-1.69) (-0.74) (-1.76) (-0.41) (-0.88) (-0.18)

Book Leverage -0.026 -0.006 -0.005 -0.023 0.001 -0.007
(-1.55) (-0.45) (-0.79) (-1.57) (0.14) (-0.61)

Year Fixed Effect Yes Yes Yes Yes Yes Yes
Firm Fixed Effect Yes Yes Yes Yes Yes Yes
Analyst Fixed Effect No Yes No No Yes Yes
Observations 291,331 291,331 280,716 272,108 280,716 272,108
Adjusted R-squared 0.044 0.095 0.051 0.036 0.112 0.067
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Table 6: Man + Machine: The Incremental Value of Analyst

This table presents the coefficients and t-stats of regressing the Analyst + AI beats AI indicator
(Panel A) and Forecast Error Difference: Analyst + AI vs. AI (Panel B) on the firm-level, industry-
level, and macroeconomic variables presented in Table 1. Analyst + AI beats AI is an indicator
variable equal to one if Analyst + AI beats AI. Forecast Error Difference: Analyst + AI vs. AI is
defined as the difference between squared prediction errors between AI and Analyst + AI, divided
by the maximum value of these two prediction errors. The number is positive if the analyst has
smaller squared error, i.e., Analyst + AI beats AI.

Panel A. Analyst + AI beats AI

Variables

Amihud Illiquidity 0.139*** 0.113*** 0.072* 0.041
(4.04) (3.28) (1.84) (1.09)

Market Cap -0.027*** -0.015*** -0.036*** -0.021***
(-6.15) (-3.44) (-6.52) (-3.72)

Standard Deviation of Earnings 0.328*** 0.336*** 0.322*** 0.342***
(4.17) (4.83) (4.15) (5.30)

% Institutional Holdings 0.076*** 0.089*** 0.078*** 0.088***
(3.70) (7.39) (5.11) (9.40)

# 8K Reports -0.176* -0.192* -0.168 -0.187
(-1.66) (-1.73) (-1.39) (-1.48)

Intangible Assets 0.027*** 0.026*** 0.027*** 0.026***
(3.35) (3.32) (3.37) (3.10)

Fluidity 0.319** 0.107 0.459** 0.239
(2.04) (0.66) (2.43) (1.22)

# Analysts in Brokerage Firm -0.234** -0.153 -0.555 -0.470
(-1.97) (-1.30) (-1.37) (-1.18)

Star Analysts 0.798* 0.915** 0.986* 1.016*
(1.70) (1.97) (1.66) (1.72)

Book Leverage 0.006 0.005 -0.023 -0.025
(0.14) (0.10) (-0.48) (-0.50)

Time Trend 0.002** 0.002**
(2.08) (2.01)

Year Fixed Effect No Yes No Yes
Firm Fixed Effect Yes Yes Yes Yes
Analyst Fixed Effect No No Yes Yes
Observations 291,331 291,331 291,331 291,331
Adjusted R-squared 0.042 0.047 0.065 0.069
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Panel B: Forecast Error Difference: Analyst + AI vs. AI

Variables

Amihud Illiquidity 0.193*** 0.166*** 0.208*** 0.191***
(5.70) (4.96) (6.76) (6.24)

Market Cap -0.020*** -0.007 -0.027*** -0.011**
(-4.35) (-1.58) (-5.06) (-2.05)

Standard Deviation of Earnings 0.201 0.204 0.260 0.276
(1.26) (1.33) (1.29) (1.43)

% Institutional Holdings 0.047* 0.060*** 0.022 0.030**
(1.80) (3.72) (0.94) (1.96)

# 8K Reports -0.272** -0.219* -0.256* -0.217
(-2.26) (-1.72) (-1.89) (-1.52)

Intangible Assets 0.021** 0.020** 0.018* 0.016*
(2.32) (2.24) (1.86) (1.65)

Fluidity 0.262 0.112 0.392** 0.257
(1.61) (0.67) (2.01) (1.25)

# Analysts in Brokerage Firm -0.223* -0.135 -0.394 -0.349
(-1.84) (-1.13) (-0.93) (-0.84)

Star Analysts 0.992** 1.117** 1.100* 1.125*
(2.09) (2.37) (1.86) (1.92)

Book Leverage 0.059*** 0.060*** 0.045** 0.045**
(2.67) (2.61) (2.08) (2.11)

Time Trend 0.002*** 0.003***
(3.02) (2.82)

Year Fixed Effect No Yes No Yes
Firm Fixed Effect Yes Yes Yes Yes
Analyst Fixed Effect No No Yes Yes
Observations 291,331 291,331 291,331 291,331
Adjusted R-squared 0.047 0.053 0.072 0.077

51



Table 7: Probabilities of Extreme Errors: Man vs. Machine and Man + Machine

This table presents the probabilities of extreme errors by analysts and the AI and how the Man +
Machine model helps to correct such errors. We benchmark the forecast error of each forecast to the
90th (or 75th, as a sensitivity check) percentile of squared prediction errors from all analysts on the
same firm over past three years. Such a setup leads to four outcomes with regard to who commit(s)
an extreme error: (1) both the analyst and the AI model (“Both”); (2) Analyst; (3) AI; and (4)
neither commits an extreme error (“Neither”). We examine these four scenarios and compute their
empirical frequencies. We then compute the unconditional and conditional probabilities that the
Man + Machine model can avoid the extreme error committed in the first three scenarios, and
equally importantly, the probability that Man + Machine creates an extreme error in the fourth
scenario. Panel A and B show results for extreme errors defined by the 90th percentile and 75th
percentile of forecast errors, respectively.

Panel A: Probabilities of Extreme Errors (90th percentile)

Both Analyst AI Neither

Uncond. Prob. 2.49% 10.75% 12.44% 79.30%

M+M Avoids Both M+M Avoids Analyst M+M Avoids AI M+M Creates EE

Uncond. Prob. 0.37% 8.21% 4.00% 1.01%

M+M Avoids Both/ M+M Avoids Analyst/ M+M Avoids AI/ M+M Creates EE/
Both Analyst AI Neither

Conditional Prob. 15.06% 76.33% 32.18% 1.27%

Panel B: Probabilities of Extreme Errors (75th percentile)

Both Analyst AI Neither

Uncond. Prob. 8.17% 24.86% 22.89% 60.42%

M+M Avoids Both M+M Avoids Analyst M+M Avoids AI M+M Creates EE

Uncond. Prob. 1.08% 16.54% 5.62% 1.44%

M+M Avoids Both/ M+M Avoids Analyst/ M+M Avoids AI/ M+M Creates EE/
Both Analyst AI Neither

Conditional Prob. 13.15% 66.51% 24.54% 2.39%
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Table 8: Man + Machine Event Study: Alternative Data Coverage

This table presents the coefficients and t-stats of regressing the Analyst Beats AI indicator on
brokerage AI Hiring, Alt Data Covered, Post, and the interactions among these variables. Analyst
beats AI is an indicator variable equal to one if the analyst beats the AI. The AI and alternative
data variables AI Hiring, Alt Data Covered, and Post are defined as follows. AI Hiring is the ratio
of the number of AI jobs to the total number of job postings. Alt Data Covered is an indicator
variable equal to one if alternative data are available for the firm by the end of the sample. Post is
an indicator variable equal to one if a “treated” firm has been covered by alternative data by the
given year. For “untreated” firms, Post is coded one if the year is after 2014. The control variables
are the firm-level, industry-level, and macroeconomic variables presented in Table 1. Standard
errors are clustered at the firm level. ***, **, * denote statistical significance at the 0.01, 0.05, and
0.10 levels (two-tailed), respectively.

Variables Analyst beats AI

AI Hiring 0.142*** 0.050 0.136*** 0.044
(2.69) (0.80) (2.59) (0.69)

Alt Data Cover -0.065
(-1.52)

Treat: Alt Data Cover × Post -0.012 0.041
(-0.22) (0.78)

Treat × AI Hiring 1.065*** 1.375***
(2.69) (2.65)

Controls Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes
Firm fixed effect Yes No Yes No
Analyst fixed effect No Yes No Yes
Observations 51,468 51,468 51,468 51,468
Adjusted R-squared 0.123 0.040 0.123 0.040
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Appendix A. List of Variables

Table A1: List of All Variables Used in AI Algorithms
All Variables (and the definition/source) used in the machine learning algorithms are provided.

Firm Characteristics Definition and/or Source
Momentum Past 12-month return, Jegadeesh and Titman (1993)
Composite Equity Issuance Daniel and Titman (2006)
Gross Profits-to-Assets Novy-Marx (2013)
Asset Growth Cooper, Gulen, and Schill (2008)
Investment-to-Assets Titman, Wei, and Xie (2004) and Xing (2008)
Net Operating Assets Hirshleifer, Hou, Teoh, and Zhang (2004)
Accruals Sloan (1996)
Net Stock Issues Ritter (1991) and Loughran and Ritter (1995)
Failure Probability Campbell, Hilscher, and Szilagyi (2008)
O-Score Ohlson (1980)
Return on Assets Fama and French (2006) and Chen, Novy-Marx, and Zhang (2014)
Book-to-Market Equity Rosenberg, Reid, and Lanstein (1985)
Debt-to-Market Bhandari (1988)
Earnings-to-Price Basu (1983)
Cash Flow-to-Price Lakonishok, Shleifer, and Vishny (1994)
Payout Yield Boudoukh, Michaely, Richardson, and Roberts (2007)
Five-year Sales Growth Rank Lakonishok, Shleifer, and Vishny (1994)
Enterprise Multiple Loughran and Wellman (2011)
Sales-to-Price Barbee, Mukherji, and Raines (1996)
Abnormal Corporate Investment Titman, Wei, and Xie (2004)
Investment-to-Assets Cooper, Gulen, and Schill (2008)
Changes in PPE and Inventory/Assets Lyandres, Sun, and Zhang (2008)
Investment Growth Xing (2008)
Inventory Changes Thomas and Zhang (2002)
Operating Accruals Sloan (1996)
Total Accruals Richardson, Sloan, Soliman, and Tuna (2005)
Net External Finance Bradshaw, Richardson, and Sloan (2006)
Return on Net Operating Assets Soliman (2008)
Profit Margin Soliman (2008)
Asset Turnover Soliman (2008)
Operating Profits-to-Equity Fama and French (2015)
Book Leverage Fama and French (1992)
Advertising Expense-to-Market Chan, Lakonishok, and Sougiannis (2001)
R&D-to-Market Chan, Lakonishok, and Sougiannis (2001)
Operating Leverage Novy-Marx (2011)
Financial Constraints Kaplan-Zingales index, Lamont, Polk, and Saá-Requejo (2001)
Asset Liquidity Scaled by book assets, Ortiz-Molina and Phillips (2014)
Asset Liquidity Scaled by market assets, Ortiz-Molina and Phillips (2014)
IBES Actual Earning IBES actual earning 4 quarter before scaled by adjusted price
Number of Institutional Owners Number of 13F institutional investors that own the stock
Ownership Concentration Herfindahl-Hirschman Index
Total Institutional Ownership Percent of shares outstanding owned by 13F investors
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Industry Variables Definition and/or Source
Competition Measure from 10-K Li, Lundholm, and Minnis (2013)
Fluidity Product market Fluidity, Hoberg, Phillips, and Prabhala (2014)
48 Industry Dummy Dummy variables that indicate Fama-French 48 industries
Industry Size Industry Size within past 3, 6, 9 ,12, 24 and 36 months
Industry Earning Industry earning within past 3, 6, 9 12, 24 and 36 months
Macro Variables Definition and/or Source
IP Industrial Production Index
CPI Consumer Price Index
Oil price Crude Oil Price
Tbill3 3-month Treasury Bill
TBond10 10-Year Treasury Constant Maturity Rate
Credit Spread Baa-AAA yield spread
Textual Variables Definition and/or Source
Neg 10KQ Percentage of negative words from 10K/10Q
NegPos 10KQ Percentage of negative minus positive words from 10K/10Q
Neg 8k Percentage of negative words from 8K
NegPos 8K Percentage of negative minus positive from 8K
Neg Other Percentage of negative words from other reports
NegPos Other Percentage of negative minus positive from other reports
ML-based Sentiment ML-based negative tones minus ML-based positive tones scaled

by the length of SEC filings, Cao, Kim, Wang, and Xiao (2020)
ML-based Neg Sentiment ML-based negative tones scaled by the length of SEC filings

Appendix B. Details of the Machine Learning Models

In this section, we briefly describe the basic structure and strengths of machine learning models
considered in our paper. Interested readers are referred to representative references for more details,
such as Hastie, Tibshirani, and Friedman (2009) and Goodfellow, Bengio, and Courville (2016).

B.1. Linear Models

Linear machine learning models generalize linear regressions and classification models, and
are more flexible and can accommodate a larger number of variables than the traditional linear
regressions, by their built-in dimension-reduction capabilities. Linear models are typically efficient
in model training because they are typically associated with fast algorithms, such as linear and
quadratic programming techniques.
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B.1.1. Lasso and Elastic-Net

The Lasso and Elastic-Net models are generalizations of the OLS linear regression model. When
there is a large number of predictors, the OLS tends to have good in-sample performance (small
bias in the terms of machine learning) and bad out-of-sample performance (large variation in the
terms of machine learning). Furthermore, the OLS can generate significant loadings on a large
number of independent variables, making the interpretation of the model difficult. One class of
models, the shrinkage models, generalize the OLS by imposing a penalty on the number and size
of non-zero coefficients in the estimation, effectively limiting the model to focus on a subset of the
independent variables and achieving dimension reduction.

The Elastic-Net model (Zou and Hastie (2005)), of which the Lasso model is a special case, is
a shrinkage model in which the penalty function is a linear combination of L1 and L2 norms of the
coefficients. In particular, the Elastic-Net model minimizes the following objective function,

min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ1

p∑
j=1
|βj |+ λ2

p∑
j=1
|βj |2. (A1)

The Elastic-Net model is a generalization of the well-known Lasso and Ridge regression models.
When the hyperparameter λ2 = 0 in (A1), we recover the Lasso model. When λ1 = 0, we recover
the Ridge model. In general, the Lasso model tends to select a few strong predictors while setting
the coefficients of other predictors to essentially zero, but can make random choices among several
strong and correlated variables. The Ridge model usually includes more predictors and shrink the
coefficients of correlated variables together. The Elastic-Net model strikes a balance between these
characteristics, allowing both a selection of strong features and the averaging of correlated features.

B.1.2. Support Vector Regression

The support vector regression (SVR) is motivated by support vector machines (SVM) for
classification problems. Consider a classification problem with 2 classes and n predictors, i.e.,
each observation belongs to one of two classes and is a point in the n-dimensional space. Given
a training sample, i.e., a set of labeled n-dimensional points, a linear classifier is equivalent to a
(n−1)-dimensional hyperplane that separates the two classes of points in the n-dimensional space.
The linear SVM searches for the maximum separating (n − 1)-dimensional hyperplane such that
it maximizes the distance from the hyperplane to the closest data points. To deal with the case
that separating hyperplanes may not exist, the SVM also tolerates misclassified points within some
bounds. The SVM thus focuses on points close to the separating hyperplane, i.e., observations that
are on the boundary of the two classes. In fact, the results the SVM do not depend on observations
far away from the boundary. One key advantage of the SVM is that it performs well when there is a
large number of features relative to the sample size, e.g., in the case of textual and image analysis.
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The SVM is regarded as one of the best out-of-the-box machine learning algorithms and has been
widely applied in the classification of text, image, hand-writing, and proteins.

The support vector regression optimizes the following objective function.

min
β

N∑
i=1

V (yi − β0 − xTi β) + λ
p∑
j=1
|βj |2. (A2)

where the cost function V (·) is given by

V (z) =

0, if |z| < ε,

|z| − ε, otherwise.
(A3)

The cost function is insensitive to the signs/sizes of errors if the error size is less than ε, i.e., it is
more sensitive to points where the estimation error is larger. These marginal points, in turn, are
instrumental in determining the estimated coefficients. The benefit of the support vector regression
is that it allows efficient dimension reduction even with a very large number of features. However,
it may not perform well if the underlying pattern is far away from being linear.

B.2. Decision-Tree Based Models

The linear models considered above may not work well if there are nonlinear relationships
among the predictive variables. In this section, we discuss a class of versatile nonlinear models –
decision trees and derived models.

B.2.1. Decision Trees

Decision trees are modeled after human decisions. A decision tree is a series of binary decisions
based on cutoffs of independent variables at each branching point. The tree thus will divide the
rectangular feature space into smaller rectangular blocks. The decision tree regression then use the
sample mean of the dependent variable in each block as the prediction for any point in the block.

Decision trees have the benefit of being easily interpretable because it is modeled after human
decisions (similar to a step-by-step instructions) and can also be displayed graphically (as binary
trees). Trees are also a flexible non-linear model that can model a variety of nonlinear patterns
given the large degree of freedom in specifying the sequences of branching rules.

However, trees do not have a high level of accuracy by themselves because of the restrictive form
of the binary branching process, which forces the sample to be split into rectangular regions and
may not approximate the real underlying patterns (whether linear or nonlinear) well. Trees are also
non-robust. In addition, a small change in the data can lead to large changes in the structure of the
estimated tree because the tree structure is discrete, not continuous. Several methods, including
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random forest and gradient boosting, use trees as basic building blocks to form ensemble predictors
and achieve superior performance.

B.2.2. Random Forest

A random forest (introduced by Breiman, 2001) proceeds in the following way. First, it involves
drawing a bootstrapped sample (drawing with repetition) from the original sample. Second, on
the bootstrapped sample, one builds a decision tree, selecting a splitting predictor among only a
random m features of the total p predictors. Third, one repeats the above two steps to build a
number of decision trees, and form the ensemble predictor by taking the mean predictor of all the
trees.

Random forests perform better than simple trees for several reasons. First, through aggregating
predictions over bootstrapped samples, it reduces the variance and non-robustness of single trees.
Second, the random feature selection in the second step above ensures that the estimated trees
are not too correlated, avoiding relying only on a few prominent features and further reducing the
variance of the model.

B.2.3. Gradient Boost

Boosting also combines a number of weak models to generate a stronger model. In boosting of
trees, a number of trees are constructed sequentially, i.e., each tree is constructed using information
based on the previously constructed trees. In gradient boosting, each decision tree is fit to the
residuals of the model, not to the outcome. Once a new tree is obtained, it is added to the
predictive function to update it, usually with a learning weight multiplied to the tree predictor to
adjust the rate of learning new information. Then new residuals are obtained from the updated
predictive function and the process is repeated for a number of times to obtain the final ensemble
predictor. Because boosting models aggregate results of decision trees sequentially, each component
tree does not need to be very precise and can be simple, i.e., having a low depth.

In a sense, gradient boosting is similar to the Newton’s gradient algorithm in optimization.
It approximates the true underlying function sequentially by improving on the predicted resid-
uals/errors gradually. This allows the final predictive function to have a much richer and more
flexible structure and thus much better performance than single decision trees. It also reduces
the non-robustness of single trees through using an ensemble of trees. For these reasons, gradient
boosting is one of the best off-the-shelf machine learning methods.
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B.3. Deep Learning Model: Long Short-Term Memory Neural Networks

The neural networks models, initial motivated by the neuron structures in the brains of humans
and animals, blossomed after breakthroughs in algorithms and computing power (LeCun, Bengio,
and Hinton, 2015). Neural networks models, also called deep learning models, have become some
of the most powerful models and achieved near- or super-human capabilities in a wide variety
of applications, such as natural language processing, speech recognition, computer vision, game
playing, and autonomous driving.

There are many different architectures of neural networks, such as the simplest Feedforward
Neural Networks for straightforward classification tasks, the Convolutional Neural Networks for
image and pattern recognition, and Recurrent Neural Networks (RNN) that can process sequential
data such as speech and text. Long Short-Term Memory (LSTM) Neural Networks are a special
type of RNN that is the key to the many successes of RNN, including speech recognition, language
modeling, and translation.

In a neural network, there are nodes (neurons) that are connected to each other. There are
three types of nodes: input nodes that are used to receive data; output nodes that produce desired
outcomes or predictions; and intermediate nodes that process the data from input nodes and convert
them to outputs. The connections of the nodes determine the structure of the neural network and
its features. RNNs are neural networks with loops, or nodes that are connected to themselves.

LSTM networks are introduced by Hochreiter and Schmidhuber (1997) to solve the problem
that standard RNNs have trouble retaining “memory” of the much earlier parts of sequential input
data, when processing the later parts of the data. Since sequential data may have long-term
dependencies, i.e., parts far away in the sequence may be related, it is important to have “long-
term memory” to handle them. LSTM networks have a sequence of nodes that are specifically
designed to retain long-term information and update it continuously with new information in a
flexible way. As a result, LSTM can capture both short-term and long-term relations in sequential
or time-series data very well, suggesting its potential applications in financial economics given the
abundance of time-series financial data.
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Internet Appendix of “From Man vs. Machine to Man + Machine:
The Art and AI of Stock Analyses”

• Table IA1: Performance Evaluation of Machine Learning Models

• Table IA2: Portfolio Performance following Machine vs. MDM Recommendations: Monthly
Rebalancing

• Table IA3: Portfolio Performance following Machine vs. Man and Machine vs. MDM Rec-
ommendations: Semi-annual Rebalancing
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Table IA1: Performance Evaluation of Machine Learning Models

We evaluate the performance of a variety of machine learning models in predicting stock prices.
We use rolling windows to train and evaluate the models as in Section 3.1. Detailed discussions of
the machine learning models can be found in Appendix B. This table presents the average squared
prediction errors for each model and each year of our sample. Specifically, in the rolling window
prior to a given year, similar to Gu, Kelly, and Xiu (2020), we allocate the data in the final year
of the rolling window as the validation sample and utilize data before the final year to train the
model. We then apply the trained model to the validation sample to predict stock prices (for
example, for year 2001, we predict prices for the validation sample in 2000). The prediction error
is the difference between actual log price and the predicted log price. We then take the average
value of the squared forecast errors for each year.

Squared Prediction Errors
Year Lasso Elastic SVM Random Gradient LSTM

Net Forest Boost
2001 1.58 1.48 0.69 0.61 0.57 0.48
2002 1.94 1.94 0.90 0.46 0.60 0.62
2003 1.49 1.37 0.44 0.35 0.32 0.33
2004 1.44 1.30 0.46 0.29 0.28 0.28
2005 1.50 1.29 0.38 0.25 0.27 0.25
2006 1.34 1.11 0.40 0.21 0.23 0.25
2007 1.57 1.39 0.46 0.24 0.25 0.25
2008 2.28 2.06 0.88 0.61 0.64 0.63
2009 2.21 1.81 0.64 0.52 0.41 0.44
2010 1.68 1.24 0.68 0.31 0.35 0.65
2011 1.69 1.28 0.75 0.58 0.46 0.52
2012 1.80 1.36 0.48 0.26 0.29 0.25
2013 1.46 1.10 0.47 0.24 0.23 0.20
2014 1.36 1.04 0.38 0.21 0.21 0.22
2015 2.24 1.72 0.63 0.38 0.38 0.39
2016 1.84 1.41 0.65 0.37 0.38 0.41
2017 1.17 0.93 0.45 0.30 0.27 0.23
2018 1.38 1.05 0.42 0.22 0.25 0.22
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Table IA2: Portfolio Performance following Machine vs. MDM Recommendations: Monthly
Rebalancing

In each month, we gather all predictions made by all machine-debiased-man (MDM) analysts and the cor-
responding AI forecasts in the past 30, 60, 90, and 360 days. For each pair of predictions, if the AI predicts
a higher (lower) price than the MDM analyst, it is considered as a buy (sell) signal. During the given
time horizon, the portfolio will long the stock if there are more buy than sell signals, and short the stock
otherwise. The portfolios are equal weighted and rebalanced monthly, i.e., a position is held for one month
or till the signals reverse. The monthly percentage returns of the long-short, long-leg (stocks only with a
buy sign) and short-leg portfolios (stocks only with a short sign) as well as the alphas generated from the
FF3, FFC4, FF5, and FF6 models are presented. The OLS standard error is used to construct t-stats. The
t-stats are reported in parentheses. ***, **, * denote statistical significance at the 0.01, 0.05, and 0.10 levels
(two-tailed), respectively.

AI vs. MDM

Long-Short 30 day inform 60 day inform 90 day inform 360 day inform

Monthly returns Ret 0.65** 0.73*** 0.67*** 0.51***
(2.43) (3.81) (3.77) (3.00)

FF3 0.61** 0.70*** 0.62*** 0.48***
(2.18) (3.51) (3.35) (2.65)

FFC4 0.67** 0.75*** 0.67*** 0.51***
(2.42) (3.82) (3.65) (2.81)

FF5 0.52** 0.58*** 0.54*** 0.39**
(1.97) (3.13) (3.13) (2.39)

FF6 0.54** 0.60*** 0.56*** 0.41**
(2.08) (3.28) (3.27) (2.49)

Long-Leg 30 day inform 60 day inform 90 day inform 360 day inform

Monthly returns Ret 1.33*** 1.41*** 1.41*** 1.33***
(2.78) (3.15) (3.18) (3.16)

FF3 0.61*** 0.64*** 0.62*** 0.59***
(3.22) (5.78) (5.84) (5.83)

FFC4 0.71*** 0.73*** 0.72*** 0.67***
(3.95) (7.78) (7.84) (7.56)

FF5 0.68*** 0.67*** 0.67*** 0.63***
(3.77) (6.40) (6.67) (6.78)

FF6 0.71*** 0.69*** 0.69*** 0.66***
(4.12) (7.79) (8.09) (8.00)

Short-Leg 30 day inform 60 day inform 90 day inform 360 day inform

Monthly returns Ret 0.68 0.68 0.74 0.82*
(1.40) (1.45) (1.61) (1.85)

FF3 0.00 -0.06 0.00 0.11
(-0.00) (-0.35) (0.02) (0.62)

FFC4 0.04 -0.02 0.05 0.16
(0.19) (-0.11) (0.29) (0.96)

FF5 0.16 0.08 0.13 0.24
(0.81) (0.51) (0.84) (1.56)

FF6 0.16 0.09 0.14 0.25*
(0.85) (0.55) (0.89) (1.68)
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Table IA3: Portfolio Performance following Machine vs. Man and Machine vs. MDM
Recommendations: Semi-annual Rebalancing

For every six months, we gather all predictions made by all analysts and the corresponding AI forecasts in
past 30, 60, 90 and 360 days. For each pair of predictions, if AI predicts a higher (lower) price than the
Analyst, it is considered as a buy (sell) signal. During the given time horizon, the portfolio will long the
stock if there are more buy than sell signals; and short the stock otherwise. The portfolio is equal weighted.
The portfolios are rebalanced monthly, i.e., a position is held for one month or till the signals reverse. The
monthly percentage returns of the long-short, long-leg (stocks only with a buy sign) and short-leg portfolios
(stocks only with a short sign) as well as alphas generated from FF3, FFC4, FF5 and FF6 models are
presented. We also compare the portfolio performance between the Machine-debiased analysts (MDM) and
AI. The OLS standard error is used to construct t-stats. The t-stats are reported in parentheses. ***, **, *
denote statistical significance at the 0.01, 0.05, and 0.10 levels (two-tailed), respectively.

Panel A. Portfolio returns with semi-annual rebalancing – AI vs. Analyst

AI vs. Analyst

Long-Short 30 day inform 60 day inform 90 day inform 360 day inform

Monthly returns Ret 1.59*** 1.53*** 1.36*** 1.07***
(3.81) (3.69) (3.50) (3.04)

FF3 1.66*** 1.60*** 1.40*** 1.18***
(3.88) (3.76) (3.59) (3.15)

FFC4 1.60*** 1.53*** 1.35*** 1.10***
(3.76) (3.61) (3.47) (2.96)

FF5 1.46*** 1.41*** 1.02*** 0.83***
(3.61) (3.50) (2.83) (2.51)

FF6 1.44*** 1.38*** 1.01*** 0.80**
(3.55) (3.42) (2.81) (2.41)

Long-Leg 30 day inform 60 day inform 90 day inform 360 day inform

Monthly returns Ret 1.89*** 1.88*** 1.87*** 1.68***
(4.87) (4.90) (4.87) (4.66)

FF3 1.18*** 1.17*** 1.16*** 1.05***
(8.44) (8.79) (8.70) (7.93)

FFC4 1.26*** 1.24*** 1.22*** 1.09***
(9.37) (9.61) (9.45) (8.36)

FF5 1.03*** 1.02*** 1.01*** 0.87***
(8.08) (8.46) (8.37) (7.62)

FF6 1.08*** 1.07*** 1.06*** 0.90***
(9.14) (9.41) (9.24) (8.14)

Short-Leg 30 day inform 60 day inform 90 day inform 360 day inform

Monthly returns Ret 0.30 0.35 0.51 0.61
(0.51) (0.60) (0.90) (1.15)

FF3 -0.48 -0.43 -0.24 -0.14
(-1.14) (-1.02) (-0.65) (-0.38)

FFC4 -0.35 -0.29 -0.13 -0.01
(-0.84) (-0.71) (-0.36) (-0.04)

FF5 -0.43 -0.39 -0.01 0.04
(-1.09) (-0.98) (-0.04) (0.11)

FF6 -0.35 -0.30 0.04 0.11
(-0.90) (-0.78) (0.12) (0.33)
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Panel B. Portfolio returns with semi-annual rebalancing – AI vs. MDM

AI vs. MDM

Long-Short 30 day inform 60 day inform 90 day inform 360 day inform

Monthly returns Ret 0.60*** 0.53*** 0.54*** 0.42***
(7.20) (6.73) (6.88) (5.61)

FF3 0.56*** 0.48*** 0.48*** 0.41***
(6.73) (6.15) (6.22) (5.37)

FFC4 0.58*** 0.49*** 0.49*** 0.41***
(7.04) (6.29) (6.34) (5.34)

FF5 0.56*** 0.50*** 0.51*** 0.41***
(7.09) (6.70) (6.88) (5.76)

FF6 0.57*** 0.50*** 0.51*** 0.41***
(7.24) (6.76) (6.93) (5.76)

Long-Leg 30 day inform 60 day inform 90 day inform 360 day inform

Monthly returns Ret 1.36*** 1.36*** 1.36*** 1.33***
(2.94) (2.97) (2.98) (3.11)

FF3 0.51*** 0.50*** 0.50*** 0.54***
(4.63) (4.90) (4.94) (5.39)

FFC4 0.59*** 0.58*** 0.58*** 0.61***
(6.11) (6.42) (6.48) (6.81)

FF5 0.62*** 0.61*** 0.62*** 0.64***
(5.97) (6.48) (6.64) (7.05)

FF6 0.63*** 0.63*** 0.64*** 0.65***
(6.82) (7.40) (7.58) (7.88)

Short-Leg 30 day inform 60 day inform 90 day inform 360 day inform

Monthly returns Ret 0.76* 0.83* 0.82* 0.91**
(1.69) (1.85) (1.84) (2.14)

FF3 -0.04 0.02 0.02 0.13
(-0.44) (0.25) (0.19) (1.37)

FFC4 0.02 0.09 0.08 0.20**
(0.19) (1.05) (0.99) (2.41)

FF5 0.05 0.12 0.11 0.22**
(0.57) (1.35) (1.30) (2.69)

FF6 0.06 0.13 0.12 0.2**4
(0.72) (1.60) (1.55) (3.20)
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