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ABSTRACT 

This paper models individual decisions under irreversibility of the vaccine using real options. 

Vaccine irreversibility increases the value in waiting to vaccinate and postpone vaccination, even 

if vaccination has positive net gain. The waiting value magnifies the vaccination cost ex ante in a 

rational framework. In this framework, we analyze the difference between the reward at 

vaccination, or equivalent tax on non-vaccinated for increasing the likelihood to vaccinate. For 

individuals, any subsidy at vaccination to reduce the vaccine cost is more effective on the 

likelihood to vaccinate relative to any equivalent taxes imposed to increase the cost of no 

vaccination. The factors that add to the value in waiting and postpone vaccination are increase in 

the uncertainty about the disease, and likelihood for the expected cost of the infection to go down. 
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I. Introduction 

“Leaders of Quebec, Canada, are planning to impose a tax on adults in the province who refuse 
to get vaccinated” (CBS News 2022). “Instead of forcing, we need to go and see what’s behind it 
for those who are not currently vaccinated“ Dr. Yv Bonnier-Viger, public health director of the 
Gaspé region, Quebec (The Canadian Press 2022). 

 

This paper uses real option theory to analyze the optimal vaccination decision by 

individuals. Using real options theory allows us to take into account the irreversibility of 

vaccination, which leads to a value in waiting to vaccinate.  

When costs related to a decision are irreversible, having a net positive immediate gain 

(benefits minus costs) from the decision itself is a necessary, but not sufficient, condition for the 

decision to be implemented. This holds within a rational framework. For example, an irreversible 

project with positive net present value (NPV) is not implemented immediately because individuals 

will seek to maximize NPV through optimal timing that accounts for the costs of lost reversibility 

and flexibility. The real option literature models similar decisions for corporations,1 including 

decisions within the healthcare industry.2 In all these models, conventional optimal decision 

models are challenged with real options  if the decision is irreversible because the irreversibility 

removes the ability to gain in the future from changing the decision. Analogously, vaccination is 

irreversible for individuals. Vaccination has immediate irreversible costs while it saves individuals 

against uncertain sickness costs. Therefore, conventional optimal personal decisions also skew 

under lost options based on a rational framework. To the best of our knowledge, this paper is the 

first to extend the real option theory to individual vaccination decisions.  

 

1 See Dixit and Pindyck (2012), Sick and Gamba (2010), and Li et al. (2022) for literature reviews. 
2 See, e.g., McLean and Magiera (2000), and Magiera and McLean (1996) for capital budgeting and program selection 
examples, Wernz, Gehrke, and Ball (2015) for operating room capacity, Park (2016) for vaccine stockpile, Shamsi, 
Torabi, and Shakouri (2018) for vaccine contracts, and Kudryavtsev and Trushin (2022) for pharmaceuticals. 
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Our rational model is in contrast to other writers who use distrust, ignorance, or other 

irrational behavior to explain vaccination rates that are lower than optimal (for examples, see the 

literature on vaccine hesitancy such as Dube et al., 2013 and MacDonald, 2015). While our paper 

does not discuss irrationality and does not rule out the contribution of irrationality, our finding 

raises the bar for labeling vaccination rates as being caused by as irrational behavior.  

In this paper, first we present a basic model to show that the optimal vaccination decision 

changes because a vaccination cannot be reversed. This creates a value in waiting to vaccinate, 

also known as the value of lost reversibility, under uncertainty in our second basic model. The 

value in waiting is the present value of the gain from reversing the vaccination decision in the 

future. If the benefit of the vaccine is going to go below the cost of the vaccine in the future, this 

creates a value in waiting that, if it is large enough, can lead to non-vaccination at the present. In 

practical terms, the value in waiting model is relevant in cases where either a) the expected cost of 

vaccinating is expected to go down in the future, or b) the disease cost is expected to decrease in 

the future (we focus on the later). For example, the disease cost can go down through medical 

discoveries that provide less costly treatments (see, e.g., Triggle et al. 2020), herd immunity caused 

by others vaccinating (see, e.g., Pan, Ng, and Cheng 2021), or the avirulence of the pathogen (see, 

e.g., Alizon et al. 2009). When these circumstances drop the sickness costs below the vaccination 

cost, the expected net benefit of vaccination in the future turns negative, and a rational individual 

would wish to reverse the vaccination and recoup the costs of vaccinating (if vaccines were 

reversible like other economic decisions). Of course, vaccines are not reversible, so this 

irreversibility imposes a cost on individuals because they lose the value of the option to reverse 

their vaccination. Hence, for the individual to vaccinate immediately, the vaccination benefit not 

only must surpass its cost, but also must surpass the value of lost reversibility. Otherwise, it is 
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optimal for individuals to wait even if the immediate vaccination gain (immediate benefit minus 

immediate cost) is positive.5  

In this setting, we show that the value in waiting acts like a magnifier on the vaccination 

costs. The magnifier differentiates the vaccination costs from disease costs as the vaccination costs 

are relatively more certain over time than disease costs. This is in line with the lower effectiveness 

of offering lotteries at vaccination compared to certain cash rewards (Duch et al. 2021) because a 

lottery outcome is similar to probabilistic disease cost-saving and a cash reward is similar to 

vaccination costs that are known with more certainty. As another result, we find that a definite 

reward at vaccination is more effective in increasing the vaccination rate than a tax of the same 

amount on those who are not vaccinated by a certain date; both actions increase the net benefit of 

immediate vaccination, but the definite reward at vaccination also decreases the value in waiting. 

This result matches the empirical report by Fishman et al. (2022) that a $1,000 cash reward 

increases the likelihood of vaccination by 17% compared to 13% for an equivalent $1,000 tax on 

non-vaxxers. 

Our third model is a continuous-time model. We evaluate it to report the effects of 

uncertainty on the value in waiting. The uncertainty increases the inaction area and the value in 

waiting. Moreover, when the uncertainty is high, we report that the effectiveness of both 

vaccination tax and rewards drop. Hence, reducing the uncertainty about vaccination benefits has 

a first-order effect on vaccination rates relative to other factors, such as the rate at which the 

vaccination benefit declines.     

 

5 This is in line with the report that 33%-39% of the participants without COVID-19 vaccination in the US responded 
that they would “wait and see” in May 2021 (Hamel et al. 2021). 
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Our model sets a higher bar for vaccination to be optimal at an individual level. Some 

earlier studies propose a positive gain (or benefit/cost ratio greater than 1) suffices for the 

vaccination justification (Hilbe, Nowak, and Sigmund 2013; Connolly and Reb 2003; Willems and 

Sanders 1981). The real option augments these studies with the condition that the gain must be 

larger than the lost waiting option; the benefit not only needs to cover the vaccine direct cost, but 

also must cover the lost options’ value. This condition provides a rational explanation for the 

“inflated perceived vaccination cost” (Bhattacharyya and Bauch 2011) as an assumption required 

by some studies next to irrational explanations, such as rumors (Verelst, Willem, and Beutels 

2016). Moreover, the extra compensation for the lost reversibility option of the vaccine is an 

example of a quantified measure for “payment for risk” suggested by Savulescu (2021). 

This paper also presents the real option channel under certainty to distinguish how this 

channel adds to the regret theory. Regret theory discusses inflation in the perceived vaccination 

costs when “an agent may have inaccurate perceptions of the probabilities of states occurring or 

may have imperfect information about the efficacy of the vaccination technology” (Sadique et al. 

2005). The regret theory fits under “confidence” in a “Four C” model for the vaccination decision 

(Betsch, Böhm, and Chapman 2015). In contrast, our models assume perfect information, and yet 

the vaccination cost is inflated with the value in waiting. Another difference between our model 

and regret theory is that we assume the individual makes a rational calculation to decide about 

vaccination, which locates our model under “calculation” for decision making about vaccine under 

“Four C” model (Betsch, Böhm, and Chapman 2015). Therefore, real options, such as the value in 

waiting, within a rational framework complement regret theory in explaining inflated vaccination 

costs. Consequently, real options also help to explain lower vaccination rates, particularly for 

newer diseases where the disease costs are more uncertain. 
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Finally, this paper contributes to individual health literature. In the healthcare literature for 

individuals, a few studies consider real options for treatment options, such as watchful waiting 

(see, e.g., Favato et al. 2013; Driffield and Smith 2007). They mostly consider limited discrete-

time models and apply the real option theory to decisions made by doctors. We introduce 

continuous-time models to this literature and extend them to vaccination decisions by individuals. 

Some studies consider real options for corporate decisions in health care (see, e.g., Palmer and 

Smith 2000). We also expand these applications into individual decisions. 

II. Model 

II.A. Basic Model: Vaccine Irreversibility 

We start by presenting a toy model (i.e., a deliberately simple model used to concisely 

demonstrate the concept) to show the basic idea of irreversibility and how it influences an 

individual's vaccination decision. The model shows the conditions under which there will be no 

vaccination due to irreversibility.  

Let us consider a two-period model where a risk-neutral individual6 faces a disease with 

an option to vaccinate. Vaccination has an irreversible fixed cost V. The individual can opt to 

vaccinate today (time 0) or opt to vaccinate next time (time 1). By construction, vaccination is not 

desirable at time 1 because we choose parameters such that the potential disease costs at time 1 

will be less costly than the vaccination at time 1. Thus, the decision at time 0 is the only decision, 

which results in a decision to either to vaccinate at time 0 or to postpone to period 1 and, thus, not 

to vaccinate.  Therefore,  we only focus on the vaccination decision at time 0 (see Figure 2).. The 

 

6 We assume risk-neutrality for simplicity. Adding risk-aversion will strengthen our results since a risk-averse utility 
reduces the immediate vaccination benefit relative to waiting more than a risk-neutral utility in both sides of Equation 
(1). 
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time difference between the two periods is t, the individual applies an annualized discount rate r 

to any future costs or benefits, and all the parameters are known with certainty. The vaccination 

cost includes the private disutility of the vaccine, such as a vaccine-related sickness and side-

effects, the price of the vaccine, and lost wages while getting the vaccine. Similar to Pan, Ng, and 

Cheng (2021), any subsidy paid to the individual at vaccination reduces this cost because the 

subsidy is tied directly to the decision to vaccinate (just like paying the vaccination cost). Appendix 

A defines all the parameters.  

Without vaccination, the individual faces disease-related costs. The disease’s expected 

infection cost (-H) is the infection probability times the infection costs (such as hospitalization 

expenses, lost wages, and the private disutility of infection (that is, the individual's aversion to 

feeling sick)). For example, one disease may have a low infection cost with a high probability of 

infection while another disease may have a high infection cost with a low probability of infection. 

Therefore, on the positive side, the vaccination benefit H for the individual is to save the expected 

costs associated with the disease. The benefits are time-varying where Hi is the total benefit 

Figure 1- The comparison between immediate vaccination gain at time 0 and reversibility gain in the future 
once the benefit falls below the cost. Vaccination is optimal if the gain is larger than the value in waiting (or 
reversibility value): 𝐻 − 𝑉 > 𝑒 (𝑉 − 𝐻 ) 
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associated with period I (i=0, 1) and hi is the benefit associated with being vaccinated at the 

moment of the time period i. Any hypothetical tax on non-vaxxers increases the disease costs 

because a tax is tied to being unvaccinated in each period similar to the disease costs, which are 

saved in each period that the individual is vaccinated.  For simplicity, similar to the literature (see, 

e.g., Chen and Toxvaerd (2014)), the vaccine is assumed to provide complete and permanent 

immunity.7 Therefore, receiving immunity in time 0 provides full immunity in both time 0 and 

time 1, meaning that H0= h0 + h1 e-rt (i.e. the full benefits of immunity at i=0 and the discounted 

value of the benefits at i=1) and H1 = h1 (i.e. the full benefits of immunity at i=1). The vaccine acts 

like a cost-switching mechanism from facing disease costs to facing vaccination costs. Hence, the 

vaccination immediate marginal gain (G) is the vaccination benefit (i.e., saving the expected 

disease cost) minus vaccination cost (G=H-V). Our approach for costs and benefits of vaccination 

follows the typical approach in the literature (see, e.g., Park 2016).  

 

 

 

 

7 It also shows what model parameters represent if vaccine is partially effective. If the vaccine does not create full 
immunity, H measures the marginal decline in diseases costs, such as the expected infection cost without vaccination 
minus the expected infection cost with vaccination. 
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The vaccination decision at time 1 is not straightforward, even if the immediate benefit is 

Error! Reference source not found.A-In this case, immediate vaccination is optimal with the real option because 
the immediate gain is larger than the lost reversibility: 𝐻 − 𝑉 > 𝑊, making the vaccine net gain (𝐻 − 𝑉 − 𝑊) 
positive. 

Error! Reference source not found.B- In this case, immediate vaccination would be optimal if the lost reversibility 
is not considered.  However, the existence of the lost reversibility causes the optimal decision to be waiting because 
the immediate gain is smaller than the lost reversibility: 𝐻 − 𝑉 < 𝑊, and the vaccine net gain (𝑁𝐺 = 𝐻 − 𝑉 −
𝑊) is negative. 

Figure 3- The comparison between immediate vaccination gain at time 1 and taking into account the cost of lost reversibility 
W as 𝑒 (𝑉 − 𝐻 ) in the future. 
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larger than vaccine cost (V<H0).8 A positive immediate gain is not sufficient to justify vaccination 

because there is value lost due to irreversibility (or, value gain in inaction); the individual compares 

the vaccination gain today against the lost reversibility. Error! Reference source not found.-A 

shows the situation that leads to vaccination with and without reversibility and real option 

consideration where both situations result in vaccination. However, Error! Reference source not 

found.-B shows when the value of lost reversibility is high enough that when it is considered, it 

changes the decision from vaccination to not vaccinating (aka, waiting until t=1).  

The value of reversibility (W) measures the present value from hypothetically reversing the 

vaccination in the next period (𝑊 = 𝑒 (𝑉 − 𝐻 ) ) when the vaccine benefit is smaller than the 

vaccination cost, if the individual waits. We drop the plus sign for brevity. W measures the lost 

reversibility due to vaccination and not waiting.. The (assumed) reversibility of the decision works 

like an insurance contract and is analogous to a put option in financial markets. A put option pays 

the holder of the option if the stock price is below the exercise price at the exercise date. The put 

option’s payoff is the difference between the exercise price and stock price if the difference is 

positive. Analogously, the vaccination cost is like the exercise price, the benefit is like the stock 

price, and the difference is like the option payoff. Ex post, reversibility has a positive benefit when 

the vaccination benefit drops below the vaccination cost in period 1. This analogy between an 

option contract and a real-life situation is called a real option. A rational expected value model that 

does not use real options assumes that the decision is reversible and therefore the individual gains 

the present value of W (in fact, it is not necessary to calculate this in an expected value model 

because of this assumption). However, in reality, if an individual vaccinates at t=0 then he is unable 

 

8 If the vaccination benefit today is higher than its cost, and the vaccination benefit is about to remain above the cost 
(V<H0, V<H1), there is no value in reversibility and immediate vaccination is optimal just because the vaccination has 
positive net immediate gain (G= H0- V >0). 
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to11owever11atede at t=1, and therefore he loses the benefit of gaining W in the future.  Therefore, 

the real option theory enables us to model the value in vaccine reversibility.  

It is rationally optimal for the individual to vaccinate only if the gain G is larger than W 

that compensates for the lost reversibility: 

 𝐺 > 𝑊 > 0 ⇒ 𝐻 − 𝑉 > 𝑒 (𝑉 − 𝐻 ) > 0 

⇒ 𝐻 > 𝑉 (1 + 𝑒 ) − 𝑒 𝐻  

 
(1) 

where the term (1 + 𝑒 ) in 𝑉 (1 + 𝑒 ) magnifies the effective vaccination cost V by including 

the lost option. Appendix B presents a formal mathematical model for the intuitive results. 

Hypothetically, if the individual vaccinates today (at time 0) and reverses the decision at time 1, 

they make 𝑉 − 𝐻  at time 1 from reversing the decision. However, the discounted value of 

reversing the decision at time 1 is lost if the individual vaccinates in addition to the vaccination 

cost paid. Therefore, in order for the individual to choose vaccination, the benefit needs to exceed 

the vaccination cost plus the lost reversibility as in the last line of the equation. For example, one 

outcome of the model is that if the interest rate is 0 at its lowest value, vaccine cost V must be 

larger than the average vaccine benefit ( ) or else the individual will not vaccinate. 

With considering the lost reversibility, the decision depends on the true net gain (NG) 

instead of making vaccination decisions based on the immediate gain G. Vaccination is feasible 

only if the true net gain is positive: 

 NG = 𝐺 − 𝑊 = 𝐻 − 𝑉 (1 + 𝑒
−𝑟𝑡

) − 𝑒−𝑟𝑡𝐻1 > 0,    

Δ𝑁𝐺

Δ𝑉
= −(1 + 𝑒 ),      

Δ𝑁𝐺

ΔH
= 1 , −Δ𝑉 = ΔH ⇒    

Δ𝑁𝐺

Δ𝑉
>

Δ𝑁𝐺

ΔH
 

 

(2) 

where −Δ𝑉 = ΔH  considers the hypothetical scenario in which a marginal decrease in the 

vaccination cost is equivalent to the marginal increase in the benefit. The model shows that a 

marginal decrease in the vaccination cost (e.g., reward at vaccination) has more effect on the 
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vaccination true net gain compared to an equivalent-sized marginal increase in the benefit (e.g., 

saving tax on non-vaxxers by vaccinating). Moreover, ceteris paribus, there are four variables 

under this model that increase the likelihood to wait rather than immediately vaccinate due to 

declining net gain: an increase in fixed vaccination cost ( < 0), a decrease in the current 

benefits of vaccinating ( > 0), a decrease in the future benefits of vaccinating ( > 0), and 

a decrease in the discount rate ( > 0).  

In sum, this basic model shows that the decision to vaccinate considers lost reversibility on 

the top of the immediate gain. An observer who ignores the lost reversibility may  witness a 

seemingly puzzling decision by an observed individual where the immediate gain from vaccination 

is positive and, yet the individual does not vaccinate  (see Error! Reference source not found.-

B). This is because the total benefit must compensate for both vaccine cost and lost reversibility 

to justify vaccination. Next section further analyzes this setting under uncertainty.  

II.B. Basic Model with Uncertainty 

In this model, we add uncertainty and lost abandonment to the earlier irreversibility model 

in a basic binomial setup where the vaccination benefit is both time-varying and uncertain. We 

show that uncertainty magnifies the lost reversibility and abandonment in form of the value in 

waiting. Like the earlier model, we have two periods with constant vaccination cost V. Time 0 is 

today with vaccination benefit H0>V so that it is feasible to vaccinate today; the vaccination has 

positive immediate gain (G=H0-V>0). At time 1 with time difference t, the vaccination benefit 

(H1) can go up (Hu1> H0) or down (Hd1<V).9 The real probability of up (down) is p,(1-p).  

 

9 If the benefit in the down branch is higher than the vaccination cost, then waiting is not feasible at all. In 
Appendix C, we present analysis of the conditions for the option to lead to waiting. 
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We have: 

 𝐻 = ℎ + 𝑒( )𝐸(𝐻),     𝐸(𝐻) = 𝐻 𝑝 + (1 − 𝑝)𝐻 ,   

𝑢 =
𝐻

𝐻
> 1, 𝑑 =

𝐻

𝐻
 < 1  

 

(3) 
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where 𝜌 > 𝑟 is the risk-adjusted discount rate for the uncertain benefits. When the risk of the 

benefits increases (e.g., the range increases while the expected value remains the same), 𝜌 

increases. The setting is like a binomial tree (see Figure 4 for the decision tree). We apply the 

classic risk-neutral valuation (Cox, Ross, and Rubinstein 1979; Hull 2018, Chapter 10) on the 

Figure 4- A basic model with uncertainty about the vaccine benefits and waiting to vaccinate: p* shows the risk-neutral 
probability. For the top figure, each box represents an outcome at time 0 (today) or the next period (time 1) in the binomial tree.
The individual will not vaccinate today or tomorrow if the vaccine has negative marginal gain (boxes with dashed borders) and 
only vaccinates if the marginal gain increases substantially (the box with solid border). In each box, the top lines in blue show 
the marginal value of the vaccination. The bottom lines in red show the payoff from the option to reverse the vaccination benefit. 
The figure at the bottom shows the decision-tree diagram where the shapes with * show the optimal branches. 
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reversibility option (W). The technique uses valuation of the option relative to the benefit’s value 

with a no-arbitrage trading strategy. We define the risk-neutral probability on the tree and use the 

risk-free rate to discount the payoff from the waiting to value the option at time 0. Since the option 

is lost after time 0, the total vaccination gain must exceed the lost option (G>W) in order for the 

model to be informative about vaccination decisions, so we have:  

Otherwise (i.e., 𝐺 < 𝑊 ), Figure 4 shows that it is optimal for the individual to wait and only 

vaccinate if the marginal vaccine gain increases in the upper branch. This result means that the 

decision to vaccinate not only needs to have a net positive immediate marginal gain, but it also 

must exceed the lost reversibility option which is like a put option. We define Δ as the equal 

 
𝐻 − 𝑉 = 𝐺 > 𝑊 = 𝑒 (1 − 𝑝∗)(𝑉 − 𝐻 𝑑),   𝑝∗ =

𝑒 − 𝑑

𝑢 − 𝑑
 

⇒ 𝐻 > 𝑉 + 𝑊: 𝐻 = 𝐸∗(𝐻) = 𝑝∗𝐻 + (1 − 𝑝∗)𝐻   

 

(4) 

Figure 5- Vaccine benefit and cost with/out the waiting option: Y-axis shows the cost and benefit. X-axis shows the relative 
size of the change (increase or decrease) in the vaccination benefit in the binomial branches (Δ = 𝐻 /𝐻 − 1 = 1 −
𝐻 /𝐻 ). Asterisked line shows the vaccine benefit. Crossed line shows the vaccine cost. Black line shows the vaccine cost 
plus the waiting value. Gray area shows the vaccine cost topped up with the value in waiting. We set risk free rate r at 0, 
vaccine cost V at $100, vaccine benefit 𝐻  at $120, and period length t at 1 year. For the changes (Δ) above 50% (the
patterned gray area), the vaccine cost plus the waiting value (black line) is higher than the benefit (asterisked line), which 
means inaction (waiting) is optimal.  
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percentage change (increase or decrease) that the benefit will have depending on the outcome from 

the upper or lower branch in the binomial (𝑢 = 1 + Δ, and 𝑑 = 1 − Δ). Since Δ represents equal 

(in)decrease in the benefits without changing the expected value, its change represents risk. For 

simplicity, we set the risk free rate at 0. Figure 5 shows how an increase in the risk after a certain 

level makes inaction (i.e., waiting) optimal.  For example, if 𝐻 = 0 (Δ=100%), the value of lost 

reversibility is half of the vaccination cost (𝑉 2⁄ ) where the optimal decision is waiting and only 

vaccinating if the disease gets worse in the binomial upper branch as in Figure 4.  

II.C. Continuous-Time Model with Uncertainty 

To consider the uncertainty involved with the disease, we move to a continuous-time 

setting. For simplicity, we assume that the individual faces the potential threat of disease forever 

(perpetual exposure).10 Once infected, the individual continuously pays disease cost h (cost per 

unit of time, e.g., daily hospitalization cost) that lasts during infection period τ.11 We assume the 

disease cost in time follows Geometric Brownian Motion (GBM) 

where 𝜎 is uncertainty, and 𝐵 is Standard Brownian motion. 𝛿 is the adjustment to the growth of 

the expected disease costs (high 𝛿 means declining expected disease costs). For example, if the 

disease reproduction number (R0) is greater (less) than 1, the chance of infection increases 

(decreases), and a high (low) 𝛿 can capture its dynamic. The expected infection cost Hs is the 

 

10 Limited-time disease exposure require numerical derivation, instead of closed-form solutions, similar to an option 
with limited maturity, but it does not change our results. 
11 In Appendix D, we present an alternative explanation for the expected disease cost to follow GBM. Alternative 
random processes, such as mean-reverting processes as in Park (2016), does not change the model inferences, but 
requires more extensive numerical calculations. 

 𝑑ℎ

ℎ
= (𝑟 − 𝛿)𝑑𝑡 + 𝜎𝑑𝐵,         𝐸(ℎ |ℎ ) = 𝑒( ) ℎ   

 
(5) 
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probability of infection 𝜋 times the present value of the total disease costs during the infection 

period: 

 
H = π × E 𝑒 ( )ℎ  𝑑𝑢|ℎ =

1 − 𝑒

𝛿
πh

 
𝑑𝐻

𝐻
=  

𝑑ℎ

ℎ
= (r − 𝛿)𝑑𝑡 + 𝜎𝑑𝐵 

 

 

(6) 

Once the vaccine is administered, the expected infection cost drops by the vaccine effectiveness 

(𝜖) times H. This change in infection costs represents the benefit of vaccination because 

vaccination saves this cost.  An effectiveness equal to 1 means that the vaccine gives full immunity 

to the individual and make the vaccine benefit equal to H. 
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Following the literature, we assume that the individual “faces a trade-off between the 

probabilistic benefit of vaccination and the deterministic cost of vaccination” (Lim and Zhang 

2020). Similar to the binomial model in the previous section, the individual waits to vaccinate 

unless the benefit of the vaccination is larger than the vaccination cost plus the lost reversibility 

option. To evaluate lost reversibility, first we consider the hypothetical scenario that we do have 

the option to reverse the vaccination decision. Of course 

Figure 6- The decision steps depending on the vaccination benefit state, and its influence diagram for the vaccination 
decision  

Unvaccinated and wait 

Vaccinate Reverse 

Vaccinate 
 

Figure 6-A-The decision steps depending on the vaccination benefit state: The patterned inaction area is analogous 
to the same area in Figure 5. 

Figure 6-B-The influence diagram for the vaccination decision (blue) and hypothetical vaccination reversibility 
(gray). The decision-tree diagram is on the right. 
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this option does not actually exist in real life, but we display this model here as a first step in order 

to make it clear that reversibility has value. 

The graph in Figure 6-A displays two decisions that the individual would optimally like to 

make if the option to reverse existed: first we determine the optimal level to reverse vaccination 

and the reversibility option, assuming vaccination is done. Then, we move back in time and find 

the optimal strategy to vaccinate given the optimal reversing strategy ex ante. Figure 6-B shows 

the influence diagram of the individual’s decision with the hypothetical scenario where there is the 

option to reverse the vaccination (for more influence diagram examples, see Sick and Gamba 

(2010)). An influence diagram is a common way of determining the decision of whether a project 

should be started or shut down (e.g., reverse).  

The decision to reverse happens when the benefits fall significantly to L, which is below 

the vaccination cost V. For the benefits below V and above L (L<H<V) for which the gain is 

negative (H-V<0), it is not yet optimal to reverse the vaccination decision due to the possibility of 

the benefits rising again. This reversing is similar to classical project decisions; for example, one 

can imagine an oil well that has a cost to shut down when oil prices are below the unit production 

cost. Even if the oil well is losing money because the prices are below the unit production cost, 

there is a price range at which it is optimal to maintain the current course, i.e., if you are currently 

producing oil, you do not stop (see, e.g., Smith and McCardle 1998). Analogously, for some 

benefit levels below the vaccine cost, it is not optimal to reverse vaccination even if vaccine 

benefits are below its immediate cost. 

Next, we value the option to reverse the vaccination, which we will then use as the value 

of lost reversibility. To find the option value, we characterize the optimal benefit at which the 

individual would reverse the vaccination decision. The option value is like an American put option, 
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and the optimal benefit is like the optimal exercise threshold of the put option. The put option 

value can be derived based on classical Black-Scholes partial differential equation (PDE). The 

PDE is the result of solving Hamilton–Jacobi–Bellman (HJB) equation or using the Martingale 

approach as described in Appendix D (Dixit and Pindyck 2012, Chapter 4). The PDE, the solution 

for the option value, and the optimal reversing point L are: 

 1

2
 𝜎  𝐻  𝑊 + (𝑟 − 𝛿)𝐻𝑊 − 𝑟𝑊 = 0,        𝑊 =

𝜕𝑊

𝜕𝐻
, 

𝑊(𝐻 = 𝐿) = 𝑉 − 𝜖𝐿,       𝑊 = (𝑉 − 𝜖𝐿)
𝐻

𝐿
, 𝐿 =

𝑏

𝜖(1 + 𝑏)
𝑉 

𝑏 =
(𝑎2 + 2𝑟) + 𝑎

𝜎
, 𝑎 =

𝑟 − 𝛿 − 0.5𝜎2

𝜎
  

 

(7) 

where the option value is from the general solution of the PDE, which is derived by the boundary 

condition at the reversing point, and the optimal reversing point is derived from the smooth-pasting 

condition applied to the option value (see, e.g., Dixit 2013 for the technique). The outcome is that 

the optimal reversing point is smaller than the vaccination cost. For any values between the 

vaccination cost and the optimal point, reversing is not optimal because the chance that the vaccine 

benefit increases due to uncertainty prevents the decision to reverse the vaccine. 

 Finally, we determine the optimal vaccination decision (see Appendix E). The individual 

chooses vaccination if the benefit level (𝐻∗) exceeds the vaccination cost plus its lost reversibility, 

which satisfies the following equation: 

 

𝐻∗ − 𝑉 − (1 − 𝜖)𝐻∗ − (𝑉 − 𝜖𝐿)
𝐻∗

𝐿

−𝑏

= 0 ⇒ 𝐻∗ =
𝑉 + (𝑉 − 𝜖𝐿)

𝐻∗

𝐿

−𝑏

𝜖
 

 
(8) 

We solve this equation numerically for optimal benefit level because it does not have a closed-

form solution. Yet, the formula has some intuitive results. For example, as vaccine effectiveness 

approaches to zero, the individual will not vaccinate because the required benefit (𝐻∗) in order to 
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vaccinate grows close to infinity,. If the current vaccination benefit H is above 𝐻∗, individuals 

immediately vaccinate without waiting. But, if the current vaccination benefit H is below 𝐻∗, the 

individual waits to vaccinate until the benefit reaches the required level.  

The model here is similar to asset-replacement models in operation management. Asset 

replacement models are about optimal replacement of an asset that continuously produces 

operation costs. The firm decides when to incur a fixed cost to replace the asset with a new asset 

that has lower operating costs (see, e.g., Dobbs (2004), and Adkins and Paxson (2011)). Analogous 

to these models, the fixed replacement cost is like the fixed vaccine cost, and the drop in the 

operation cost is like the drop in the infection cost due to the immunity provided by the vaccine. 

However, our model has some different features: we include the lost reversibility of the vaccine, 

and we sum up the continuous exposure to the infection cost within the present value of the vaccine 

benefit.    

The probability that the random process for H hits the optimal level before time T is: 

 
𝑃 = 𝑁(𝐴) + 𝑒 𝑁(𝑍),          𝑥 = ln

𝐻

𝐻∗
 

A= 
.

√
, 𝑍 =

.

√
, 𝐶 = −

.
 

 

(9) 

where N(.) is standard cumulative normal distribution. 

III. Sensitivity Analysis 

In this section, we investigate the implications of the model. We aim to find the most 

critical factors in the vaccination decision.  

 First, we show that not all positive vaccination gains (H>V) result in immediate 

vaccination. For calibration purposes, we set the risk-free rate at 6%, which is slightly above the 

historical average of 4% (see Lotfaliei 2018) to remain parsimonious. A lower risk-free rate 
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increases the future values and makes the delay more likely. We assume vaccine effectiveness is 

at 100% for brevity. We set vaccination cost at $100 as the reference point, which is scalable. The 

vaccination benefit is at $120, 20 points above the vaccination benefit so that the immediate 

vaccination is positive. Both numbers are scalable. We check the probability of vaccination in half 

a year (T=0.5). We set the benefit uncertainty at 0.45 and the benefit decrease rate at 0.03. For the 

calibrated values above, the optimal vaccination benefit level is about $135 (see Figure 7). For 

vaccination benefits above $100 and below $135, the vaccination has positive immediate gain, yet 

the individual waits and does not vaccinate because the net gain is negative. 

To avoid the current levels for these factors influencing our inferences, we report the 

sensitivity of the results for both the uncertainty and the decline rate. Figure 8 shows increasing 

optimal benefit-cost ratio for the vaccination, and, thus, increasing optimal benefit level to 

vaccinate when uncertainty increases. The uncertainty increases the likelihood that the individual 

considers the lost reversibility of the vaccination in the future. This in turn increases the value in 

waiting to vaccinate, and the optimal benefit threshold. Figure 9 reports the same effect for the 

vaccination benefit decline rate. When the benefit declines faster, the optimal threshold to 

vaccinate increase with the hopes that the disease cost becomes so low that there is no need for 
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vaccination. Both uncertainty and the decline rate reduce the probability of the vaccination (see 

Figure 11 and Figure 10) because they raise the bar for the optimal benefit of the vaccination. The 

Figure 7- The net vaccination gain as function of the vaccination benefit to cost ratio: Due to the value in 
waiting to vaccinate the benefit-cost ratio should exceed 1.35 for the vaccination to be optimal (green area on the 
right). For the ratio below 1.35 and above 1 (patterned area in the middle) inaction is optimal because the vaccine 
benefit does not exceed the lost reversibility plus the vaccine cost. The patterned inaction area is analogous to the 
same area in Figure 5. For the ratio below 1, the benefit does not even exceed the vaccine cost (red area on the left). 
The uncertainty is 0.45. The benefit decrease rate is 0.03. The risk-free rate is 0.06. The vaccination cost is $100 
and is scalable.  

Figure 8- The optimal vaccination benefit-cost ratio increases as the vaccination benefit uncertainty increases: 
Due to the value in waiting to vaccinate the benefit-cost ratio should exceed 1. The benefit decline rate is 0.03. The 
risk-free rate is 0.06. The vaccination cost is $100 and is scalable.  
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model-generated probabilities show the capability of the model to produce a wide range of reported 

vaccination rates, such as 52% for seasonal flu (CDC 2021), or  82% for Covid-19 (CDC 2022). 

The probability range is wider for uncertainty (40%) relative to the decline rate (10%). Therefore, 

the decision to delay is much more sensitive to uncertainty than to the decline rate.  

Figure 9- The optimal vaccination benefit-cost ratio increases as the vaccination benefit decline rate increases: 
Due to the value in waiting to vaccinate the benefit-cost ratio should exceed 1. The uncertainty is 0.45. The risk-
free rate is 0.06. The vaccination cost is $100 and is scalable.  
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Finally, we analyze how vaccination probabilitiy is affected by  hypothetical public policies 

to either punish no vaccination or reward vaccination. We consider a onetime tax on individuals 

who do not vaccinate immediately, which increases the vaccination benefit by Δ between 0 and 

$10. As an alternative, we consider an equal-sized reward at vaccination, which reduces the 

vaccination cost by the same amount. Figure 12 shows the increasing probability of vaccination as 

the result of both policies.25oweverer, a reward at vaccination is more effective in increasing the 

probability of the vaccination relative to the same amount as a tax on non-vaxxers. Under both 

cases, the uncertainty reduces the effectiveness of both policies by flattening the probability of 

vaccination in the graphs. Therefore, reducing uncertainty for the individuals (e.g., through 

information dissemination, education, and reduction in contradictory advice) seems to be the most 

critical factor in promoting vaccination (i.e., increasing the probability of vaccination) based on 

our model. The next critical factor in promoting vaccination is the certain cost of vaccination, 

which can be reduced by a vaccination reward.  

Figure 10- The probability of vaccination decreases as the vaccination benefit decline rate increases: Due to 
the value in waiting to vaccinate the benefit-cost ratio should exceed 1. The uncertainty is 0.45. The risk-free rate 
is 0.06. The vaccination cost is $100, vaccination benefit is $120, and both are scalable.   



26 
 

This may seem like a difficult result to accept. After all, is there really a difference between 

calling it a reward versus calling it a reverse tax?  The difference is its effect on the value of 

reversibility. The benefits of vaccination in the future no longer include avoidance of the tax 

penalty. Therefore, the value of reversibility no longer accounts for the punitive one-time tax 

penalty. The reward for vaccination, on the other hand, may still be available in the future in some 

states of the world, including in some states of the world where the individual would desire to 

reverse vaccination (if such a thing were possible, which of course is not the case).   

Figure 11- The probability of vaccination decreases as the vaccination benefit uncertainty increases: Due to 
the value in waiting to vaccinate the benefit-cost ratio should exceed 1. The benefit decline rate is 0.03. The risk-
free rate is 0.06. The vaccination cost is $100, vaccination benefit is $120, and both are scalable.  
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IV. Conclusion 

This paper shows that the value in waiting to vaccinate delays vaccination, even if 

vaccination has a positive immediate gain for individuals. The value in waiting measures the 

irreversibility of the vaccination. We calculate the value in waiting using the real option theory. 

Real option theory in health care mostly addresses investment decision (de Cássia Rocha, 

Gonçalves, and Lawryshyn 2020). In this paper, we extend the real option theory to model 

individual vaccination decisions. 

Our model shows that uncertainty about the vaccination benefit is a strong factor in 

decreasing the vaccination rate. Therefore, a very effective policy is to target reducing the 

uncertainty about the vaccination benefits. Among two other policy options (either increase 

vaccination benefit by exerting a tax on no vaccination or rewarding vaccination with a subsidy), 

the later is more effective. However, the effectiveness of both policies on increasing the 

Figure 12- The probability of vaccination increases as a reward (or subsidy) is offered at vaccination or tax is 
exerted on no vaccination: The medium uncertainty is 0.45, and high uncertainty is 0.7. The risk-free rate is 0.06. 
The benefit decline rate is 0.03. The vaccination cost is $100, vaccination benefit is $120, and both are scalable.   
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vaccination rate declines if uncertainty is high. This shows why uncertainty is the most critical 

factor. 

Future research can combine game theory where there is free-riding possibility between 

vaxxers and non-vaxxers due to herd immunity (e.g., Bhattacharyya and Bauch 2011) with the real 

option. Pan, Ng, and Cheng (2021) show that free-riders benefit from increasing uncertainty about 

their own vaccination among the rest of the population so that they can free ride on others’ 

vaccinations. Including real options in these games may exacerbate the use of this strategy; since 

more uncertainty means lower probability of vaccination, it is possible that increasing uncertainty 

through more cheap talk may send a stronger no-vaccination signal to others. The model is 

extendable into rationally explaining other medical decisions: e.g., health providers may delay the 

transfer of the critically ill patients from emergency room to intensive cares due to high uncertainty 

about the patients’ condition in addition to some of the classical reasons like delayed x-rays (see, 

e.g., Teklie et al. 2021). Patients may rationally delay their treatment (e.g., going to emergency 

room) due to uncertainty about their own condition. If patients facing irreversible treatment costs 

are more uncertain about their health condition, or the quality of the health services, they may be 

more likely to wait and only seek treatment when their condition gets worse even if the immediate 

treatment would improve their conditions net of costs (see, e.g., for heart diseases as in Moser et 

al. 2006).12 

  

 

12 To the argument that“…each of us to weigh the value of those services (their benefits and harms) against the cost 
we would have to pay and would ensure that, both for the individual and for society, the value of health care would 
be worth its cost” (Eddy 1991) we can add “and worth the value in waiting to vaccinate.” 
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Appendices 

Appendix A- List of the variables and their description 

Table 1- List and description of the model variables 

−𝐻 Present value of the disease costs 𝑟 Risk-free interest rate 

H Vaccine benefit saving disease cost (−(−𝐻)) −𝑉 Irreversible vaccination cost 

𝐺 Immediate vaccination gain (H-V) 𝛿 Adjustment to disease cost growth rate 

𝑊 Reversibility option value for vaccination 𝐻  Vaccine benefits at time 𝑖 in discrete model 

NG Vaccination true net gain (G-W) 𝐻∗ Optimal benefit level for vaccination 

𝜎 
Vaccine benefit-change standard deviation, 
volatility 

𝑃 
Probability of vaccination (vaccine benefit 
reaching optimal benefit) 

𝜖 
Vaccine effectiveness, 0=no effectiveness, 
1= 100% effectiveness 

𝐵 Standard Brownian motion 

Hu1,d1 
Vaccine benefit in upper (u1), and lower (d1) 
of the binomial tree 

𝑝 
Real probability of vaccine benefit increase 
in binomial model 

𝑢, 𝑑 
(In)decrease rate for vaccine benefit in 
binomial tree respectively 

𝑝∗ 
Risk-neutral probability of vaccine benefit 
increase in binomial model 

𝜌 
Risk-adjusted discount rate for the uncertain 
benefits 

Δ 
Equal percentage change (increase or 
decrease) for benefit H on binomial tree 

 

Appendix B- Vaccination Decision  

Appendix B-1- Partially effective vaccine 

An individual without vaccination faces expected infection cost as the probability of infection 

times infection costs: 

−[𝐴 × 𝑃 + (1 − 𝑃 ) × 0]  (10) 

where A is infection cost, and 𝑃  is probability of infection without vaccination. With partially 

effective vaccine, the individual faces lower expected infection cost plus vaccination cost: 

−[𝑉 + 𝐴 × 𝑃 + (1 − 𝑃 ) × 0]  (11) 

where V is the vaccine cost, 𝐴  is infection cost for a vaccinated individual, and 𝑃  is the 

probability of infection for a vaccinated individual. The marginal immediate gain for vaccination 

is: 
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𝐴 × 𝑃 − [𝑉 +] = [𝐴 × 𝑃 − 𝐴 × 𝑃 ] − 𝑉 = 𝐻 − 𝑉, [𝐴 × 𝑃 − 𝐴 × 𝑃 ] = 𝐻  (12) 

where H measures the marginal decline in diseases costs.  

Appendix B-2- A basic optimization model 

The individual considers the following decision for vaccination: 

𝑣 = argmin
{ , }

[𝑓(𝑣, 𝐻)] ,      𝑓 = (1 − 𝑣)𝐻 + 𝑣 [1 − 𝜖 ]𝐻 + 𝑉 + 𝑊(𝐻)   (13) 

where v is 0 when the decision is not to vaccinate and 1 otherwise. The minimization is to reduce 

the cost that the individual faces where the vaccination decision acts like a switch from exposure 

to disease costs to exposure to vaccine-related costs. The solution to the minimization problem is: 

   𝑣 =
0, 𝐻 < 𝐻∗

1, 𝐻 ≥ 𝐻∗   ,     𝐻∗ = 𝑉 + (1 − 𝜖)𝐻∗ + 𝑊(𝐻∗)     (14) 

Appendix C- Feasibility Condition for Binomial Model 

For the risk-neutral probability in Equation (4), we have: 

 
𝑟, 𝑡:  0 < 𝑝∗ =

𝐻 𝑒 − 𝐻

𝐻 − 𝐻
< 1          

 
(15) 

We focus on the upper boundary for the risk-neutral probability. For the upper boundary to hold, 

we must have: 

 𝑝∗ < 1 ⇒ ℎ < 𝑒 𝐻 − 𝑒 𝐻 − 𝑒 𝐸(𝐻)  (16) 

In the special case that the lower branch of the binomial hits its lower boundary (𝐻 = 0), we get: 

 ℎ < 𝐻 (𝑒 − 𝑝𝑒 ) = 𝑈𝐵, 

 𝑟 < 𝜌, 𝑝 < 1 ⇒ 𝑒 > 𝑝𝑒  

 
(17) 

UB is the upper boundary for h0 such that waiting is optimal. For values of h0 above UB, immediate 

vaccination is optimal. Since the upper boundary of h0 is larger than 0, there are ranges of feasible 

values for h0 under which the waiting is optimal.  
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Appendix D- Alternative Explanation for Vaccine Benefit Process 

Appendix D-1- GBM process 

As an alternative explanation for the vaccine benefit to follow GBM, we present the 

following setting. The individual is within a population and the infected population size (IP) follow 

GBM: 

 𝑑IP

IP
= a 𝑑𝑡 + 𝜎 𝑑𝐵           

 
(18) 

The individual estimates the probability of infection naively as the infected population size divided 

by total population. Hence, the expected infection cost as the probability of infection times 

infection treatment cost is: 

H =
IP

TP
× 𝐶 

 (19

) 

where TP is total population, C is infection treatment cost. The infection treatment cost C also 

follows GBM with a positive correlation (𝜌) with the infected population size: 

𝑑𝐶

𝐶
= 𝑎 𝑑𝑡 + σ 𝑑𝐵 ,     𝐸(𝑑𝐵 𝑑𝐵 ) = 𝜌𝑑𝑡,     𝜌 > 0  

 
(20) 

For simplicity, we assume the treatment cost positively correlates with the infected population 

because, e.g., an increase in the infected population reduces the treatment capacity of the medical 

system and increases the treatment costs. Then, the expected infection cost still follows GBM, and 

we have: 

𝑑𝐻

𝐻
=  

𝑑IP

IP
+

𝑑𝐶

𝐶
+ 𝛾𝜎𝜌𝑑𝑡 = (𝑟 − 𝛿)𝑑𝑡 + 𝜎𝑑𝐵 

𝛿 = 𝑟 − (𝑎 + 𝑎 + 𝛾𝜎𝜌),     𝜎 = 𝜎 + 𝜎 + 2𝜌𝜎 𝜎  

 

(21) 

Appendix D-2- HJB derivation of pricing PDE 
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The HJB is the dynamic programming approach instead of the martingale approach to 

formulate and solve the optimal stopping decision. The optimal stopping decision in our setting is 

the time that the individual wishes to reverse the vaccination decision. Following Dixit and 

Pindyck (2012, Chapter 4), the value function is:  

𝑊(𝐻 , 0) = max
,

{𝑒 𝐸[𝑊(𝐻 , 𝑡 )|𝐻 , 𝐼]} ⇒ 𝑟𝑊(𝐻 , 𝑡)𝑑𝑡 = max
,

{𝐸[𝑑𝑊]}  (22) 

where I is 1 if reverse decision is executed, and 0 otherwise. The equation on the right is the results 

of taking derivative from the equation on the left. 

Appendix E- Valuation PDE and Solution  

The opportunity cost measured by the discount rate r when time changes by dt matches the change 

in the value of the reversibility for the individual: 

𝑟𝑑𝑡 =
𝐸(𝑑𝑊)

𝑊
  

 (23) 

Since the option is infinitely lived, its value W does not directly depend on time (Wt=dW/dt=0). 

In asset pricing, the same term appears based on the no-arbitrage argument, i.e., the expected return 

of any asset with value W, including the reversing option, must match their opportunity cost 

measured by the discount rate r when time changes. The expected value of the change in W follows 

Ito’s lemma as the function of the random variable H: 

𝐸(𝑑𝑊) =
1

2
 𝜎2 𝐻2 𝑊𝐻𝐻 + (𝑟 − 𝛿)𝐻𝑊𝐻 

𝑟𝑑𝑡 =
𝐸(𝑑𝑊)

𝑊
⇒

1

2
 𝜎  𝐻  𝑊 + (𝑟 − 𝛿)𝐻𝑊 − 𝑟𝑊 = 0  

 

(24) 

The general solution to the PDE is: 

𝑊 = 𝐴𝐻 + 𝐵𝐻 ,     𝑦 = −𝑏, 𝑏 ∶  
1

2
 𝜎2 (y − 1)y + (𝑟 − 𝛿)y − 𝑟 = 0  

 (25) 
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where y represents the roots of the characteristic quadratic of the PDE. A and B are constants 

determined by the boundary conditions of the value function. For the option to reverse, the value 

when H approaches infinity is 0 because there is no value in reversing vaccination for very high 

vaccine benefits, and, thus, B is 0. A is determined by the boundary condition and L is determined 

by the smooth pasting condition: 

𝑊(𝐻 = 𝐿) = 𝑊(𝐿): 𝐴𝐿 = 𝑉 − 𝜖𝐿 ⇒ 𝐴 =
𝑉 − 𝜖𝐿

𝐿
 

𝑊 (𝐻 = 𝐿) = 𝑊 (𝐿): −𝑏𝐴𝐿 = −𝜖 ⇒ 𝐿 =
𝑏

𝜖(1 + 𝑏)
𝑉 

 

(26) 

 

 


