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Abstract: Approximately 75 % of U.S. firms experience a major supply chain disruption annually and the 

causes of many of these disruptions are not well understood. One potential source of disruption is 

power outages, which can disrupt production for firms without alternative sources of electricity. We 

examine the short-term losses that manufacturers experience as a result of power outages in their 

supplier network. The analysis uses regression in the form of a Cobb-Douglas production function to 

estimate GDP losses in the U.S. at the state level. Our findings suggest that the downstream supply chain 

may contain a large share of the economic impact when compared to other losses estimated in the 

literature. The results suggest that eliminating power outages increases manufacturing value added by 

2.3 % ($49.0 billion in 2016). Loss estimates for other supply chain areas and/or time periods from the 

literature range from $19 billion to $255 billion. Our results suggest a large additional loss in GDP results 

from power outages in the supply chain. We also find that a $50 billion dollar investment in resilience is 

estimated to be cost effective if it has a 5 % or higher reduction in the direct and indirect losses. 

1. Introduction 

According to a PwC study, 75 % of firms in the U.S. experience a major supply chain disruption annually 

(PwC 2015). Hurricanes, wildfires, and other major events can cause severe disruption. For instance, 

Mukherjee et al. (2018) developed a model to assess power-outage risk to severe weather events and 

found that the electricity sector is most vulnerable to prolonged outages due to wind events (such as 

hurricanes, tornadoes, winter storms, wind-storms). Nevertheless, power outages that occur more 

frequently as everyday events unrelated to natural hazards can also cause significant disruption. These 

outages can result in losses at businesses and may reduce competitiveness. In addition to direct impacts, 

there are also indirect impacts. A firm that loses power may not be able to deliver supplies on time to 

other firms.  

Metrics for examining outages suggest that the U.S. has a wide range of performance. The system 

average interruption duration index (SAIDI), which measures the average amount of time per year that 

power supply to a customer is interrupted at the utility level (Campbell 2012), ranged between 0.7 

minutes and 4150.0 minutes for U.S. utilities in 2019 (Energy Information Administration 2020a).1 The 

system average interruption frequency index (SAIFI), which measures the average number of times per 

year that the supply to a customer is interrupted (Campbell 2012), ranged between 0.01 and 16.45.2 

These ranges are the result of a number of factors, including the type of energy infrastructure, 

investment in infrastructure, and the risks faced by a region (e.g., wind, tornados, and floods). 

Nonetheless, these regions need to consider the costs and benefits of reliable energy infrastructure. 

 
1 When excluding major event days, it ranged between 0.7 and 1239.3.  
2 When excluding major event days, it ranged between 0.01 and 12.39. 



As discussed by the Energy Information Administration (2020b), U.S. electricity is delivered through a 

complex system where supply is delicately balanced with demand. If this balance is disturbed, 

widespread blackouts can occur. Energy is largely produced at power plants. Then, it is stepped up to 

high voltage for long distance transmission using transformers and then stepped back down for local 

transmission. Interconnections of the power grid across the U.S. and Canada maintain reliability by 

providing multiple routes for energy to flow to consumers. In the lower 48 states, there are three main 

interconnections that operate independently from each other: Eastern Interconnection, Western 

Interconnection, and the Electric Reliability Council of Texas. There are only limited transfers between 

the three interconnections. Some of the lines in the transmission process have reached the end of their 

useful life and need replacement, making them vulnerable during hazardous events. According to Edison 

International, the most common causes of widespread outages are wind, heat, ice, and snow (Edison 

International 2016).  

It is estimated that 90 % of outages in the U.S. are due to a disruption in the local power distribution 

system (Campbell 2012). Table 1 uses data from a study by Hines et al. (2008), which provides some 

insight into the causes of outages. Some cause categories in Table 1 are more frequent, but result in less 

disruption (i.e., time to restoration, lost electricity, or affected customers). Two risk metrics show that 

wind/rain are a major risk as well as equipment failures and hurricanes/tropical storms, depending on 

the metric. Some causes result in more electricity losses while others affect more customers. The impact 

of outages, however, is not well understood, particularly the downstream impact. 

A survey of 251 commercial and industrial companies (S&C Electric Company 2018) reveals that 21 % 

experienced a power outage once a month and 49 % had an outage once a year. Approximately 26 % 

reported outages lasting on average more than an hour. Of the respondents, 52 % indicated that they 

were not fully satisfied with their power reliability and for 18 % of the respondents, their worst power 

loss cost more than $100 000. These results suggest that there are potentially significant impacts from 

power outages in the U.S. with additional downstream impacts. 

The losses that result from power disturbances can be classified by the point in the supply chain where 

the losses occur and the relative time period in which the losses occur. In terms of the supply chain 

point, losses are incurred by those that experience the power disturbance, by those that are supplying 

the firms that experienced the disturbance (upstream), and by those that are being supplied by the firms 

that experienced the disturbance (downstream). In terms of the time period in which losses are 

incurred, there are short-term losses that occur immediately following an event and then there are long-

term losses that result from disturbances. This paper examines the short-term downstream impacts 

from power disturbances. This impact includes the losses at downstream firms that might not receive 

supplies on time due to outages at their suppliers’ facilities. Our analysis examines manufacturing, 

durable goods, nondurable goods, and total private GDP in the U.S., using regression analysis, where 

losses are measured in terms of value added.  

The paper is organized as follows. Section 2 reviews the literature on estimating impacts of power 

outages. Section 3 presents the data used in the analysis followed by Section 4, the methods section, 

which describes the models and variables. Section 5 presents estimation results. Summary and 

conclusions are provided in Section 6 and Sections 7. 

2. Literature 



Direct Losses/VoLL. The standard approach to estimating direct power-related losses is to estimate the 

Value of Lost Load (VoLL). The VoLL is the value of one unit of electricity, which can be interpreted as a 

firm’s value added due that is lost due to a power outage (Castro et al. 2016). There are three main  

Table 1: Frequency and Disruption (MW) of Blackouts by Cause Category 

A B C D=A×B E=A×C

Percent 

of events

Mean size 

in MW

Mean size in 

customers

Risk 

Metric 1

Risk 

Metric 2

Wind/rain 14.8 793 185 199 117 27 409

Equipment failure 29.7 379 57 140 113 16 971

Ice storm 5 1 152 343 448 58 17 172

Hurricane/tropical storm 4.2 1 309 782 695 55 32 873

Operator error 10.1 489 105 322 49 10 638

Other external cause 4.8 710 246 071 34 11 811

Lightning 11.3 270 70 944 31 8 017

Other cold weather 5.5 542 150 255 30 8 264

Fire 5.2 431 111 244 22 5 785

Supply shortage 5.3 341 138 957 18 7 365

Voltage reduction 7.7 153 212 900 12 16 393

Earthquake 0.8 1 408 375 900 11 3 007

Volunteer reduction 5.9 190 134 543 11 7 938

Tornado 2.8 367 115 439 10 3 232

Intentional attack 1.6 340 24 572 5 393  

Data Source: Hines, P., Apt, J., and Talukdar, S., "Trends in the history of large blackouts in the United 

States," 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical 

Energy in the 21st Century, Pittsburgh, PA, USA, 2008, pp. 1-8, doi: 10.1109/PES.2008.4596715. 

Note: Percentages do not add to 100 % because some records fall into multiple initiating-event 

categories. 

 

approaches to estimating VoLL in the literature: stated preference, the production-function approach, 

and case studies (Linares and Rey 2013). The approaches are not mutually exclusive; for instance, the 

case study approach is relevant when there is a history of power outages available and is therefore 

often combined with the other two approaches.  

The stated-preference approach relies on collecting surveys to estimate VoLL. Serra and Fierro (1997) 

conduct a survey of businesses in Chile, across each of the Standard International Industrial 

Classification (SIIC) classes. They find that a 10 % restriction of electricity per month results in average 

net outage costs between $3.2 and $7.7 per kWh. Diboma and Tatieste (2013) conduct a survey of firms 

in Cameroon to estimate the costs of power outages and find that average costs between $3.62 and 

$5.42 per kWh for a one-hour outage and between $1.96 and $2.46 per kWh for a 4-hour outage. Oseni 

and Pollitt (2015) estimate losses from power outages for small businesses in Sub-Saharan Africa, 



comparing firms that have backup generation to firms that do not in the World Bank Enterprise Survey. 

Firms with backup generation experience power-related losses ranging from about $2 to $24 (USD) per 

kWh, while firms that do not have backup generation experience losses ranging from about $1.50 to $32 

per kWh. Woo et al. (2014) use a contingent valuation survey of households in Hong Kong to estimate 

preferences for power reliability. They find that households are not willing to accept a lower electricity 

bill rate for reduced power reliability, with the average cost of a 1 kWh of power outage estimated at 

$45. It is important to note that studies of other countries can provide insight into the losses due to 

power disturbances; however, there are differences in the economies and infrastructure for each 

country that may significantly affect losses. The extent to which these studies extend to the U.S. and 

other countries is unclear. Finally, Kim and Cho (2017) collect survey data from firms in South Korea to 

estimate the cost of unannounced and preannounced power outages. They find that preannouncing 

outages reduces costs to firms, and this reduction varies by sector. The paper is unique in incorporating 

indirect costs such as overtime to make up for lost production; damage to raw materials, finished 

product, and equipment; cleanup costs; and other damages experienced due to an outage, in addition 

to direct costs from production losses. 

The production function approach is a proxy method that estimates VoLL indirectly as the ratio of an 

economic measure, such as value added, to electricity consumption (typically one kilowatt hour, or 

kWh). Linares and Rey (2013) use a production function approach to estimate the cost of electricity 

outages to households and industry in Spain. They find that one kWh of power not supplied in 2008 

costs Spain 6 Euros across all sectors, with the cost to manufacturing of about 1.5 Euros, the cost to 

households and transportation about 8 Euros, and the cost to construction about 33 Euros. Similarly, 

Castro et al. (2016) use a production function approach to estimate the VoLL for Portugal in the context 

of deregulation and renewable energy. They estimate an average VoLL of 5.12 Euro/kWh, with 

construction and public works having the highest VoLL at 15.52 Euro/kWh. Wolf and Wenzel (2016) 

estimate the impacts of power outages for firms and households at the county-level in Germany. For 

manufacturing, they estimate the VoLL to be between 0.48 Euro/kWh and 12.49 Euro/kWh, with the 

highest VoLLs found in counties with energy-intensive production. Finally, Zachariadis and Poullikas 

(2012) utilized a large-scale power disruption in Cyprus during the summer of 2011 to estimate the 

impact of emergency government measures to reduce losses. Using an approach that combines a case 

study with the production-function method, they estimate annual losses from the power disruption 

across households and industry to be between 200 million Euros, with emergency measures (e.g., 

consumers reducing energy consumption and power companies purchasing generators), and 400 million 

Euros, without emergency measures.  

Economic Losses/Productivity. In contrast to estimating direct losses such as VoLL, there are no 

standard approaches to estimating the economic impact of power outages. Shuai et al. (2018) review 

the literature on the economic losses associated with power outages, including typical methodological 

approaches. The authors find that there is little research on estimating indirect economic losses and 

identify three distinct views on defining indirect impacts: (1) the “other” costs incurred due to an 

outage, such as cleanup costs and using generators (as in Kim and Cho (2017); (2) psychological impacts 

and other impacts that are difficult to monetize; and (3) the impacts due to insufficient supply of 

commodities on consumption and industrial production. Our paper fills the third gap.  

Many studies on economic losses due to power outages rely on firm level survey data. For instance, 

Moyo (2013) estimates the impact of the quality of power infrastructure on firm productivity. Using 



World Bank Enterprise Survey (WBES) data for firms in Africa, the author finds that the number of hours 

per day without power and output lost due to outages have a negative impact on productivity, with 

firms that own generators minimizing the negative impacts in Uganda, Tanzania, and Mauritius. Adbasi 

(2018) uses the WBES to study productivity impacts on firms in Ethiopia and finds that power outages 

increase firm costs by 15 %. Fisher-Vanden et al. (2015) estimate the impacts of electricity shortages on 

firm productivity in China. Using a panel of firms from 1999-2004, they find that firms were able to 

offset productivity losses by substituting materials for energy and engaging in costly outsourcing, with 

production costs increasing by 8 %. Grainger and Zhang (2019) conduct a survey of manufacturers in 

Pakistan and estimate productivity losses due to power outages. They find that a one-hour outage 

decreases annual value added by 20 % and decreases annual revenue by 10 %.  

Cole et al. (2018) caution that power outages may be endogenous, that is, the factors that affect power 

outages may also affect productivity. One possibility is that government investment in infrastructure 

may be motivated by government support of certain firms or industries. For instance, a state or local 

government might improve infrastructure for a business to keep jobs local.  Another factor may be that 

firm location may be driven by power reliability. Finally, self-reported power outages may be biased by a 

firm’s productivity. Alam (2013) studies the impacts of power outages on steel and rice mills in India. 

Using satellite data as an objective measure of power outages, the author finds that firms adapt and 

reoptimize to deal with shortages. Moreover, only steel mills experience a decrease in profits even 

though both industries adapt to outages by using less publicly provided power. Alcott et al. (2016) 

estimate the impact of power outages on manufacturing firms in India. Using shifts in demand for 

hydroelectric power to instrument for shortages, they find an average reduction in firm revenue 

between 5 % and 10 %, while productivity losses are mitigated by the ability to store inputs during an 

outage. Cole et al. (2018) use data from the WBES to analyze the impact of power outages on firm sales, 

profits, and productivity in Sub-Saharan Africa. Using variation in hydro-power consumption due to local 

climate, they find that the reduction in sales is much larger when accounting for endogeneity (between 

83 % and 117 % with the instrument, versus between 3.8 % and 12.4 % without). Finally, Abeberese et 

al. (2019) study the impact of power outages on manufacturing productivity in Ghana. Using a 

government power-rationing program as a source of exogenous variation, they find that such power 

outages result in reduced productivity, and that generators are not enough to mitigate the negative 

impacts of outages. 

Other methods include hybrid approaches as well as computational modeling. Coll-Mayor et al. (2012) 

present a general methodology that builds on the production-function approach for estimating VoLL to 

estimate the economic losses from power outages. The method estimates economic losses as a function 

of VoLL, actual power lost in a disruption, and hours of production downtime. The methodology is  

illustrated on five regions in Spain, with losses ranging from about $200 000 Euros to nearly $60m Euros, 

depending on the region and zone (e.g., urban or rural). Larsen et al. (2018) present a very different 

approach to project the long-run costs of power interruptions in a model that incorporates regional 

models of power-system reliability and severe weather. They find total costs to residential and 

commercial customers in the United States between $1.5 and $3.5 trillion by the year 2050, depending 

on the level of undergrounding and operations and maintenance. Finally, Fried and Lagakos (2020) 

construct a dynamic general equilibrium model that includes electricity as an input, as well as rationing 

and self-production via generators, both of which are common in the developing world. They find that 

while the short-run impacts on productivity from reducing outages are small, the long-run impacts are 



much larger. Other studies utilizing general equilibrium models include Rose et al. (2005), who examines 

the effects of four rolling blackouts in Los Angeles County; Rose et al. (2007), who examine power loss in 

Los Angeles due to terrorist attacks; Guha (2005), who examines the effect of power outages in 

Tennessee due to natural hazards; Wing and Rose (2018), who examine a two-week power outage in the 

California bay area. Rose et al (1997) also examine a hypothetical power outage in Shelby County, TN 

using input-output analysis, another method for measuring direct and indirect effects. It is worth 

mentioning that while some of these studies consider indirect effects in a computational model, they do 

not explicitly account for the short-term downstream effects of a firm experiencing a power outage. 

There are different types of indirect effects with downstream supply chain effects being one of the 

indirect effects that are not well understood. 

GDP. There is also literature that investigates the effect of power outages on the macroeconomy. 

Andersen and Dalgaard (2013) estimate the effect of power outages on economic growth in Sub-

Saharan Africa, using a combination of GDP and satellite imagery data. Das and McFarlane (2019) study 

the dynamics of electric power losses and GDP in Jamaica. They find that electric power losses have a 

negative impact on GDP that persists in the long run. There is also a related literature studying the 

relationship between electricity consumption and GDP (for instance, Ho and Siu 2007; Huang et al. 2008; 

Fallahi 2011).  

WTP. Another strand of literature attempts to estimate the willingness-to-pay (WTP) for power 

reliability, or willingness-to-accept (WTA) power disruptions. Carlsson et al. (2020) estimate small 

business willingness-to-pay for reductions in power outages. Using a stated preference survey in 

Ethiopia, they find small businesses are willing to pay the equivalent of a 16 % tariff increase for a 

reduction of one power outage. Ghosh et al. (2017) conduct a contingent valuation analysis of small 

manufacturers in India and find that firms are willing to pay 20 % more in electricity bills, on average, to 

avoid power outages. Niroomand and Jenkins (2020) conduct a survey of households and firms in Nepal 

to estimate willingness to pay for a 50 % reduction in outages and a total reduction in outages. For 

businesses, they find a median WTP of 20 % of their current bill for a 50 % reduction and 62 % of their 

current bill for a total reduction.  

There are also many studies focused on estimating households’ WTP to avoid power outages. For 

example, Ozbafli and Jenkins (2016) estimate household willingness-to-pay for reductions in power 

outages in North Cyprus. Using a choice experiment approach, they estimate that households are willing 

to pay 3.6 % more per month in the summer and 13.9 % more per month in the winter to avoid power 

outages. Carlsson et al. (2011) conduct a contingent-valuation survey of Swedish households and find 

that experience with outages actually decreases WTP. See also WTP studies by Pepermans (2011) on 

Flemish households and Abrate et al. (2016) on Italian households.  

Literature Summary: Table 2 categorizes the literature and methods discussed above by the point in the 

supply chain where the measured losses occurred and the relative time period in which the measured 

losses occurred. Although the delineation between short-term and long-term losses is vague, short-term 

losses are generally those that occur during the days or weeks in which a power disturbance occurs 

while long-term losses are those that occur in the months or years following a disturbance. Upstream 

losses are those experienced by the suppliers to establishments that experienced a power outage (e.g., 

losses due to a decrease in orders) while downstream losses are those that experience loss as a result of 

their suppliers experiencing a power outage (e.g., shortage of supplies). Direct losses are those that 



occur at the establishment that experienced the power outage. Note that a great deal of the literature 

falls into the category of direct short-term losses. That is, the literature has significant coverage of the 

losses that occur at the establishments that experience a power disturbance and at the time of the  

Table 2: Literature on Economic Impacts of Electricity Disruption by Time of Loss and Supply Chain Point  
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disturbance. There are also a number of papers discussing upstream losses and long-term losses; 

however, we did not identify literature examining the downstream short-term losses. That is, the 

immediate shortages or delays that result from having suppliers that experience a power disturbance. 

This paper falls into that category. It is important to note that long-term losses are often measured using 

computable general equilibria models, which determine a new economic equilibrium given economic 

disruptions. These theoretical equilibriums take time to occur, making them long term effects. 

Generally, these models do not estimate the losses that might occur when supplies fail to arrive on time 

immediately following a power disturbance. The next section discusses the data used in this analysis. 

3. Data 



This analysis uses quarterly data on U.S. value added and “electric disturbance events” by state. The 

value-added data is from the Bureau of Economic Analysis and includes data on U.S. manufacturing, 

durable goods, nondurable goods, and total private industry in chained 2012 dollars (Bureau of 

Economic Analysis 2020).  Data on the duration of “electric disturbance events” is provided by the 

Department of Energy (Department of Energy 2020). It includes the start and end time of the event, 

which we used to calculate the duration in hours. Each disturbance event indicates the location of the 

event, which can be a city, county, state, or other geographic entity. For this analysis, we identified all 

the states involved affected by the disturbance. A summary of the data is found in Table 3. A supply 

chain variable, described below, is also summarized. The precision in the electric disturbance data is 

unclear. For instance, the geography for affected areas is often vague and the customers affected often 

appears to be rounded up/down. Issues of this nature will reduce the statistical significance in the 

analysis, making our estimate a conservative estimate. 

Table 3: Data Summary 

Year 
Manufacturing 

GDP 

Durable 
Goods 
GDP 

Nondurable 
Goods GDP 

Private 
Industry 

GDP 

Average of 
Disturbance 
duration in 

Hours 

Range of 
Disturbance 
Duration in 

Hours 

Average 
of 

Supply 
Chain 

Variable 

Range of 
Supply 
Chain 

Variable 

2005 37 306.9 17 497.1 20 250.5 254 524.1 38.2 0 - 1110.8 37.7 1.7 - 150 

2006 39 319.2 18 802.9 20 832.3 262 756.7 36.6 0 - 1344.9 40.2 4 - 266.9 

2007 40 537.3 19 654.3 21 177.1 267 100.9 15.4 0 - 327.9 21.5 0.4 - 100.4 

2008 39 649.7 19 727.2 20 027.3 265 466.1 51.5 0 - 1652.1 80.9 7 - 757.4 

2009 35 946.1 16 832.4 19 427.1 257 454.1 45.1 0 - 1374.7 64.1 0.9 - 400.2 

2010 37 954.3 18 969.4 19 116.5 264 122.3 31.3 0 - 490.7 51.8 4.1 - 221 

2011 38 038.8 20 252.9 17 799.0 268 585.6 63.5 0 - 821.3 87.1 10.6 - 341.8 

2012 37 785.3 20 817.8 16 967.5 275 245.4 52.8 0 - 828.8 53.9 2.3 - 377.6 

2013 38 946.0 21 331.6 17 616.8 280 440.7 52.6 0 - 3358.7 74.2 1.6 - 544.1 

2014 39 613.1 21 647.0 17 956.2 288 559.6 45.3 0 - 1925.8 46.6 2.2 - 491.3 

2015 40 171.2 22 075.4 18 106.8 298 864.6 16.7 0 - 427.8 25.7 0.6 - 173.2 

2016 39 846.2 22 051.9 17 803.5 304 217.8 20.3 0 - 688.7 41.4 1.3 - 233.1 

2017 42 506.0 23 725.1 18 801.5 311 887.5 20.6 0 - 1041.8 52.4 1.9 - 410.4 

2018 42 629.0 23 905.2 18 754.8 321 989.1 38.8 0 - 1514 56.5 3.3 - 530.1 

2019 43 483.8 24 282.1 19 234.5 329 666.1 24.6 0 - 447.1 43.3 7.4 - 183.9 

2020 40 872.1 22 452.9 18 455.4 312 246.3 24.2 0 - 105.7 23.7 5.4 - 43.9 
Data Sources: Bureau of Economic Analysis. 2020. Real GDP by State. https://apps.bea.gov/iTable/index_regional.cfm 
Department of Energy. 2020. Electric Disturbance Events (OE-417) Annual Summaries. 

https://www.oe.netl.doe.gov/OE417_annual_summary.aspx 

For measures of the domestic flow of goods, data from the Freight Analysis Framework (FAF) was used 

and accessed through the US Department of Transportation (2018). FAF data provides shipments of 

goods by origin and destination for each of the 50 states covering the entire US from 2002 through 

2016. For years 2002 through 2006, the FAF 2002 data was used. For years 2007 through 2012, the 2007 

data was used. After 2012, annual data is available. For this paper, the dollar value of a selection of 

goods was used. These industries were selected to represent intermediate goods that might have low 

levels of substitutability and include nonmetal mineral products, base metals, articles-base metal, 

machinery, electronics, motorized vehicles, transport equipment, and precision instruments. The last 



two datasets used are from the Annual Survey of State and Local Finances (U.S. Census 2020) and 

private nonresidential construction (U.S. Census 2021). 

4. Methods 

This analysis tests four hypotheses using four models (see Table 4) to examine the effect of power 

disturbances in the supply chain on value added locally. Note that the terms “local” and “supply chain” 

are used to distinguish between the geographic location of the power disturbances (local) and the 

geography of the supply chain locations. There are four variations on the two hypotheses with the 

difference being the industry being examined: manufacturing, durable goods, nondurable goods, and 

total private industry (see Table 4 for details). The study period for the analysis is 2005 through the 

second quarter of 2020. 

Table 4: Models and Hypotheses 

    
Dependent Variable 

(value added) 
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2nd Quarter Indicator X X X X 

3rd Quarter Indicator X X X X 

4th Quarter Indicator X X X X 

Manufacturing GDP Lagged 1, 2, and 3 Quarters X       

Durable Goods GDP Lagged 1, 2, 3, and 4 Quarters   X     

Nondurable Goods GDP Lagged 1, 2, 3, and 4 Quarters     X   

Private Industry GDP Lagged 1, 2, and 3 Quarters       X 

Hours of Disturbance X X X X 

No Disturbance Indicator X X X X 

State Government Construction X X X X 

Private Construction X X X X 

State Government Construction Supply Chain X X X X 

Private Construction Supply Chain X X X X 

Supply Chain Disturbance X X X X 

H
yp

o
th

es
es

 

1. Power Disturbances in the supply chain reduce manufacturing value added 
locally. 

X       

2. Power Disturbances in the supply chain reduce durable goods value added 

locally. 
  X     

3. Power Disturbances in the supply chain reduce nondurable goods value 
added locally. 

    X   

4. Power Disturbances in the supply chain reduce private industry value added 
locally. 

      X 

 



There are a limited number of studies on the impact of power disruptions on downstream value added, 
but there are studies examining the effects of research/development and productivity (Ugur et al., 
2016). Two approaches are commonly used for such an analysis: the primal approach (production 
function) and the dual approach (cost function) with the primal approach being more predominant 
(Ugur et al., 2016). This paper adopts the primal approach and uses a Cobb-Douglas production function. 
These models tend to use real output as the dependent variable with research and development capital, 
capital stock, labor (number of employees or hours worked), and technological progress as independent 
variables: 

𝑄 = 𝐴𝑒𝜆𝐶𝛽𝑥1 𝐿𝛽𝑥2 𝐾𝛽𝑥3 ℰ𝛽𝑥4  

where 

𝑄 = Real output 

𝐶 = Real capital stock 

𝐾 = Real research and development capital 

𝐿 = Labor (number of employees or labor hours worked) 

𝐴𝑒 𝜆 = is technological progress with a rate of disembodied technological change 𝜆 

𝛽𝑥𝑛  = Estimated parameters 

In this instance, we use lagged dependent variables to control for capital, labor, and other factors. It also 
controls for factors that might happen to correlate with power outages and reduces the likelihood that 
we are identifying spurious or meaningless correlations. Cobb-Douglas production functions have also 
been used to examine natural hazard impacts (Mohan et al., 2019), which is closely related to power 
disruptions; however, there are also non-hazard causes for power disturbances. 

Real value added, a measure of real output, is the dependent variable with the model including lagged 

dependent variables. There are also three indicator variables that indicate the second, third, and fourth 

quarters of the year. The total duration in hours for all power disturbances is included as an 

independent variable.3 This includes any incident that indicates that that state or a geographic area 

within that state occurred. A supply chain variable, representing tier 1 suppliers for a state, is included 

which is the sum of the duration of disturbances within the top 10 supply chain states weighted by the 

annual dollar value of shipments originating in each state. A common idiom is that 20 % of the cause 

represents 80 % of the problem. For this reason, the top 10 states were selected as this represents the 

top 20 % of supply chain entities. Recall that the FAF data, which is used to identify the top supply chain 

entities and weight supply chain effects, is not available annually for all years. The effect of this should 

be minimal. The proportions that are calculated using the FAF data (discussed below) change slowly for 

a particular location. Thus, the selection of the largest supply chain locations would not change 

significantly, and the weighting would be similar. The variation in this data is primarily between regions 

 
3 Note that, for the model, zero values (i.e., quarters with no power disturbances) were changed from zero to 
0.000001 in order to be able to take the natural log of the values. A variable indicating no power disturbances was 
added to the model. 



rather than over time; thus, the majority of the variation is captured despite the lack of annual data for 

all years.  

As previously, noted, endogeneity has been a concern in examining power outages (Cole et al. 2018). For 

this reason, we sought out an instrumental variable to test for endogeneity. We explored a few 

variables, including the proportion of energy produced by hydroelectric generation, an instrument 

utilized by Cole et al. (2018). We used the Cragg-Donald Wald F statistic and Kleibergen-Paap rk Wald F 

statistic to test for weak identification (Stock and Yogo 2005; Greene 2008; Kleibergen and Paap 2006). 

Unfortunately, we did not find a suitable instrument (for power disturbances) for the test. The concern 

for endogeneity is that government policies and investments might affect both energy performance and 

firm performance. As discussed below, we use a fixed effects model, which aids in addressing this issue 

since we model impacts at the state level. We also include variables for state construction of electric 

utilities from the Annual Survey of State and Local Finances (U.S. Census 2020) and private 

nonresidential construction (U.S. Census 2021) to control for investments that may affect energy 

performance that could correlate with power disturbances and value added. A region that invests more 

is likely to have fewer outages and high value added. Including private nonresidential construction 

reduces the likelihood that we are identifying spurious or meaningless correlations with these 

investments rather than the effect of power disturbances. The model also includes analogous variables 

for the sum of government and private construction spending in the supply chain locations. To further 

address endogeneity, we also compare with results from a model with lagged variables for power. A 

variable for local power disturbances is included to ensure that the variable for supply chain impacts is 

not capturing local effects. The structural equation for the model in log terms is represented as the 

following: 

ln(𝑉𝐴𝑖,𝑡) = 𝛽1 ln(𝑉𝐴𝑖,𝑡−1) + 𝛽2 ln(𝑉𝐴𝑖,𝑡−2) + 𝛽3 ln(𝑉𝐴𝑖,𝑡−3) + 𝛽4 ln(𝐷𝐼𝑆𝑇𝑡) + 𝛽5 ln(𝑆𝑈𝑃𝐶𝐻𝑁𝑡)

+ 𝛽6𝑁𝑜𝐷𝑖𝑠𝑡𝑡 + 𝛽7𝐺𝑂𝑉𝐶𝑁𝑆𝑇𝐿𝑜𝑐,𝑡−1 + 𝛽8𝑃𝑅𝐼𝑉𝐶𝑁𝑆𝑇𝐿𝑂𝐶,𝑡−1 + 𝛽9𝐺𝑂𝑉𝐶𝑁𝑆𝑇𝑆𝐶𝐻𝑁,𝑡−1

+ 𝛽10𝑃𝑅𝐼𝑉𝐶𝑁𝑆𝑇𝑆𝐶𝐻𝑁,𝑡−1 + 𝛽11𝑄2 + 𝛽12𝑄3 + 𝛽13𝑄4 + 𝛼𝑖 + 𝛿𝑡 + 휀𝑖𝑡 

where 

𝑆𝑈𝑃𝐶𝐻𝑁𝑡 = ∑
𝑆𝐶𝑡𝑜𝑝−𝑧,𝑡

∑ 𝑆𝐶𝑖,𝑡
50
i=1

𝐷𝐼𝑆𝑇𝑡𝑜𝑝−𝑧,𝑡

10

𝑧=1

 

and where 

𝑉𝐴𝑖,𝑡  = Real value added (i.e., real gross domestic product) in 2012 chained dollars for industry 𝑖 where 

𝑡 − 𝑥 indicates a lag of 𝑥 quarters, and 𝑖 is one of four industries: manufacturing, durable goods, 

nondurable goods, or total private industry. Note that the models of durable and nondurable goods 

includes an additional lag (𝑉𝐴𝑖,𝑡−4). 

𝐷𝐼𝑆𝑇𝑡 = Total power disturbance in hours for time 𝑡.  

𝛿𝑡  = Quarterly fixed effect 

𝑁𝑜𝐷𝑖𝑠𝑡𝑡= An indicator variable for no power disturbances at time 𝑡 where 𝑁𝑜𝐷𝑖𝑠𝑡 equals one if there 

are no power disturbances and zero otherwise. 



𝐺𝑂𝑉𝐶𝑁𝑆𝑇𝐿𝑜𝑐,𝑡−1 = Government construction of electric utilities from the Annual Survey of State and 

Local Finances (U.S. Census 2020) where 𝐿𝑜𝑐 indicates the local value  

𝑃𝑅𝐼𝑉𝐶𝑁𝑆𝑇𝐿𝑂𝐶,𝑡−1 = Private nonresidential construction from the Value of Construction Put in Place 

Survey (U.S. Census 2021) where 𝐿𝑜𝑐 indicates the local value 

𝐺𝑂𝑉𝐶𝑁𝑆𝑇𝑆𝐶𝐻𝑁,𝑡−1 = Government construction of electric utilities from the Annual Survey of State and 

Local Finances (U.S. Census 2020) where 𝑆𝐶𝐻𝑁 indicates the sum of the top ten supply chain values 

𝑃𝑅𝐼𝑉𝐶𝑁𝑆𝑇𝑆𝐶𝐻𝑁,𝑡−1 = Private nonresidential construction from the Value of Construction Put in Place 

Survey (U.S. Census 2021) where 𝑆𝐶𝐻𝑁 indicates the sum of the top ten supply chain values 

𝑄𝑥  = An indicator variable for quarter 𝑥 where 𝑥 is between 2 and 4. 

𝑆𝐶𝑡𝑜𝑝−𝑧  = The 𝑧 largest supply chain entity for the state based on shipments from one state to another 

where 𝑧 is 1 through 10. 

𝐷𝐼𝑆𝑇𝑡𝑜𝑝−𝑧 = Total power disturbance in the 𝑧 largest supply chain entity for the state based on 

shipments from one state to another where 𝑧 is 1 through 10. 

𝑆𝐶𝑖 = The total shipments originating from state 𝑖 

𝛽𝑥  = The parameters to be estimated where 𝑥 is 1 to 14 

Note that although the parameters are estimated using linear regression, the relationship between the 

dependent variable and independent variable is not linear. The relationship is that of a Cobb-Douglas 

production function, as discussed above. The natural log of each side is taken to put the equation in a 

linear format to estimate parameters. Despite the linear format, the relationship is multiplicative and 

exponential. 

As discussed in the results section, the local variables are not statistically significant; therefore, the 

results from a third model are presented. This model uses the model presented above excluding the 

variable for local power disturbances (𝐷𝐼𝑆𝑇𝑡) and the indicator variable for no power disturbances 

(𝑁𝑜𝐷𝑖𝑠𝑡𝑡). This model is included for thoroughness and to confirm that the results for the variable for 

power outages in the supply chain remain largely unchanged.  

The Akaike Information Criterion (AIC) was used to identify the number of lags to include to address 

autocorrelation (Akaike 1973), resulting in three to four lags of the dependent variable being included in 

the model. A test for heteroskedasticity using Stata, which includes three versions of the Breusch-Pagan 

(1979) and Cook-Weisberg (1983) test (Stata 2013a), was conducted. The results suggest that 

heteroskedasticity was present in the data. As a result, we fit a fixed-effects model using a “GLS 

estimator (producing a matrix-weighted average of the between and within results)” (Stata 2013b, 

Baltagi 2013, Wooldridge 2013). Previous research has shown that this approach can provide robust 

estimates for data with this issue (Hoechle 2007). It should be noted that a test presented by Hausman 

(1978) was used to determine whether a fixed effects or random effects model was more appropriate 

with the results suggesting a fixed effects model was preferred.  

Given estimated model parameters, two simulations were run where the data was altered to forecast 

value added without any power disturbances. The model in the equation above is used, which excludes 



lagged variables for power disturbances but includes the local power disturbance variable. This 

simulation gives an indication as to the total losses associated with power disturbances. In the first 

simulation the local disturbance variable 𝐷𝐼𝑆𝑇 was set to 0.000001 and zero disturbance indicator 

𝑁𝑜𝐷𝑖𝑠𝑡 was set to one, which equates to zero power disturbances in the model. This measures the 

effect of power disturbances on those whose power was affected. Recall that zero values of 𝐷𝐼𝑆𝑇  were 

changed to a value of 0.000001 so that we could take the natural log of the variable and 𝑁𝑜𝐷𝑖𝑠𝑡 was 

added to the model to account for zero values that were changed. In the second simulation, the supply 

chain variable 𝑆𝑈𝑃𝐶𝐻𝑁 was set to one. Recall that 𝑆𝑈𝑃𝐶𝐻𝑁  represents power outages in the supply 

chain. The simulations were ran for each of the four models. Using a bootstrapping procedure, the 95 % 

confidence intervals were calculated where the total impact is estimated for a random selection of 

observations. This process was iterated 5000 times in order to provide statistically representative  

results. 

Finally, an investment analysis was conducted to examine what level of improvement in power 

disturbances would make a $50 billion investment economical. We examined four possibilities resulting 

from a $50 billion investment: 25 % reduction, 20 % reduction, 15 % reduction, and 10 % reduction in 

losses due to supply chain impacts. The net present value, internal rate of return, and payback period, as 

outlined in Thomas (2017), were used for the analysis. A modest 10-year study period, an annual 2 % 

decrease in the effect of the investment, and a 5 % discount rate were used. The 2 % decrease in the 

effect of the investment is used to account for degradation of equipment. A second set of analyses was 

conducted using the same variables but with a 20-year study period. A third set was examined with the 

10-year study period but with a 5 % annual degradation of equipment. Finally, two additional 

investment analyses were conducted, which utilize direct losses from previously published research. 

One includes high estimate and one includes a low estimate of direct losses. 

5. Results 

Results for the regression analysis are shown in Table 5A with a version of the models with lagged power 

outage variables is presented in Table 5B and a version without local power disturbance shown in Table 

5C. The results from Table 5A show that the local power outages were not statistically significant in any 

of the four models. The results from Table 5B show similar results and Table 5C shows similar results for 

power disturbances in the supply after removing the local power disturbance variables. A simulation was 

conducted where no power disturbances are simulated with the results shown in Table 6. The number 

of observations ranged between 2756 and 2764. The R2 ranged between 0.9980 and 0.9998, which is 

high due to the inclusion of lagged dependent variables. 

The variable for local power disturbances (𝐷𝐼𝑆𝑇), which was used to control for local effects, was not 

statistically significant in any of the models; although, the no outage indicator variable was statistically 

significant and negative in one of the models. Previously published research suggests that power  



Table 5A: Results of Analysis, Elasticities 
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2nd Quarter Indicator (Q2) 0.0086*** 0.0088*** 0.0088*** 0.0011 

3rd Quarter Indicator (Q3) 0.0046** 0.0131*** -0.0036 0.0005 
4th Quarter Indicator (Q4) 0.0065*** 0.0084*** 0.0030 0.0010 
Manufacturing VA Lagged 1 Quarter (VAman,t-1) 1.1149***       

Manufacturing VA Lagged 2 Quarters (VAman,t-2) -0.0473       
Manufacturing VA Lagged 3 Quarters (VAman,t-3) -0.1776***       
Durable Goods VA Lagged 1 Quarter  (VADur,t-1)   1.1393***     

Durable Goods VA Lagged 2 Quarters (VADur,t-2)   -0.0013     
Durable Goods VA Lagged 3 Quarters (VADur,t-3)   -0.3032***     

Durable Goods VA Lagged 4 Quarters (VADur,t-4)   0.0791***     

Nondurable Goods VA Lagged 1 Quarter (VANonDur,t-1)     1.0248***   
Nondurable Goods VA Lagged 2 Quarters (VANonDur,t-2)     0.0089   
Nondurable Goods VA Lagged 3 Quarters (VANonDur,t-3)     -0.1704***   

Nondurable Goods VA Lagged 4 Quarters (VANonDur,t-4)     0.0374   
Private Industry VA Lagged 1 Quarter (VAPriv,t-1)       1.0544*** 
Private Industry VA Lagged 2 Quarters (VAPriv,t-2)       0.0124 

Private Industry VA Lagged 3 Quarters (VAPriv,t-3)       -0.0784*** 
State Government Construction (GOVCNSTLoc,t-1 0.0021 -0.0007 0.0058 0.0001 
Private Construction (PRIVCNSTLOC,t-1) -0.0050 -0.0049** -0.0018 -0.003** 
State Government Construction Supply Chain 
(GOVCNSTSCHN,t-1) <0.0001 0.0001 0.0008 <0.0001 
Private Construction Supply Chain (PRIVCNSTSCHN,t-1) 0.0138*** 0.0044 0.0179*** 0.0007 
Hours of Outage (DISTt) -0.0008 -0.0008 -0.0009 -0.0003 

95 % confidence interval 
-0.0020 -0.0021 -0.0024 -0.0007 
0.0003 0.0004 0.0007 0.0001 

No Outage Indicator (NoDistt) -0.0187* -0.0174 -0.0201 -0.0056 

Supply Chain Outage  (SUPCHNt) -0.0065*** -0.0041*** -0.0092*** -0.0023*** 

95 % confidence interval 
-0.0079 -0.0067 -0.0111 -0.0031 
-0.0052 -0.0015 -0.0074 -0.0015 

Constant 0.9974*** 0.7964*** 0.7436*** 0.1667** 
sigma_u 0.1450 0.1293 0.1293 0.0157 
sigma_e 0.0355 0.0382 0.0526 0.0139 

rho 0.9436 0.9199 0.8579 0.5589 

* Statistically significant at the 0.10 level         

** Statistically significant at the 0.05 level         

*** Statistically significant at the 0.01 level 

Note: VA=Value Added, Dur=Durable Goods, NonDur=Nondurable Goods, Priv=Private Industry 

 

 

 

 



Table 5B: Results of Analysis, Elasticities (lagged power outage variables) 
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2nd Quarter Indicator (Q2) 0.0112*** 0.0105*** 0.0123*** 0.0019** 
3rd Quarter Indicator (Q3) 0.0054*** 0.0128*** -0.0014 0.0006 
4th Quarter Indicator (Q4) 0.0065*** 0.0079*** 0.0034* 0.0009 

Manufacturing VA Lagged 1 Quarter (VAman,t-1) 1.1279***       
Manufacturing VA Lagged 2 Quarters (VAman,t-2) -0.0560       
Manufacturing VA Lagged 3 Quarters (VAman,t-3) -0.1809***       
Durable Goods VA Lagged 1 Quarter  (VADur,t-1)   1.1439***     

Durable Goods VA Lagged 2 Quarters (VADur,t-2)   -0.0059     
Durable Goods VA Lagged 3 Quarters (VADur,t-3)   -0.3099***     

Durable Goods VA Lagged 4 Quarters (VADur,t-4)   0.0867***     

Nondurable Goods VA Lagged 1 Quarter (VANonDur,t-1)     1.0398***   
Nondurable Goods VA Lagged 2 Quarters (VANonDur,t-2)     0.0029   
Nondurable Goods VA Lagged 3 Quarters (VANonDur,t-3)     -0.1935***   

Nondurable Goods VA Lagged 4 Quarters (VANonDur,t-4)     0.0510**   

Private Industry VA Lagged 1 Quarter (VAPriv,t-1)       1.0629*** 
Private Industry VA Lagged 2 Quarters (VAPriv,t-2)       0.0155 

Private Industry VA Lagged 3 Quarters (VAPriv,t-3)       -0.0907*** 
State Government Construction (GOVCNSTLoc,t-1) 0.0022 -0.0007 0.0059 0.0002 
Private Construction (PRIVCNSTLOC,t-1) -0.0046 -0.0047** -0.0013 -0.0028** 
State Government Construction Supply Chain 
(GOVCNSTSCHN,t-1) 0.0001 0.0001 0.0009 <0.0001 
Private Construction Supply Chain (PRIVCNSTSCHN,t-1) 0.0147*** 0.0045 0.0197*** 0.0009 

Hours of Outage (DISTt-1) -0.0003 -0.0005 <0.0001 -0.0003 

95 % confidence interval 
-0.0013 -0.0017 -0.0013 -0.0006 
0.0008 0.0008 0.0014 0.0001 

No Outage Indicator (NoDistt-1) -0.0059 -0.0111 0.0031 -0.0063** 
Supply Chain Outage  (SUPCHNt-1) 0.0001 -0.0019** 0.0024 -0.0001 

95 % confidence interval 
-0.0016 -0.0035 -0.0008 -0.0007 

0.0019 -0.0003 0.0055 0.0005 
Constant 0.9468*** 0.7766*** 0.6738*** 0.164** 
sigma_u 0.1434 0.1277 0.1300 0.0159 
sigma_e 0.0360 0.0383 0.0533 0.0141 

rho 0.9406 0.9174 0.8561 0.5601 

* Statistically significant at the 0.10 level 
** Statistically significant at the 0.05 level 

*** Statistically significant at the 0.01 level 
Note: VA=Value Added, Dur=Durable Goods, NonDur=Nondurable Goods, Priv=Private Industry 

 

 

 

 



Table 5C: Results of Analysis, Elasticities (No Local Variables) 
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2nd Quarter Indicator (Q2) 0.009*** 0.0091*** 0.0092*** 0.0012 
3rd Quarter Indicator (Q3) 0.0046** 0.0131*** -0.0035 0.0005 
4th Quarter Indicator (Q4) 0.0062*** 0.0082*** 0.0027 0.001 

Manufacturing VA Lagged 1 Quarter (VAman,t-1) 1.1164***       
Manufacturing VA Lagged 2 Quarters (VAman,t-2) -0.0501       
Manufacturing VA Lagged 3 Quarters (VAman,t-3) -0.1747***       

Durable Goods VA Lagged 1 Quarter  (VADur,t-1)   1.1414***     
Durable Goods VA Lagged 2 Quarters (VADur,t-2)   -0.0039     

Durable Goods VA Lagged 3 Quarters (VADur,t-3)   -0.3016***     

Durable Goods VA Lagged 4 Quarters (VADur,t-4)   0.0802***     
Nondurable Goods VA Lagged 1 Quarter (VANonDur,t-1)     1.0247***   
Nondurable Goods VA Lagged 2 Quarters (VANonDur,t-2)     0.0087   

Nondurable Goods VA Lagged 3 Quarters (VANonDur,t-3)     -0.1706***   
Nondurable Goods VA Lagged 4 Quarters (VANonDur,t-4)     0.0369   
Private Industry VA Lagged 1 Quarter (VAPriv,t-1)       1.0553*** 

Private Industry VA Lagged 2 Quarters (VAPriv,t-2)       0.013 
Private Industry VA Lagged 3 Quarters (VAPriv,t-3)       -0.0787*** 
State Government Construction (GOVCNSTLoc,t-1 0.0021 -0.0007 0.0058 0.0001 
Private Construction (PRIVCNSTLOC,t-1) -0.0051 -0.005** -0.002 -0.0031** 
State Government Construction Supply Chain 
(GOVCNSTSCHN,t-1) 0.0001 0.0001 0.0009 <0.0001 
Private Construction Supply Chain (PRIVCNSTSCHN,t-1) 0.0144*** 0.0048 0.0189*** 0.0007 

Supply Chain Outage  (SUPCHNt) -0.0063*** -0.0040*** -0.009*** -0.0023*** 

95 % confidence interval 
-0.0077 0.0000 0.0000 0.0000 
-0.0050 -0.0066 -0.0107 -0.0030 

Constant 0.9704*** 0.7665*** 0.7371*** 0.1516** 

sigma_u 0.1437 0.1265 0.1315 0.0146 
sigma_e 0.0355 0.0382 0.0527 0.0139 

rho 0.9424 0.9164 0.8618 0.5236 

* Statistically significant at the 0.10 level         
** Statistically significant at the 0.05 level         

*** Statistically significant at the 0.01 level 
Note: VA=Value Added, Dur=Durable Goods, NonDur=Nondurable Goods, Priv=Private Industry 

 

 

 

 

 

 



Table 6: Simulation of No Power Disturbances: Percent Change in Value added  

  Manufacturing 
Durable 
Goods 

Nondurable 
Goods 

Private 
Industry 

Local Power Disturbance - - - - 

Supply Chain Power Disturbance 2.3% 1.5% 3.3% 0.8% 

95 % Confidence Interval 
-0.5% -1.8% -0.8% -0.2% 

5.2% 4.7% 7.4% 1.8% 

Observations 2757 2756 2756 2764 

R2  0.9991 0.9992 0.9980 0.9998 

 

disturbances have a negative effect on GDP. Research on the U.S. has estimated direct losses to be 

between $19 billion and $255 billion, as seen in Table 8. Research for other locations include papers 

such as Andersen and Dalgaard (2013) who examined the effect of power outages in Sub-Saharan Africa 

and Das and McFarlane (2019) who examined losses to GDP in Jamaica. The U.S. likely has lower levels 

of power disturbance; thus, our statistical study might not detect the local negative impacts on value 

added due to the lower level of disruption. Another reason for the lack of significance might be data 

resolution, as we examine quarterly losses at the state level. If disruptions are concentrated in time and 

space, areas with lower levels of disruption can obscure the impacts of outages. It is also important to 

note that power outages are often the result of natural hazards, which can induce post-event spending 

(e.g., relief funds) that can increase value added and obscure the impact of the hazard. Moreover, there 

are a number of reasons why a statistical model, such as ours, might not detect a decrease in value 

added locally due to power outages. Given that the results discussed below suggest there are 

downstream supply chain impacts from power outages and given the results from other studies, it is 

likely that there are local impacts that are not detected. For this reason, other approaches (e.g., VoLL) 

might be more appropriate for measuring direct short-term losses (i.e., top row middle column of Table 

2)..  

The variable for power disturbances in the supply chain (𝑆𝑈𝑃𝐶𝐻𝑁) was statistically significant at the 

0.01 level and negative in all four models shown in Table 5A. The elasticity for this variable ranged 

between -0.0092 and -0.0023 with the 95 % confidence intervals ranging between -0.0111 and -0.0015, 

as seen in Table 5A. The simulation results estimate that eliminating power disturbances in the supply 

chain can increase value added by between 0.8 % and 3.3 %; however, the 95 % confidence intervals 

range into negative values. When using lagged power disturbances, only the supply chain variable for 

durable goods for power disturbances was statistically significant (see Table 5B). Using lagged power 

outage variables assumes that the lagged variable serves as a good proxy for outages, which may or may 

not be the case. The effect of power disturbances might, for instance, stretch into the quarter following 

the power disturbance to make the lagged variable a good proxy. Since disturbances are often short 

term and relatively low impact (compared to, for instance, major natural disasters), the effect of these 

events may not extend that far for all industries. We explored the option of lagged power outage 

variables to address concerns regarding endogeneity and included the results to be thorough.  

This analysis tested four hypotheses with all four being confirmed (i.e., the statistical models failed to 

reject the null hypothesis of no association), corresponding to supply chain impacts from power 

disturbances, as shown in Table 7. The results as they relate to the hypotheses are discussed below.  



Table 7: Support for Hypothesis 

  
Dependent Variable 

(value added) 
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1. Power Disturbances in the supply chain reduce 
manufacturing value added locally. 

Yes       

2. Power Disturbances in the supply chain reduce durable 
goods value added locally. 

  Yes     

3. Power Disturbances in the supply chain reduce 
nondurable goods value added locally. 

    Yes   

4. Power Disturbances in the supply chain reduce private 
industry value added locally. 

      Yes 

 

Supply Chain Impact on Value Added: The hypothesis statements are in regard to power disturbances 

locally reducing value added in the supply chain: Hypothesis 1 regarding manufacturing value added; 

Hypothesis 2 regarding durable goods value added; Hypothesis 3 regarding nondurable goods value 

added; and Hypothesis 4 regarding private industry value added. All four of these hypotheses were 

supported by the models through the statistical significance of the variable measuring power 

disturbances in the supply chain (𝑆𝑈𝑃𝐶𝐻𝑁), which was significant at the 0.01 level for all four models. 

The elasticities for the model of manufacturing value added, durable goods value added, nondurable 

goods value added, and private industry value added were -0.0065, -0.0041, -0.0092, and -0.0023 

respectively. This means, for instance, that for every 1 % increase in outages in the supply chain, there is 

a -0.0065 % change in manufacturing value added.  

The lack of studies on the short-term downstream impacts and the varying factors from other studies 

make it difficult to compare our findings to others. For instance, Major (2015) found that a 2.08 % 

decrease in energy supply results in a 0.53 % decrease in GDP in Hungary. It also uses a computable 

general equilibrium model, which does not incorporate the immediate effects of a loss of power such as 

disorganization and the failure of goods to arrive on time at the factory floor. Our paper examined hours 

of outage rather than percent energy losses. We also used a correlation study rather than a CGE model. 

We find that a 1 % decrease in hours of outage results in an increase in private GDP by 0.0023 % 

indirectly through the downstream supply chain. Adbasi (2018) studies productivity impacts on firms in 

Ethiopia and finds that power outages increase firm costs by 15 %. This metric, however, is not easily 

comparable to our metrics or those of other papers. It is also important to note that the research also 

varies by country and economy type, which makes direct comparisons of limited value. Moreover, 

translating to common metrics/values and comparing the findings of the current literature might 

constitute a study in and of itself. Additionally, these papers do not examine the downstream short-run 

losses that are measured in this paper. 



Simulation: Two simulations were run where the data was altered to forecast value added without any 

power disturbances, which gives an indication as to the total losses associated with power disturbances. 

The results suggest that eliminating power outages increases manufacturing value added, durable goods 

value added, nondurable goods value added, and private industry value added by 2.3 % ($49.0 billion in 

2016), 1.5 % ($17.3 billion in 2016), 3.3 % ($30.3 billion in 2016), and 0.8 % ($133.1 billion in 2016). 

Our findings suggest that the supply chain may contain a large share of the economic impact when 

compared to the losses estimated in other papers (see Table 8). Even supplies of relatively small items 

can have a big impact downstream. For instance, significant delays in production of the Boeing 787 

Dreamliner were due to a shortage of fasteners (i.e., bolts). Bolts/fasteners for airplanes are unique in 

that they are aluminum and titanium, but their value is small compared to that of the 787 production 

(Reuters 2007). Additionally, the disruption of an individual supplier is likely to affect multiple 

customers, where the aggregate effect on the customers might exceed the effect on the supplier. For 

instance, the shortage of fasteners likely affected production of aircraft other than the 787. Thus, it is 

plausible for the downstream impact to exceed the direct impact.  

Table 8: Estimated U.S. Losses due to Power Outages 

  Current Dollars (billion) Constant 2016 Dollars (billion) 

  low  high low  high 

Swaminathan and Sen (1997) 150 224 

Primen (2001) 119 188 161 255 

LaCommare and Eto (2006) 22 135 26 161 
Campbell (2012) - weather 
related 

20 55 21 57 

President’s Council of Economic 
Advisers et al. (2013) 

18 33 19 34 

 

Loss estimates from literature, which is summarized in Table 8, range from $19 billion to $255 billion. 

The results from this paper suggest a large additional loss in GDP results from power outages in the 

short-term downstream supply chain. This creates a significant disconnect between the stakeholder that 

invests in reliability in the power grid and the stakeholders that experience the bulk of losses. This 

situation can easily result in under investment in reliability that diminishes GDP. To put the impact in 

perspective, the estimated $49.0 billion loss in the manufacturing industry equates to being in the top 

5 % of costs listed in NIST’s Manufacturing Cost Guide (Thomas 2020, Thomas 2019). While 

manufacturing represents 12.8 % of private industry value added, it experiences 36.8 % of the supply 

chain losses due to power disturbances, as suggested by the results of the simulation. The 

disproportional impact estimated for manufacturing is plausible given that manufacturing relies more 

heavily on the timely delivery of supplies than other industries. For instance, a retail store can continue 

to sell goods for quite some time even if a shipment is late; however, manufacturers need supplies to 

continue operations, especially given the emphasis on lean production where inventories are minimized 

as much as possible in order to reduce costs. The evidence suggests that investing in energy resilience 

will make the U.S. manufacturing industry more competitive along with doing the same for total private 

industry. The estimated total $133.1 billion loss of private industry value added is an annual loss 



estimate, meaning an increase in energy resilience would result in annual gains of as much as $133.1 

billion. This does not include all benefits, such as the impact to private households or direct impacts. 

Investment Analysis: To examine the return on investing in energy resilience, we can run some 

investment scenarios. Consider the effect of a $50 billion investment in energy resilience on private 

industry. Note that we do not know the percent reduction it might have on private losses, but we can 

consider various possibilities. In this instance, we investigate four possibilities resulting from a $50 

billion investment: 25 % reduction, 20 % reduction, 15 % reduction, 10 % reduction, and 5 % reduction in 

losses due to supply chain impacts. We will use the methods outlined in Thomas (2017) along with two 

different study periods (10 year and 20 year), two different annual rates of degradation (2 % and 5 %) on 

the effect of the investment, and a 5 % discount rate. As seen in Table 9, most of the scenarios are 

economical except for two scenarios where the decrease in losses is only 5 %. The last two sets of 

analyses in Table 9 include reductions in the highest (i.e., $255 billion) and lowest (i.e., $19 billion) direct 

losses from Table 8. All of the scenarios in these two sets were found to be economical.  

It is important to note that in our literature review we did not identify any studies that estimate the 

total impact of power outages nor does our study. That is, no study fit into all six boxes in Table 2. 

Moreover, to estimate the total impact, multiple approaches are needed.  

7. Conclusion 

This paper measures the economic impact of power disturbances on value added for manufacturing, 

durable goods, nondurable goods, and total private industry using regression analysis. The model 

includes a variable for power disturbances occurring locally and one for those states in the top 20 % of 

the supply chain for a given location. All four hypotheses examined in this paper were supported by the 

models. Moreover, the results suggest that power disturbances have a statistically significant effect on 

value added in the downstream supply chain for manufacturing, durable goods, nondurable goods, and 

the private industry. The results also suggest that the supply chain impact could be similar to or larger 

than the local impact. The supply chain impact was statistically significant with the 95 % confidence 

interval for the elasticity ranging between -0.0111 and -0.0015. Moreover, the evidence is fairly robust 

in showing that there is a negative effect from disturbances in the supply chain.  

Depending on the industry, the simulation results suggest between a 0.8 % and 3.3 % increase in value 

added in the absence of disturbances, which amounts to $49.0 billion in manufacturing and $133.1 

billion in total private industry; however, the 95 % confidence interval for the simulation ranges from 

negative values to positive values. Thus, the evidence for the total magnitude of the impact is less 

certain. More confident estimates of the magnitude of the effect require additional research and/or 

more precise data collection. The data specifies the duration of power disturbances; however, the 

extent of the disturbance (e.g., the number of customers affected) is often unclear. The geographic 

areas are also quite large, being at the state level. Sometimes, one disturbance lists multiple states. 

More detailed geographic information, such as county level observations, might bring more precision in 

measuring the magnitude of the impact. 



Table 9: Potential Return on a $50 billion Investment in Energy Resilience 

      

Decrease in Losses 
from $50 B 
Investment 

Present 
Value 

($million) 

Net 
Present 
Value 

($million) 

Internal 
Rate of 
Return 

Payback 
Period 
(years) 
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No Investment -1 658 720 NA NA NA 

25% -1 367 878 290 842 63.1% 2 

20% -1 436 046 222 674 50.0% 2 

15% -1 504 215 154 505 36.9% 3 

10% -1 572 383 86 337 23.6% 4 

5% -1 640 552 18 168 9.4% 9 

10
 Y

ea
r 

St
u

d
y 

Pe
ri

o
d

 

No Investment -1 027 763 NA NA NA 

25% -847 025 180 737 62.7% 2 

20% -893 173 134 590 49.3% 2 

15% -939 320 88 442 35.5% 3 

10% -985 468 42 295 20.8% 4 

5% -1 031 615 -3 853 3.3% 9 

5 
%
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No Investment -1 658 720 NA NA NA 

25% -1 478 634 180 086 57.4% 2 

20% -1 524 651 134 069 44.6% 3 

15% -1 570 669 88 052 31.7% 3 

10% -1 616 686 42 034 18.3% 5 

5% -1 662 703 -3 983 3.6% 11 
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No Investment -1 895 502 NA NA NA 

25% -1 682 572 212 931 66.5% 2 

20% -1 735 158 160 345 51.9% 2 

15% -1 787 744 107 758 37.2% 3 

10% -1 840 330 55 172 22.2% 4 

5% -1 892 916 2 586 5.9% 9 
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No Investment -4 836 584 NA NA NA 

25% -4 215 687 620 897 178.9% 1 

20% -4 349 866 486 717 142.0% 1 

15% -4 484 046 352 538 105.1% 1 

10% -4 618 225 218 359 68.0% 2 

5% -4 752 404 84 179 30.6% 3 

Note: Green indicates it is an economical investment 

Note: Red inicates that it is not economical 
 

 

 

 



In our literature review, we did not identify research that covered all loss types described in Table 2. 

Thus, a comprehensive estimate likely requires using multiple approaches. For instance, VoLL might be 

used for estimating direct short-term losses. CGE models might be used to estimate upstream and long-

term losses and econometric models used for estimating downstream short-term losses. 

Future research might aim to increase precision in understanding the magnitude of the impacts resulting 

from power disturbances. Data could be collected from manufacturers asking if they have experienced 

power disturbances and what the effects were experienced. This paper examined the impact of power 

disturbances occurring locally and occurring in the tier 1 supply chain. Future research could examine 

tier 2 effects and beyond along with the effects of power disturbances downstream.  
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