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Abstract

Recent applied microeconometrics research proposes various difference-in-differences
(DiD) estimators for the problem of dynamic heterogeneous treatment effects. We
show that the problem can be resolved by the local projections (LP) estimators of
the sort used in applied macroeconometrics, combined with a flexible ‘clean control’
condition to appropriately define treated and control units. Our proposed LP-DiD
estimator provides an overarching toolkit with several advantages. The method is
clear, simple, easy to compute, and transparent and flexible in its handling of treated
and control units. Moreover, it is quite general, including its ability to control for
pre-treatment values of the outcome and of other time-varying covariates. The LP-
DiD estimator does not suffer from the negative weighting problem, and indeed can
be implemented with any weighting scheme the investigator desires. Simulations
demonstrate the good performance of the LP-DiD estimator in common settings. Two
empirical applications illustrate how LP-DiD addresses the bias of conventional fixed
effects estimators, leading to potentially different results.
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1 Introduction

Difference-in-differences (DiD) is a widely used method for estimating causal impacts
with observational data. In its canonical form, with only two time periods, only two
groups of which one is treated, and under suitable assumptions (e.g., no anticipation and
parallel trends), the DiD estimator can identify the average treatment effect on the treated.

Yet, as the scale and scope of DiD applications have widened over time and expanded
into multi-period settings, its underpinnings have been stretched and doubts about the
generality of its underlying assumptions have proliferated, as highlighted in many notable
recent studies. The central matter of concern has been the appropriate implementation
of DiD in an expanded set of situations where different units enter treatment at dif-
ferent dates (staggered treatment adoption) and treatment effects can occur gradually
over time and be heterogeneous (Callaway and Sant’Anna, 2020; de Chaisemartin and
D’Haultfœuille, 2020; Sun and Abraham, 2020; Goodman-Bacon, 2021; Borusyak et al.,
2021). What was once a seemingly simple tool of general application increasingly appears
to need bespoke adjustments to suit each specific situation.

In this paper we take a different angle on this problem, drawing out a potentially
important link to a broader, flexible, encompassing family of alternative statistical tech-
niques close at hand. Put simply, we bring to the fore an essential congruity between the
concerns of applied microeconomists who encounter the challenge of estimating dynamic,
heterogeneous, staggered treatment effects, and the concerns of applied macroeconomists
who have long faced the task of estimating dynamic impulse-responses in time-series
or panel data. Once understood this way, the scope for fertile interaction between these
two strands of empirical work might seem obvious, despite its failure to happen quite
yet. To prompt such a conversation, in this paper we re-frame the expanded set of DiD
settings from the perspective of estimation via local projections, or LP, where the latter
is the statistical technique introduced in a time-series context in Jordà (2005). We take
these LP techniques from macroeconometrics in conjunction with the potential outcomes
approach of microeconometrics to derive results for a wide range of DiD settings, seeking
to develop a more general toolkit for implementing the DiD method.

Our proposed LP-DiD approach employs local projections to estimate dynamic effects
and a flexible ‘clean control’ condition in the spirit of Cengiz, Dube, Lindner, and Zipperer
(2019) to avoid the bias that can plague fixed-effects estimators when treatment adoption
is staggered (Borusyak, Jaravel, and Spiess, 2021; de Chaisemartin and D’Haultfœuille,
2020; Goodman-Bacon, 2021; Callaway and Sant’Anna, 2020; Sun and Abraham, 2020). In-
tuitively, the bias of fixed-effects estimators arises because previously treated units, which
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might still be experiencing lagged time-varying and heterogeneous treatment effects, are
implicitly used as controls for newly treated units. The clean control condition of LP-DiD
avoids this bias by restricting the estimation sample so that ‘unclean’ observations, which
outcome dynamics are still potentially influenced by a previous change in treatment
status, are not part of the control group.

Under the usual DiD assumptions, the LP-DiD estimator identifies a convex weighted
average of potentially heterogeneous cohort-specific treatment effects. We characterize
explicitly the weights assigned to each cohort-specific effect and show that they are
always positive and depend on treatment variance and subsample size. As we will
explain, however, it is easy to implement a different weighting scheme within LP-DiD –
including an equally-weighted average effect or any other desired scheme.

A skeptical reaction we can imagine hearing at this point is: why do we need yet
another expanded DiD technique? Indeed, several alternative DiD estimators have
recently been proposed to address the different settings that can arise in empirical
applications without incurring in the ‘negative weights’ bias of two-way fixed-effects
regression (Sun and Abraham, 2020; Callaway and Sant’Anna, 2020; Borusyak, Jaravel, and
Spiess, 2021; de Chaisemartin and D’Haultfœuille, 2020; de Chaisemartin, D’Haultfœuille,
Pasquier, and Vazquez-Bare, 2022; Gardner, 2021). Important distinguishing features of
our proposed LP-DiD approach are the simplicity of its implementation, its ability to
control for pre-treatment values of the outcome and of other covariates, and the flexibility
it offers in the definition of the appropriate sets of treated and control units. The LP-
DiD estimator is not specific to a particular setting, but can be applied in a variety of
situations, providing an encompassing framework. In addition to its flexibility, the clean
control condition employed by LP-DiD defines the appropriate set of treated and control
observations in a way that is transparent and therefore easy to understand, communicate
and evaluate.

Evidence from two Monte Carlo simulations suggests that the LP-DiD estimator
performs well in staggered difference-in-differences settings, also in comparison with
other estimators that have recently been proposed. Our simulations consider a binary
staggered treatment with dynamic and heterogeneous effects. In the first simulation
treatment timing is exogenous. Under this scenario, LP-DiD performs as well as the
Sun and Abraham (2020) and Callaway and Sant’Anna (2020) estimators, while being
computationally simpler and faster. In our second simulation, the probability of entering
treatment depends on lagged outcome dynamics. In this second scenario, the ability of
LP-DiD to match on pre-treatment outcomes allows it to outperform other estimators. The
purpose of these simulations is not mainly that of performing a horse race between LP-
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DiD and other estimators, but to show that LP-DiD performs well in plausible scenarios
and that there is a class of settings – those in which matching on pre-treatment outcome
dynamics or other pre-determined covariates is appropriate and important – in which
LP-DiD could become the ‘go-to’ approach. We also note that in the exogenous treatment
timing case, the LP-DiD estimate is identical to the estimate from a stacked regression
approach as implemented in Cengiz, Dube, Lindner, and Zipperer (2019). However, the
LP-DiD implementation is simpler (as it does not require stacking the data by events),
and can be more easily generalized (e.g., conditioning on past outcomes).

Our two empirical applications employ LP-DiD to estimate the impact of banking
deregulation on the labor share (replicating Leblebicioğlu and Weinberger 2020) and the
effect of democratization on economic growth (replicating Acemoglu, Naidu, Restrepo,
and Robinson 2019). These are two examples of important empirical settings in which
conventional dynamic panel estimates are potentially subject to bias because of previously
treated units being effectively used as controls, and matching on pre-treatment outcomes
and other covariates is likely to be important.

The rest of this paper will be structured as follows. Section 2 draws a connection
between the DiD method and the LP estimator, and presents our proposed LP-DiD
specification. In Section 3 we use simulations to assess the performance of our LP-DiD
approach, also in comparison with other new methods in the recent literature. In Section
4 we apply the LP-DiD estimator in two empirical applications. Section 5 concludes.

2 The local projections implementation of difference-in-

differences

The aim of this Section is to clarify the connection between the difference-in-differences
(DiD) method and the local projections (LP) estimator. We show how LP can be used to
implement DiD in several different settings and with high flexibility.

While we start from simpler settings for the sake of clarity (sections 2.2 to 2.4), the
core of this Section is the discussion of the case of binary staggered treatment with
dynamic and heterogeneous treatment effects (section 2.5). In the staggered setting, the
conventional two-way fixed-effects (TWFE) implementation of DiD, both in the static
and event-study version, can suffer from ‘negative weights’ bias, as uncovered by recent
important studies (de Chaisemartin and D’Haultfœuille, 2020; Goodman-Bacon, 2021;
Borusyak et al., 2021; Callaway and Sant’Anna, 2020; Sun and Abraham, 2020). We show
that a LP approach can successfully address this problem.
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Our main result is that in the staggered setting a properly specified LP regression,
with clearly defined treated and control units following the ‘clean control approach’
of Cengiz et al. (2019), is able to identify a convex weighted average treatment effect,
without incurring in the negative weights problem. We characterize explicitly the weights
assigned to each cohort-specific treatment effect, and show that they are non-negative
and proportional to group size and treatment variance. We also discuss how a simple
re-weighted LP regression can recover an equally-weighted average treatment effect on the
treated. We conclude the Section by briefly discussing how LP-DiD can be adapted flexibly
to accommodate more general settings, including non-absorbing treatment, continuous
treatment and inclusion of covariates (section 2.6).

2.1 General setup and notation

We consider the following general setup. An outcome yit is observed for i = 1, ..., N
units over t = 1, ..., T time periods. Units can receive a binary treatment, denoted by the
indicator variable Dit ∈ {0, 1}. Treatment is permanent (or absorbing), therefore we have
Dis ≤ Dit for s < t. We let pi denote the period in which unit i enters treatment for the
first time, with pi = ∞ if unit i is never treated during the observed period.

Define groups (or treatment cohorts) g ∈ {0, 1, . . . , G} as exhaustive, mutually exclu-
sive sets of units. Groups are defined so that all units within a group enter treatment at
the same time, and two units belonging to different groups enter treatment at different
times. Group g = 0 is the never treated group (ie, the set of units with pi = ∞). We denote
the time period in which group g enters treatment as pg.

Using the potential outcomes framework (Rubin, 1974), we let yit(0) denote the
potential outcome that unit i would experience at time t if they were to remain untreated
throughout the whole sample period (that is, if pi = ∞). We let yit(p) denote the outcome
for unit i at time t, if unit i were to enter treatment at time p 6= ∞. Observed outcomes can
then be written as yit = yit(0) + ∑T

p=1

(
yit(p) – yit(0)

)
× 1{pi = p}.1

Define the (unit- and time-specific) treatment effect at time t for unit i which enters
treatment at time pi 6= ∞ as

τit = yit(pi) – yit(0)

We then define the (group-specific and dynamic) average treatment effect on the
treated (ATT) at time horizon h for group g which enters treatment at time p as

τg(h) = E
[
yi,p+h(p) – yi,p+h(0)|pi = p

]
(1)

1Similar notation is used, for example, in Callaway and Sant’Anna (2020) and Sun and Abraham (2020).
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In other words, τg(h) represents the average dynamic effect, h periods after entering
treatment, for all units belonging to a group g that enters treatment at time p.2

Throughout our discussion, we will make use of the assumptions of parallel trends
and no anticipation, the two assumptions that underpin the DiD approach.

Assumption 1. No anticipation

E
[
yit(p) – yit(0)

]
= 0, for all p and t such that t < p

Assumption 2. Parallel trends

E
[
yit(0) – yi1(0)|pi = p

]
= E

[
yit(0) – yi1(0)

]
, for all t ∈ {2, ..., T} and for all p ∈ {1, ..., T, ∞}.

It is convenient to be more specific and assume a simple data-generating process
(DGP) for untreated potential outcomes which respects the parallel trends assumption.
Following the recent DiD literature, we assume

E(yit(0)) = αi + δt (2)

where αi is a unit-specific fixed effect, and δt is a time-specific effect common to all
units.

Finally, let us define three regression specifications of interest, which can be estimated
in our panel of N units and T time periods or in some subset of it: static two-way fixed-
effects (static TWFE), event-study two-way fixed-effects (event study TWFE), and local
projections (LP). We will discuss, compare and evaluate these specifications throughout
our discussion.

Static two-way fixed-effects regression (static TWFE)

yit = αi + δt + βTWFEDit + eit (3)

Event study two-way fixed-effects regression (event study TWFE)

yit = αi + δt +
H
∑

h=–Q
βTWFE

h Di,t–h + eit (4)

2This object is analogous to the cohort-specific treatment effect on the treated (CATT) defined in Sun
and Abraham (2020).
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Local Projections regression (LP)

∆hyit = δh
t + βh LP∆Dit + eh

it, for h = 0, 1, ..., H. (5)

where αi are unit-specific intercepts; δt are common time-specific effects; ∆hyit is a h-
periods forward long difference, defined as ∆hyit = yt+h – yt–1; and e is an error term.
The β terms are population regression coefficients, while the OLS estimates of these
coefficients will be denoted by β̂.

2.2 Basic DiD setting with two groups and two time periods

The connection between LP and DiD is easiest to see in the basic two-groups/two-periods
setting. In this 2x2 setting, a LP regression at time horizon h = 0 is completely equivalent
to a first-difference regression and to the static TWFE regression, which are well-known
ways to implement the DiD method.

Assume two groups of units, two time periods and a binary treatment. In the first
period (pre-treatment) no unit is treated. In the second period (post-treatment) one group
of units is treated while the other group remains untreated. In terms of the general setup
and notation introduced above, we are setting T = 2, and therefore t ∈ {1, 2}. Moreover,
we have g ∈ {0, 1}, where group 0 is the control group and group 1 the treatment group.
For units in the treatment group pi = p1 = 2. For units in the control group pi = p0 = ∞.

We are interested in estimating the ATT in period t = 2, defined as E(yi2(2) – yi2(0)|pi =
2).

Given the no-anticipation and parallel trends assumptions (Assumptions 1 and 2), the
ATT in this setting can be rewritten as follows:

ATT ≡ E[yi2(2) – yi2(0)|pi = 2] =
= E[(yi2(2) – yi1(0)) – (yi2(0) – yi1(0))|pi = 2] =
= E[yi2(2) – yi1(0)|pi = 2] – E[yi2(0) – yi1(0))|pi = ∞] =
= E[∆yi2|pi = 2] – E[∆yi2|pi = ∞] ≡ β2x2

where β2x2 is the well-known 2x2 DiD estimand (Angrist and Pischke, 2009, pp.227-233).
Now consider a LP regression (equation 5) with time horizon h = 0. In this 2x2 setting,

this boils down to a simple first-difference regression:

∆0yit = yi2 – yi1 = δ + β0 LPDi2 + ei
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Therefore we have

β0 LP = E[∆yi2|Di2 = 1] – E[∆yi2|Di2 = 0] = β2x2 = ATT.

In other words, in the basic 2x2 setting the LP regression at time horizon h = 0 is
equivalent to a first-difference regression, and its population coefficient corresponds to
the 2x2 DiD estimand β2x2, which (given no anticipation and parallel trends) equals
the ATT. As well known, in this setting also the estimand βTWFE from the static TWFE
regression of equation 3 is equivalent to the coefficient from a first-difference regression
and corresponds to β2x2 (Angrist and Pischke, 2009, pp.233-236). We thus have βh=0 LP =
βTWFE = β2x2 = ATT.

2.3 Two groups and multiple time periods

Now consider a slightly extended setting, with two groups (treated and control) observed
over multiple time periods T > 2, and where all the treated units enter treatment in the
same time period. Also in this setting, a LP regression is a way to implement the DiD
method and recover the (dynamic) ATT.

Specifically, assume that all units in the treatment group enter treatment at time t∗,
with 1 < t∗ < T, and remain treated thereafter, while control units are never treated
over the sample period. Therefore, in pre-treatment periods t < t∗ no unit is treated. In
post-treatment periods t ≥ t∗, units in the treatment group are treated, while units in the
control group are not.

In terms of our general setup and notation, we are setting g ∈ {0, 1}, where group 0 is
the control group and group 1 the treatment group. For all units in the treatment group,
pi = p1 = t∗. For all units in the control group, pi = p0 = ∞. With only one treated cohort,
the dynamic ATT (equation 1) does not need the treatment group indicator, and becomes
simply τ(h) = E[yi,t∗+h(t∗) – yi,t∗+h(0)|pi = t∗].

Using the no-anticipation and parallel trends assumptions (Assumptions 1 and 2), we
can write

τ(h) ≡ E[yi,t∗+h(t∗) – yi,t∗+h(0)|pi = t∗] =
= E[(yi,t∗+h(t∗) – yi,t∗–1

(0)) – (yi,t∗+h(0) – yi,t∗–1
(0))|pi = t∗] =

= E[yi,t∗+h(t∗) – yi,t∗–1
(0)|pi = t∗] – E[yi,t∗+h(0) – yi,t∗–1

(0)|pi = ∞] =
= E[∆hyi,t∗ |pi = t∗] – E[∆hyi,t∗ |pi = ∞] ≡ β(h)DiD

where β(h)DiD is the DiD estimand for the dynamic ATT h periods after treatment.
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The population coefficient βh LP from a LP regression (equation 5) corresponds exactly
to this estimand. To see this, note that in this setting the LP regression of equation 5 is
equivalent to the following cross-sectional regression, estimated on a subsample including
all units but only the time period t = t∗:3

yi,t∗+h – yi,t∗–1
= δh + βh LP∆Di,t∗ + eh

i,t∗

Therefore we have

βh LP = E[∆hyi,t∗ |∆Di,t∗ = 1] – E[∆hyi,t∗ |∆Di,t∗ = 0] = β(h)DiD = τ(h)

It follows from results in the recent literature on DiD (for example de Chaisemartin
and D’Haultfœuille 2020; Gardner 2021; Sun and Abraham 2020; Goodman-Bacon 2021)
that in this setting with only one treated cohort, and under Assumptions 1 and 2, also
the coefficients in the event-study TWFE regression (equation 4) correspond to the τ(h)
estimands.4 Moreover, the βTWFE estimand from the static TWFE regression (equation 3)
equals the ATT, defined as E(τit|Dit = 1).5

2.4 Staggered treatment adoption with dynamic but homogeneous treat-

ment effects

Let us now allow for the presence of multiple treated groups which enter treatment at
different points in time (treatment is staggered). In this Section we provisionally assume
that the average treatment effect path does not differ across treatment cohorts (treatment
effects are homogeneous). In terms of our general setup and notation, we have G > 1 and
τg(h) = τ(h) for all g > 0.

In this setting with staggered treatment and dynamic but homogeneous treatment
effects, a LP regression (equation 5) augmented with an adequate number of lags and

3This equivalence holds because at time periods different from t∗ there is no variation in the regressor
∆Dit. For this reason, observations for any time period t 6= t∗ do not contribute to the estimated coefficient
βh LP. In other words, in this setting the coefficient βh LP is only identified from the observations for time
t = t∗.

4This can be seen using the decomposition of the event-study TWFE coefficients (βTWFE
h in our notation)

provided by Sun and Abraham (2020). This shows that βTWFE
h is equal to τ(h) plus a bias term that can

arise if the ATE is heterogeneous across cohorts. With only one treatment cohort, obviously, heterogeneity
across cohorts cannot arise, and βTWFE

h = τ(h).
5One way to see this is to use the decomposition of the static TWFE into a weighted average of

treatment-cohort specific ATTs (de Chaisemartin and D’Haultfœuille 2020, p.2970; Gardner 2021, p.7). This
decomposition implies that, when there is only one treatment cohort and the panel is balanced, βTWFE

corresponds to an equally-weighted average of all the cell-specific ATTs.
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leads of the treatment indicator is able to recover the average treatment effect path under
parallel trends and no-anticipation.

To derive this conclusion, consider that, under Assumptions 1 and 2 and homogeneous
treatment effects, mean observed outcomes at time t + h are given by

E[yi,t+h] = E[yi,t+h(0)] + ∑T
p=1

[E(yi,t+h(p) – yi,t+h(0))]× 1{pi = p}] =
= E[yi,t+h(0)] + ∑∞

j=–h τ(h + j)× 1{pi = t – j} =

= αi + δt+h + τ(h)∆Di,t + ∑∞
j=–h,h 6=0

τ(h + j)∆Di,t–j

(6)

Subtracting E[yi,t–1
] from both sides and defining δh

t = δt+h – δt–1, we obtain6

E[∆hyi,t] = δh
t + τ(h)∆Di,t +

h
∑
j=1

τ(h – j)∆Di,t+j +
∞

∑
j=1

[τ(h + j) – τ(j – 1)]∆Di,t–j

Therefore the dynamic ATT τ(h) corresponds to the βh LP population coefficient in the
following LP regression:

∆hyi,t = δh
t + βh LP∆Dit +

∞

∑
j=–h,j 6=0

θh
j ∆Di,t–j + eh

it (7)

This LP regression includes lags of the differenced treatment indicator, but also its leads
up to period t + h. Leads are necessary to account for the possibility that a unit might
enter treatment between period t + 1 and period t + h.

What do the static and event-study TWFE specifications of equations 3 and 4 identify
in this setting with staggered treatment and dynamic but homogeneous effects?

Results from the recent DiD literature imply that a static TWFE regression (equation 3)
can suffer from bias if treatment effects are dynamic (in the sense that τ(h) 6= τ(h + 1) for
some h), even under parallel trends, no-anticipation and homogeneity across treatment
cohorts.7 Intuitively, the bias comes from the fact that previously treated units are
effectively used as controls for newly treated units. Since previously treated units
might still be experiencing a delayed dynamic response to treatment, these treatment
effect dynamics are effectively subtracted from the static TWFE treatment effect estimate
(Goodman-Bacon, 2021). That is, delayed dynamic responses to treatment can enter the
TWFE estimate with a negative weight (de Chaisemartin and D’Haultfœuille, 2020).

Under the assumption of homogeneous treatment effects, however, event-study TWFE

6Note that E[yi,t–1
] = αi + δt–1 + ∑∞

j=1
τ(j – 1)∆Di,t–j.

7Heterogeneous effects, that we consider below in Section 2.5, would exacerbate the issue.
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regression (equation 4) does not suffer from this bias and, like the LP regression with
lags and leads of treatment discussed above, is able to recover the average treatment
effect path under parallel trends and no anticipation, as long as a sufficient number of
lags of the treatment indicator is included (see Sun and Abraham (2020), in particular
Proposition 4 and Equation 19). Intuitively, the lagged treatment indicators control for
the lagged dynamic effects of previous treatments, which in this setting are the same (in
expectation) for all units.

2.5 Staggered treatment adoption with dynamic and heterogeneous

treatment effects

Let us now abandon the assumption of homogeneity of the treatment effect path, and
allow for heterogeneous treatment effects across different cohorts. Formally, we have
τg(h) 6= τg′(h) for at least some time-horizon h and some pair of groups g′ 6= g. This
case has been the main focus of a growing recent literature (e.g., de Chaisemartin and
D’Haultfœuille 2020; Sun and Abraham 2020; Callaway and Sant’Anna 2020; Goodman-
Bacon 2021; Borusyak et al. 2021).

With heterogeneous treatment effects, the static TWFE estimator of equation 3 is
biased both because of dynamic lagged effects and heterogeneity. Define a cell as a given
treatment group g in a given period t. de Chaisemartin and D’Haultfœuille (2020) show
that βTWFE in equation 3 provides a weighted average of all cell-specific ATTs, but with
weights that can be negative. Negative weights introduce bias: for example, positive
cell-specific effects can enter the formula for the TWFE cofficient with a negative sign.
Another way to see this problem is through the Goodman-Bacon (2021) decomposition
theorem, which shows that the static TWFE estimator in equation 3 is an average of all
potential 2x2 comparisons in the data, with weights based on subsample shares and
treatment variances. The problem is that some of these 2x2 comparisons are ‘unclean’
comparisons in which previously treated units are used as controls for newly-treated
units. These ‘unclean comparisons’ are the source of the ‘negative weights’ bias of static
TWFE.8

With heterogeneous treatment effects across cohorts, also the event-study TWFE
specification of equation 4 is generally biased (Sun and Abraham, 2020). Sun and

8Goodman-Bacon (2021) also shows that under parallel trends and no anticipation (assumptions ?? and
1), p limN→∞ β̂TWFE = VWATT – ∆ATT, where VWATT is a convex variance-weighted average of ATTs from
all possible 2x2 comparisons in the data, and –∆ATT is bias coming from dynamic and heterogeneous
effects. Seen in this way, the bias term is equal to a weighted sum of changes in treatment effects within
each group.
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Abraham (2020) show that the relative-period coefficients (ie, the coefficients on leads and
lags of treatment in equation 4) can be contaminated by effects from other periods.

To understand the relation between LP and DiD in this setting, we can start by noting
that in this setting E[yi,t+h] is determined as follows:

E[yi,t+h] = E[yi,t+h(0)] + ∑T
p=1

[E(yi,t+h(p) – yi,t+h(0))]× 1{pi = p}] =
= E[yi,t+h(0)] + ∑G

g=1
[(∑∞

j=–h τg(h + j)× 1{pg = t – j})× 1{pi = pg}] =

= E[yi,t+h(0)] + ∑G
g=1

[(∑∞
j=–h τg(h + j)× 1{pg = t – j})× ∆Di,t–j] =

= αi + δt+h + ∑G
g=1

[τg(h)× ∆Di,t × 1{t = pg}]
+ ∑G

g=1
[∑∞

j=1
(τg(h + j)× ∆Dt–j × 1{t = pg + j})]

+ ∑G
g=1

[∑h
j=1

(τg(h – j)× ∆Dt+j × 1{t = pg – j})] .

Subtracting E[yi,t–1
] from both sides, we obtain9

E[∆hyit] = δh
t + ∑G

g=1
[τg(h)× ∆Di,t × 1{t = pg}]

+ ∑G
g=1

[∑∞
j=1

((τg(h + j) – τg(j – 1))× ∆Di,t–j × 1{t = pg + j})]
+ ∑G

g=1
[∑h

j=1
(τg(h – j)× ∆Di,t+j × 1{t = pg – j})] .

(8)

Without appropriate adjustment to take into account the last two sums on the right
side of equation 8, the simplest LP regression function of equation 5 would be mis-
specified in this setting. Indeed, the population regression coefficient βh LP in equation 5

would correspond to the following expression

E[βh LP] = E(∆hyit|t, ∆Dit = 1) – E(∆hyit|t, ∆Dit = 0) =
= E(∑G

g [τg(h)× 1{t = pg}])
– E(∑G

g=1
[∑∞

j=1
((τg(h + j) – τg(j – 1))× ∆Di,t–j × 1{t = pg + j})])

– E(∑G
g=1

[∑h
j=1

(τg(h – j)× ∆Di,t+j × 1{t = pg – j})])

(9)

Equation 9 shows that, without appropriate adjustment, the population regression co-
efficient βh LP from the simplest LP regression of equation 5 corresponds to a weighted
average dynamic ATT, plus two bias terms.

The first source of bias is the presence of previously treated units in the control group,
ie observations such that ∆Dit = 0 but ∆Di,t–j 6= 0 for some j ≥ 1. These previously treated
units contribute to the estimated counterfactual for units entering treatment at time t, as
if they were untreated, although they might in fact be experiencing dynamic treatment

9Note that in this setting E[yi,t–1
] = αi + δt–1 + ∑G

g=1
[∑J

j=1
τg(j – 1)∆Di,t–j × 1{t = pg + j}].
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effects. Note that this bias exists as long as τg(h + j) 6= τg(j – 1): treatment effects evolve
gradually over time. As a result, the dynamic changes in treatment effects that these
previously treated units might be experiencing enter equation 9 with a negative sign.
This is a manifestation of the ‘negative weights’ bias discussed by the recent literature on
DiD (Goodman-Bacon (2021); de Chaisemartin and D’Haultfœuille (2020); Callaway and
Sant’Anna (2020); Sun and Abraham (2020); Borusyak et al. (2021))

Moreover, in the LP setting, a second potential source of bias is the presence in the
control group of units that are treated between t + 1 and t + h, ie observations such that
∆Dit = 0 but ∆Di,t+j 6= 0 for some j in 1 ≤ j ≤ h.10

We are now ready to present our main contribution: A properly specified LP regression
(which we call LP-DiD) solves these problems and identifies a convex combination of
cohort-specific effects. LP-DiD consists in estimating the LP specification of equation
5 in a restricted sample that only includes newly treated observations (∆Dit = 1) and
not-yet treated ones (∆Di,t–j = 0 for –h < j < ∞). Under the assumption of absorbing
binary treatment, the restriction imposed on the control group (∆Di,t–j = 0 for –h < j < ∞)
simplifies to Di,t+h = 0. Intuitively, as recent literature has made clear and as equations
8 and 9 illustrate, ‘negative weights’ bias comes from unclean comparisons in which
previously treated units are used as controls for newly-treated units. Excluding these
‘unclean’ observations from the control group eliminates the bias.

Formally, consider the following LP regression, which we dub LP-DiD:

LP-DiD regression

yi,t+h – yi,t–1
= βh LP–DiD∆Dit } treatment indicator

+ δh
t } time effects

+ eh
it , for h = 0, . . . , H ,

10As equation 8 shows, one solution would be a LP regression that identifies separately the effect for each
group by interacting group indicators with the contemporaneous differenced treatment indicator, while
at the same time controlling for interaction terms between group indicators and the leads and lags of the
differenced treatment indicator. These interaction terms ‘clean’ the estimated counterfactual from the bias
coming from the influence of previously treated units. Moreover, this is equivalent to interacting the leads
and lags of the differenced treatment indicator with time indicators. One could then obtain a overall ATE
by computing some convex combination of all the individual group-specific effects. This solution could be
fruitful in some settings and has similarities with the interactive fixed effects estimator proposed by Sun
and Abraham (2020), but generally has some drawbacks. In practical applications, it involves estimating a
potentially very large number of interaction terms, which coefficients are of no economic interest. Moreover,
our aim in this paper is to show that it is possible to directly estimate a convex combination of all the
cohort-specific effects, without having to first estimate them separately and then aggregate them.
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restricting the sample to observations that are either: newly treated

or clean control

∆Dit = 1 ,

Di,t+h = 0

(10)

By removing previously treated observations and observations treated between t +
1 and t + h from the control group, βh LP–DiD from regression 10 provides a convex
combination of all group-specific effects τg(h). Indeed we have

E[βh LP–DiD] = E(∆hyit|t, ∆Dit = 1) – E(∆hyit|t, ∆Dit = 0, Di,t+h = 0) =
= E(∑G

g [τg(h)× 1{t = pg}])

2.5.1 Weights of the LP-DiD estimator

Let us now characterize explicitly the weights assigned to each cohort-specific effect
τg(h) when the LP-DiD specification (equation 10) is estimated through OLS. The key
result is that, under parallel trends and no-anticipation (Assumptions 1 and 2), the LP-
DiD estimator identifies a weighted average of all cohort-specific treatment effects, with
weights that are always positive and depend on treatment variance and subsample size.
Here we present this result; a simple formal derivation based on the Frisch-Waugh-Lovell
theorem is in Appendix A.

To illustrate the result, we need to introduce some further definitions. Recall that the
time period in which group g enters treatment is pg. For each treatment group g > 0,
define the clean control sample (CCS) for group g at time horizon h (denoted as CCSg,h)
as the set of observations for time t = pg that satisfy the sample restriction in 10. Therefore
CCSg,h includes the observations at time pg for all units that either enter treatment at pg

or are still untreated at pg+h. In other words, CCSg,h includes observations at pg for group
g and its clean controls.

Under parallel trends and no anticipation (Assumptions 1 and 2), the LP-DiD estimator
βh LP–DiD identifies the following weighted average effect:

E(β̂h LP–DiD) = ∑
g 6=0

ωLP–DiD
g,h τg(h) (11)

The weight attributed to each group-specific effect is given by:

ωLP–DiD
g,h =

NCCSg,h
[ngh(nc,g,h)]

∑g 6=0
NCCSg,h

[ng,h(nc,g,h)]
, (12)
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where NCCSg,h
is the number of observations in the clean control sample for group g at

time-horizon h; ng,h = Ng/NCCSg,h
is the share of treated units in the CCSg,h subsample;

and nc,g,h = Nc,g,h/NCCSg,h
is the share of control units in the CCSg,h subsample.11

In short, the LP-DiD estimator βh LP–DiD identifies a variance-weighted ATT (VWATT
in the terminology of Goodman-Bacon (2021)).

If a researcher is instead interested in a equally-weighted ATT, they can employ a
re-weighted LP-DiD regression. Indeed, equations 11 and 12 imply that estimation of a LP-
DiD regression (equation 10) through weighted least squares, assigning to an observation
belonging to CCSg,h a weight equal to 1/(ωLP–DiD

g,h /Ng), identifies the equally-weighted
ATT.

In practical applications, the quantity (ωLP–DiD
g,h /Ng) can be obtained by computing

subsamples sizes and shares of treated and control units in the sample and using equation
12, or through an auxiliary regression. Specifically, consider an auxiliary regression of ∆D
on time indicators in the sample defined by condition 10. Define ∆̃Dg,pg as the residual at
time pg for a unit belonging to group g.12 The Frisch-Waugh-Lovell theorem implies that

(ωLP–DiD
g,h /Ng) =

∆̃Dg,pg

∑g 6=0
Ng∆̃D

2

g,pg
(see also Appendix A).

In this setting without inclusion of covariates, the LP-DiD estimator βh LP–DiD is
equivalent to the estimate from a stacked regression approach as implemented in Cengiz
et al. (2019).13 However, the LP-DiD implementation is simpler, faster and less prone to
errors in practical applications, given that it does not require the reshaping of the dataset
in stacked format. Moreover, as we discuss below, the LP-DiD specification is easier to
generalize, for example by conditioning on pre-treatment values of the outcome or of
other covariates.

2.6 Extensions: Covariates, non-absorbing treatment and non-binary

treatment

2.6.1 Inclusion of covariates

The LP-DiD specification of equation 10 can easily be augmented to include both time-
invariant and time-varying covariates. Including covariates might be necessary for
identification, if the parallel trends assumption only holds conditional on some variables,
or to increase precision.

11The derivation of these weights is in Appendix A.
12Note that ∆̃Dg,pg will be identical for all units belonging to the same group.
13See Appendix A for more details about this equivalence.
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In particular, a distinctive feature of the LP-DiD approach is that it allows to control for
pre-treatment values of time-varying covariates, including lagged outcome dynamics. This
is made possible by the structure of the LP specification. Unlike a standard event-study
TWFE specification or most alternative estimators proposed in the recent literature, the
LP specification implies that any lagged variable included in the estimating equation is
measured before treatment.14

With binary absorbing treatment, a LP-DiD specification which controls for P lags
of the outcome dynamics and contemporaneous and lagged values of a vector of M
covariates can be written as follows.

LP-DiD regression with exogenous covariates and lagged outcome dynamics

yi,t+h – yi,t–1
= βh LP–DiD∆Dit } treatment indicator

+ ∑P
p=1

γh
p∆yi,t–p } outcome lags

+ ∑M
m=1 ∑P

p=0
γh

m,p∆xm,i,t–p } covariates

+ δh
t } time effects

+ eh
it ; for h = 0, . . . , H ,

(13)

restricting the sample to observations that are either newly treated

or clean control

∆Dit = 1 ,

Di,t+h = 0

(14)

Appendix A.2 discusses the weights assigned to each group-specific effect in the specifi-
cation that includes control variables. The main result is that the weights are guaranteed
to remain the same as in equation 12 if covariates have linear and homogeneous effects.
In more general settings, the presence of covariates will alter the weighting scheme in
ways that are difficult to characterize analytically, but for the purpose of obtaining a
equally-weighted ATT the weights can still be recovered through the auxiliary regression
described above.

If a researcher wants to preserve the variance-weighting scheme of the baseline
specification without covariates, or to avoid other possible drawbacks from the inclusion

14Of course, controlling for pre-treatment outcome dynamics (as well as any other exogenous or pre-
determined covariate) will be appropriate in some applications but not in others. A discussion of the
conditions under which it is appropriate or necessary to control for lagged outcome dynamics and other
covariates in the DiD setting is outside the scope of this paper. What matters here is that the LP-DiD
estimator offers flexibility in this respect: the researcher can decide whether to control for lagged outcomes
and other covariates based on the application.
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of covariates in linear regression in the DiD setting (discussed by Sant’Anna and Zhao
(2020)), it is easy to control for covariates semiparametrically using propensity-score
based methods in the spirit of Sant’Anna and Zhao (2020). Jorda and Taylor (2016) discuss
the implementation of propensity-score based methods in the LP setting and apply them
to estimate the effects of fiscal consolidation.

2.6.2 Non-absorbing treatment

In many applications, treatment is not absorbing: units can enter and exit treatment
multiple times. The LP-DiD framework offers flexibility to accommodate the different
definitions of the causal effect of interest and the different identification assumptions that
might be appropriate under non-absorbing treatment.

Appropriate modification of the ‘clean control’ sample restriction of equation 10 will
generally be necessary to implement LP-DiD in the non-absorbing treatment setting.

One can recover, for example, the effect of entering treatment for the first time and
staying treated, relative to a counterfactual of remaining untreated, by using the LP-DiD
specification of equation 10 but modifying the ‘clean control’ sample restriction as follows: treatment

or clean control

(Di,t+j = 1 for 0 ≤ j ≤ h) and (Di,t–j = 0 for j ≥ 1),

Di,t–j = 0 for j ≥ –h
(15)

In some settings the ‘clean control’ condition in equation 15 might not be feasible or
appropriate. Consider, for example. the problem of estimating the effect of minimum
wage increases in a panel of regions. For later time periods t, there will be very few
regions that have never experienced a minimum wage increase until period t + h.

This case can be dealt with in a simple way in the LP-DiD framework, under the
additional assumption that dynamic treatment effects stabilize after a finite number of
periods. Formally, we introduce the following assumption.

Assumption 3. Dynamic effects stabilize after K∗ periods:

τg(K∗) = τg(K∗ + k) for k ≥ 0

Define K = K∗ + 1. Assumption 3 implies that, for any time horizon h and for any
j ≥ K, we have τg(h + j) = τg(j – 1). Therefore, under Assumptions 1, 2 and 3, equation 9
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becomes

E[βh LP] = E(∑G
g [τg(h)× 1{t = pg}])

– E(∑G
g=1

[∑K
j=1

((τg(h + j) – τg(j – 1))× ∆Di,t–j × 1{t = pg + j})])
– E(∑G

g=1
[∑h

j=1
(τg(h – j)× ∆Di,t+j × 1{t = pg – j})])

(16)

Equation 16 implies that bias only comes from observations that experience a change
in treatment status between time t – K and t – 1 or between t + 1 and t + h.

A convex weighted ATT for the effect of entering treatment and staying treated is then
obtained by estimating a LP specification with the following sample restriction: treatment

or clean control

(Di,t+j = 1 for 0 ≤ j ≤ h) and (Di,t–j = 0 for 1 ≤ j ≤ K)

∆Di,t–j = 0 for – h ≤ j ≤ K
(17)

In Section 4.2 we will illustrate the use of LP-DiD under non-absorbing treatment through
an empirical application which estimates the effect of democracy on economic growth.

2.6.3 Continuous treatment

A detailed formal discussion of the issues that can arise under continuous treatment is
outside the scope of this paper (see for example de Chaisemartin et al. 2022). However,
we do argue that the LP-DiD framework offers flexibility to accommodate the different
definitions of the causal effect of interest and the different identification assumptions that
might be appropriate with continuous treatment. For example, the clean control condition
can be adapted to define clean controls as ‘stayers’ (or alternatively ‘quasi-stayers’), in the
terminology of de Chaisemartin, D’Haultfœuille, Pasquier, and Vazquez-Bare (2022).15

3 Simulations

We conduct two Monte Carlo simulations to illustrate the performance of the LP-DiD
estimator. We consider a binary staggered treatment, with dynamic and heterogeneous
treatment effects. In the first simulation, treatment is exogenous; the parallel trends

15For example, in a recent working paper Hoyos (2022) employs our proposed LP-DiD approach, with
an appropriately specified clean control sample restriction, to estimate the effect of (continuous) changes
in average tariff rates on GDP per capita, in a panel of industrialized and developing economies. In this
application, treatment is both non-absorbing and continuous. Hoyos (2022)’s application of the LP-DiD
clean control condition consists in excluding from the estimation sample observations that experience a
large change in average tariff rates between year t – 10 and t – 1 or between t + 1 and t + h.
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assumption holds and the conventional TWFE model only fails because of heterogeneous
dynamic effects, which lead to the ‘negative weighting’ problem. In the second simulation,
treatment is endogenous; specifically, the probability of receiving treatment depends on
previous outcome dynamics.

We compare the performance of our LP-DiD estimator with (a) a conventional event-
study TWFE specification; (b) the Sun and Abraham (2020) estimator; and (c) the Callaway
and Sant’Anna (2020) estimator. Results suggest that, unlike the conventional TWFE
specification, LP-DiD tracks well the true effect path even in the presence of heterogeneity.
With exogenous treatment, LP-DiD performs as well as the Sun and Abraham (2020) and
Callaway and Sant’Anna (2020) estimators. When the probability of treatment depends
on lagged outcome dynamics, the ability of LP-DiD to match on pre-treatment outcomes
makes it outperform other estimators.

Setting

Our simulated dataset includes N = 500 units, observed for T = 50 time periods. The
counterfactual outcome Y

0it that a unit would experience if not treated is given by

Y
0it = ρY

0,i,t–1
+ λi + γt + εit , (18)

with –1 < ρ < 1, and with λi, γt, εit ∼ N(0, 25).
Treatment is binary and staggered (treatment is an absorbing state). The treatment

effect is positive and grows in time for 20 time periods, after which it stabilizes. Moreover,
early adopters have larger treatment effects. Specifically, treatment effect is given by:

βit =


0

α0(t – τi) + α1(t – τi)
2 + α2

(t–τi)2

(τi/τ1)2

α020 + α120
2 + α2

20
2

(τi/τ1)2

if t – τi < 0

if 0 ≤ t – τi < 20

if t – τi ≥ 20 ,

(19)

where τi is the period in which unit i enters treatment (with τi > T if unit i is never
treated during the sample period) and τ1 is the treatment period for the ‘earliest adopter’
in the sample. We set α0 = 2; α1 = 0.05 ; α2 = 0.95.

Observed outcomes Yit are therefore given by

Yit = Y
0it + βit (20)
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Simulation 1: Exogenous treatment timing In simulation 1, we assume that treatment
is exogenous. Specifically, units are randomly assigned to 10 groups, each of size N/10.
One group never receives treatment; the other nine groups receive treatment respectively
at time τ = 11, 13, 15 . . . , 27.

Simulation 2: Endogenous treatment timing In simulation 2, treatment timing is en-
dogenous: the probability of receiving treatment depends on past outcome dynamics.
Specifically, unit i enters treatment in the first period that satisfies that following condition:

ψ∆Yi,t–1
+ (1 – ψ)ui ≤ θ and 11 ≤ t ≥ 30,

with ψ = 0.6, ui ∼ N(0, 25) and θ = –σ∆Y
0it

. The probability of entering treatment
is therefore higher for untreated units that experience a large negative change in the
outcome variable.

Results

We perform 200 replications of each of our two simulations. We apply four estimators to
our synthetic data:

• A conventional two-way-fixed-effects model, using an event-study specification with
leads and lags of a treatment indicator.

• Our LP-DiD estimator.16

• The Sun and Abraham (2020) estimator.

• The Callaway and Sant’Anna (2020) estimator.

For each estimator, we compare the distribution of the estimated ATE with the
(equally-weighted) true ATE.

Results from the simulation with exogenous treatment timing (Simulation 1) are
presented in Figure 1 and Table 1. The conventional event-study TWFE specification does
an extremely poor job in our setting, due to the heterogeneity of treatment effects.17 Our

16We do not apply any re-weighting, thus using the variance-weighting scheme described in Section 2.5.1
and Appendix A.

17The fact that in our simulated DGP the size of the effect is a function of the date of treatment makes the
‘negative weighting’ problem particularly severe, and therefore the performance of the TWFE specification
particularly poor. We choose this DGP in order to test the performance of our estimator in a setting in
which the flaws of the conventional estimator are particularly severe.
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LP-DiD estimator, instead, tracks quite well the average true effect (Figure 1). Table 1,
which reports the Root Mean Squared Error of each estimator at different time horizons,
shows that in this setting the LP-DiD estimator does at least as well as the Sun-Abraham
and Callaway-Sant’Anna estimators.

Results from the simulation with endogenous treatment timing (Simulation 2) are
reported in Figure 2 and Table 2. In applying our LP-DiD estimator in this setting,
we include one lag of the change in the outcome variable as a control. While the Sun
and Abraham (2020) and Callaway and Sant’Anna (2020) estimators do allow for the
inclusion of time-invariant control variables, there is no straightforward way to control
for pre-treatment lags of the outcome in their specification, as these estimators are not
designed to condition on pre-determined time-varying covariates.

The ability of the LP-DiD estimator to match on pre-treatment outcome dynamics in
a straightforward way, allows it to outperform other estimators in the presence of this
particular failure of the parallel-trends assumption. The LP-DiD estimator tracks quite
well the true dynamic effect also in this setting (Figure 2) and it also has the lowest RMSE
(Table 2).

Computational speed

We also employ our simulated dataset to assess quantitatively the computational advan-
tage of LP-DiD relative to other recently proposed estimators. We record the computation
time required for estimating the treatment effect path in a single simulation of our syn-
thetic dataset with exogenous treatment timing. We use the STATA software on a laptop
with 2.80 GHz Quad-core Intel i7 Processor and 16 GB of Ram. The LP-DiD estimator
runs in 1.2 seconds, similar to the (biased) event-study TWFE estimator (1.04 seconds) and
more than 100 times faster than the Callaway and Sant’Anna (2020) and Sun and Abraham
(2020) estimators, that in our setting require respectively 144.6 and 198.5 seconds.

4 Empirical Applications

To illustrate the use of the LP-DiD estimator in practice, we present two empirical ap-
plications. In the first, we use the LP-DiD estimator to estimate the effect of banking
deregulation laws on the labor share in US States, replicating Leblebicioğlu and Wein-
berger (2020). In the second, we replicate the Acemoglu, Naidu, Restrepo, and Robinson
(2019) country-panel study of the effect of democracy on economic growth.
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4.1 Credit and the labor share

We replicate the Leblebicioğlu and Weinberger (2020) analysis of the effect of banking
deregulation on the labor share in US states.

Starting in the late 1970s, US states began removing restrictions on the ability of out-of-
state banks to operate in the state (interstate banking deregulation) and on the ability of
in-state banks to open new branches (intra-state branching deregulation). Leblebicioğlu
and Weinberger (2020) estimate the effect of both inter-state and intra-state banking
deregulation laws on the labor share of value added. They conclude that inter-state
banking deregulation has a sizable negative effect on the labor share, while they find no
effect of intra-state branching deregulation.

The dataset covers the 1970–1996 period. (In 1997, inter-state banking deregulation was
imposed in all states by federal law.) Figure 3, which reproduces Figure 1 in Leblebicioğlu
and Weinberger (2020), displays the share of US states with a liberalized banking sector.

4.1.1 Conventional TWFE specifications

We first consider the following static TWFE specification for the effect of banking deregu-
lation laws, which replicates Leblebicioğlu and Weinberger (2020)’s baseline specification:

LSst = βBankBankst + βBranchBranchst + ηXst + αs + αt + εst , (21)

where s indexes states, t indexes years, and LS is the labor share. Branchst and Bankst are
binary indicators equal to one if a state has adopted intrastate branching or interstate
banking deregulation.

To assess possible pre-trends and lagged effects, Leblebicioğlu and Weinberger (2020)
also estimate the following event-study TWFE specification:

LSst =
9

∑
q=–9

βBank,t+q∆Banks,t+q +
9

∑
q=–9

βBranch,t+q∆Branchs,t+q + ηXst + αs + αt + εst . (22)

4.1.2 Forbidden comparisons in the TWFE specifications

Given the staggered rollout of banking deregulation laws across US states, the TWFE
specifications of equations 21 and 22 suffer from the issues highlighted by recent studies
(Goodman-Bacon, 2021; de Chaisemartin and D’Haultfœuille, 2020). Earlier liberalizers
are used as controls for states that liberalize later on. Specifically, the specifications in
equations 21 and 22 produce a weighted average of two types of comparisons: (1) newly
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treated states vs. not-yet treated states and (2) newly treated states vs. earlier treated
states (Goodman-Bacon, 2021).

We employ the Goodman-Bacon (2021) diagnostic to decompose the TWFE estimate
from equation 21 into these two types of comparisons. While ‘unclean’ 2x2 comparisons
with earlier treated units as controls contribute to (and potentially bias) the TWFE
estimates of both the policies studied, the estimates of the effect of intrastate branching
deregulation are affected most severely. The static TWFE estimator of the effect of
interstate banking deregulations assigns a overall weight of 63% to ‘clean’ comparisons of
earlier treated versus not-yet treated states, and 36% to ‘unclean’ comparisons that use
earlier treated units as controls. For the estimates of the effect of intrastate branching
deregulations, the problem is much more severe: ‘clean’ comparisons receive a weight
of only 30%. The remaining 70% is accounted for by two types of unclean comparisons:
later treated units versus earlier treated units (23%) and treated units versus units that
are already treated in the first period of the panel (47%).

Figure 4 displays the results of the Goodman-Bacon (2021) decomposition diagnostic.
The figure plots each constituent 2x2 comparison that contributes to the static TWFE
estimates of equation 21, with its weight on the horizontal axis and its estimate on
the vertical axis. The graph suggests that the estimates of the effects of branching
deregulations are driven by a few ‘unclean’ comparisons – those involving states that
deregulated before 1970 – that receive a very large weight. Notably, for both types of
policies, clean comparisons produce overwhelmingly negative coefficients, while the
unclean ones tend to bias the coefficients upwards.

4.1.3 LP-DiD specification

In order to avoid the biases of the conventional TWFE specifications, and to allow for
matching based on pre-treatment outcome dynamics, we re-estimate the effect of banking
deregulation laws using the following LP-DiD specification:18

LSs,t+h – LSs,t–1 = αh
t + βLP–DiD

h ∆Banks,t +
M
∑

m=1

γh
m∆LSs,t–m +

M
∑

m=1

ηh
mXs,t–m + eh

s,t (23)

18Given that treatment is absorbing in this data, and there is a sufficient number of not-yet treated States
at all points in time, we employ the version of the clean control condition which uses only untreated units
as controls.
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restricting the sample to observation that are either: treatment

control

∆Banks,t = 1

Banks,t+h = 0

(24)

4.1.4 Results

Figure 5 displays results from the static TWFE specification of equation 21, while Figure
6 displays results from the event-study TWFE specification of equation 22. These results
replicate the estimates reported in Table 2 and Figure 2 of Leblebicioğlu and Weinberger
(2020). They suggest that the liberalization of inter-state banking has a sizable negative
effect on the labor share, although they also show some (relatively small) pre-treatment
trend. Instead, the estimated effects of intra-state branching deregulation on the labor
share are positive, small and very imprecise.

Figure 7 displays results from the LP-DiD estimator with clean controls. The negative
effect of inter-state banking deregulation on the labor share is confirmed, including when
controlling for pre-treatment outcome dynamics. Estimates of the effect of intra-state
branching deregulation, instead, change dramatically. After addressing the bias of the
TWFE estimator by excluding ‘unclean’ comparisons, the estimated effect of inter-state
branching deregulation on the labor share is negative and of similar size as that of
inter-state banking deregulation.

4.2 Democracy and economic growth

Our second empirical application estimates the effect of democracy on economic growth,
replicating the analysis in Acemoglu, Naidu, Restrepo, and Robinson (2019).

The dataset covers 175 countries from 1960 to 2010. The treatment indicator is a
binary measure of democracy, which Acemoglu, Naidu, Restrepo, and Robinson (2019)
build from several datasets to mitigate measurement error. The main outcome variable
of interest is the log of GDP per capita, obtained from the World Bank Development
Indicators.

Three features of this application make it particularly meaningful and interesting.
First, there is potential for negative weighting: fixed effects regression would use older
democracies as controls for new democracies. Second, treatment is non-absorbing:
democracies can slide back into autocracy, and there are indeed multiple instances of
reversals in the data. Third, controlling for pre-treatment outcome dynamics is crucial,
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since there is evidence of selection: Acemoglu, Naidu, Restrepo, and Robinson (2019)
show that democratisation tends to be preceded by a dip in GDP per capita.

4.2.1 Dynamic panel specifications

The baseline results in Acemoglu, Naidu, Restrepo, and Robinson (2019) are obtained
from the following dynamic fixed effects specification:

yct = βDct +
p

∑
j=1

γjyc,t–j + αc + δt + εct , (25)

where c indexes countries, t indexes years, y is the log of GDP per capita and D is the
binary measure of democracy.

Lags of GDP per capita are included to address selection bias, and in particular the
fact that democratizations tend to be preceded by a decline in GDP per capita.

Estimated coefficients from eq. 25 are then used to build a impulse response function
for the dynamic effect of GDP. These estimates also allow to derive the cumulative

long-run effect of a permanent transition to democracy, given by β̂

1–∑
p
j=1

γ̂j
.

This dynamic fixed effects specification, however, might suffer from bias if treatment
effects are dynamic and heterogeneous, as highlighted in the recent literature.

4.2.2 LP-DiD specifications

Consider the following LP-DiD specification for estimating the effect of democracy on
growth:

yc,t+h – yc,t–1 = βLP DiD
h ∆Dct + δh

t +
p

∑
j=1

γh
j yc,t–j + εh

ct . (26)

restricting the sample to: democratizations

clean controls

Dit = 1, Di,t–1
= 0

Di,t+k = 0 for – K ≤ k ≤ h .
(27)

In words, for all years t and for each time-horizon h, treated units are countries that de-
mocratize at t, and control units are countries that have been non-democracies continually
from t – K to t + h.

This is an example of how the LP-DiD framework can be easily adapted to a setting
in which treatment is not absorbing, and treatment reversals (in this case, democracies
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sliding back into autocracy) are possible.19

In a section of their analysis, Acemoglu, Naidu, Restrepo, and Robinson (2019) employ
a semiparametric local projections specification that can be seen as a special version of
the LP-DiD estimator above. Specifically, they estimate equation 26 with the following
condition for the control group: Dit = Di,t–1

= 0. Their specification can thus be seen as an
LP-DiD specification, in which the time-window for defining admissible (‘clean’) control
units is only one period (H = 1 in equation 27), and treatment status between t + 1 and
t + h is not constrained.

Seeing the Acemoglu, Naidu, Restrepo, and Robinson (2019) semiparametric specifi-
cation as a version of LP-DiD provides a useful novel perspective on their analysis and
what possible deviations from their specification should be considered. Acemoglu, Naidu,
Restrepo, and Robinson (2019) exclude from the control group continuing democracies
and countries that transition out of democracy at time t. Countries that experience a
transition to autocracy at time t – 1 or earlier are still used as controls. Moreover, also
countries that democratize between time t + 1 and t + h are included in the control group.

This perspective suggests testing robustness to stricter definitions of the control group.
For example, consider Argentina, which democratized in 1973 and became a dictatorship
again in 1976. The Acemoglu, Naidu, Restrepo, and Robinson (2019) approach means
that Argentina contributes to the counterfactual for measuring the effect of (among
others) the 1978 democratization of Spain. It seems natural to consider an alternative
specification that excludes Argentina from the counterfactual for countries that (like
Spain) democratize shortly after 1973–1976, reflecting the concern that the country might
have experienced prolonged dynamic effects from the 1973–1976 transitions in and out
of democracy. Moreover, in measuring the effect of the 1978 democratization of Spain
on GDP growth in the subsequent 10 years, Acemoglu, Naidu, Restrepo, and Robinson
(2019) allow Ecuador, which was a nondemocracy in 1977 and 1978 but democratized in
1979, to be part of the control group. It appears useful to test robustness to exclusion of
countries that democratize between t + 1 and t + h from the control group.

4.2.3 Results

Figure 8 displays the impulse response function from the estimation of the dynamic panel
model of equation 25. This reproduces the baseline results of Acemoglu, Naidu, Restrepo,

19A different possible choice would have been to define the control group as ∆Di,t+k = 0 for – K ≤ k ≤ h.
This would have meant allowing countries that have been continually a democracy from t – K to t + h in
the control group, under the assumption that dynamic effects of democratization have stabilized for those
countries, and therefore their democracy status affects the level but not the dynamics of output.
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and Robinson (2019). The implied long-run effect of democracy on growth is 21 percent
with a standard error of 7 percent.

Figure 9 displays results from LP-DiD specifications (equation 26). We present four
LP-DiD specifications: The first follows Acemoglu, Naidu, Restrepo, and Robinson (2019)
in setting a time-window of just one period for defining clean controls (K = 1) and not
constraining treatment status between t and t + h in the control group; the other three
apply the clean-control condition in equation 27, respectively with time-windows K = 1, 20

and 40.
Broadly speaking, the result of a positive effect of democracy on GDP per capita

appears robust to stricter definitions of the control group. However, at longer time
horizons (25 to 30 years after democratization), the effect declines more and is much more
uncertain in the specifications with a stricter definition of the control group. Interestingly,
the time-window K makes little difference in this application, while what makes some
difference (at least at longer time horizons) is excluding from the control group countries
that democratize between t and t + h. This difference emerges at long time horizons
because with large h the number of countries that democratize between t + 1 and t + h can
become substantial, making the trade-off between a cleaner control group and statistical
power more important.

5 Conclusion

We propose a simple, transparent, easy and fast technique for difference-in-differences
estimation with dynamic heterogeneous treatment effects. Our LP-DiD estimator has
several advantages and provides an encompassing framework, which can be flexibly
adapted to address a variety of settings. It does not suffer from the negative weighting
problem, and indeed can be implemented with any weighting scheme the investigator
desires. Simulations demonstrate the good performance of the LP-DiD estimator and
empirical exercises illustrate its use.
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Figure 1: Results from Montecarlo simulation – Exogenous Treatment Scenario
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Notes: Average estimates and 95% and 5% percentiles from 200 replications.
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Figure 2: Results from Montecarlo simulation – Endogenous Treatment Scenario
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Notes: Average estimates and 95% and 5% percentiles from 200 replications. To filter out variation in
estimates due to variation in the true treatment effect across replications, we subtract from each estimate
the true effect, and then add back the average true effect across all replications. This adjustment is in order
because in the ‘endogenous treatment’ setting, the average treatment effect is not deterministic.
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Figure 3: Banking deregulation in US States
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Figure 4: Goodman-Bacon (2021) decomposition diagnostic for the static TWFE specifica-
tion of equation 21
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Figure 5: Effect of banking deregulation on the labor share: static TWFE estimates
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Figure 6: Effect of banking deregulation on the labor share: event-study TWFE estimates
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Figure 7: Effect of banking deregulation on the labor share: LP-DiD Estimates with clean
controls
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Figure 8: Effect of democracy on growth - dynamic panel estimates
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Figure 9: Effect of democracy on growth - LP-DiD estimates
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Table 1: Root Mean Squared Error (RMSE) – Exogenous Treatment Scenario

Event time Event-Study
TWFE

LP-DiD Sun-Abraham Callaway-
Sant’Anna’

-5 15.34 2.21 2.24 1.54

-4 9.67 2.08 2.35 1.56

-3 7.85 1.76 1.7 1.52

-2 3.32 1.55 1.78 1.49

0 6.2 1.58 1.82 1.61

1 8.43 1.88 1.8 1.92

2 14.46 2.14 2.37 2.29

3 17.44 2.3 2.21 2.41

4 23.18 2.56 2.6 2.62

5 27.14 2.72 2.61 2.87

6 32.49 2.92 3.16 3.17

7 38.03 3.19 3.35 3.45

8 42.33 3.67 3.94 3.91

9 49.61 4.15 4.2 4.23

10 52.65 4.39 4.7 4.7

Notes: RMSE from 200 replications.

Table 2: Root Mean Squared Error (RMSE) – Endogenous Treatment Scenario

Event time Event-Study
TWFE

LP-DiD Sun-Abraham Callaway-
Sant’Anna’

-5 40.29 2.15 24.94 3.28

-4 36.6 1.99 28.28 4.99

-3 38.27 1.73 34.47 7.86

-2 46.07 0 45.87 13.21

0 9.73 1.81 11.15 12.05

1 13.17 2.01 16.36 16.39

2 13.38 2.32 19.05 18.5
3 12.18 2.41 20.26 19.48

4 10.63 2.4 20.74 20.01

5 10.31 2.82 21.18 20.28

6 11.3 3.24 21.53 20.61

7 14.59 4.29 21.45 20.68

8 19.73 5.61 21.37 20.69

9 26.82 7.37 21.37 20.81

10 34.36 9.37 21.37 20.8

Notes: RMSE from 200 replications.
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Appendix

A Weights of the LP-DiD estimator
This appendix derives the weights assigned to each cohort-specific ATET by the LP-DiD estimator,
first in a baseline version without control variables (equations 11 and 12 in the main text) and
then in more general specifications with control variables.

A.1 Baseline version without control variables
Assumptions about the DGP

Consider the general setup and notation introduced in Section 2.1 in the main text. Treatment
is binary, staggered and absorbing; parallel trends and no anticipation hold unconditionally
(Assumptions 1 and 2); potential outcomes without treatment are determined according to
equation 2. As in Section 2.5, treatment effects can be dynamic and heterogeneous across
treatment cohorts.

We can write the observed long-difference ∆yi,t+h = yi,t+h – yi,t–1
as follows:

∆yi,t+h = δh
t + τi,t+hDi,t+h – τi,t–1

Di,t–1
+ eh

i,t , (A.1)

where δh
t = δt+h – δt–1 and eh

it = ei,t+h – ei,t–1
.

LP-DiD specification

Consider the following LP-DiD specification with clean controls:

∆yi,t+h = δh
t + βh LP–DiD∆Dit + εh

it , (A.2)

restricting the sample to observations that are either:{
newly treated

or clean control
∆Dit = 1 ,
Di,t+h = 0 .

(A.3)

βh LP–DiD is the LP-DiD estimate of the dynamic ATET, h periods after entering treatment.

Derivation of the weights

First, we need to define a clean control sample (CCS) for each treatment group. Consider a
treatment group (or cohort) g > 0, as defined in Section 2.1. Define the clean control sample (CCS)
for group g at time horizon h (denoted as CCSg,h) as the set of observations for time t = pg that
satisfy condition A.3. Therefore CCSg,h includes the observations at time pg for all units that either
enter treatment at pg or are still untreated at pg + h. In other words, CCSg,h includes observations
at time t = pg for group g and its clean controls.

By definition of groups and CCSs, each observation that satisfies condition A.3 enters into one
and only one CCS. Therefore, the unbalanced panel dataset defined by the clean control condition
in A.3 can always be reordered as a ‘stacked’ dataset, in which observations are grouped into
consecutive and non-overlapping CCSs.
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Moreover, for any observation {i, t} ∈ CCSg,h, we have ∆Di,t = ∆Di,pg = Di,pg . This follows
from the fact that for any {i, t} ∈ CCSg,h, we have Di,t–1

= Di,pg–1
= 0 by virtue of the clean control

condition.
Define event indicators as a set of G binary variables that identify the CCS that an observation

belongs to. For each treatment group g > 0, the corresponding event indicator is equal to 1

if {i, t} ∈ CCSg,h and 0 otherwise. By definition of treatment groups and CCCs, these event
indicators are fully collinear with time indicators.

By the Frisch-Waugh-Lovell theorem,

E
(

βh LP–DiD
)

=
∑G

j=1
∑i∈CCSj,h

[
∆̃Di,pj

E
(

∆yi,pj+h

)]
∑G

j=1
∑i∈CCSj,h

∆̃D
2

i,pj

, (A.4)

where ∆̃Di,pg is the residual from a regression of ∆D on time indicators in the sample defined by
condition A.3.

This residualized treament dummy for unit i at time pg is equal to

∆̃Di,pg = ∆Di,pg –
∑i∈CCSg,h

∆Di,pg

NCCSg,h

= Di,pg –
∑i∈CCSg,h

Di,pg

NCCSg,h

= Di,pg –
Ng

NCCSg,h

, (A.5)

where NCCSg,h
is the number of observations belonging to CCSg,h, and Ng is the number of

observations belonging to group g. For all observations belonging to the same group g > 0, we

have ∆̃Di,pg = ∆̃Dg,pg = 1 – Ng
NCCSg,h

The first equality in A.5 follows from the full collinearity between time indicators and event
indicators (defined as above); the second and third equalities follow from the definitions of groups
and CCCs.

Given the parallel trends assumption (Assumption 2), we have

E
(

βh LP–DiD
)

=
∑G

j=1
∑i∈CCSj,h

[
∆̃Di,pj

E
(

∆yi,pj+h

)]
∑G

j=1
∑i∈CCSj,h

∆̃D
2

i,pj

=
∑G

j=1
∑i∈CCSj,h

[
∆̃Di,pj

E
(

τi,pj+hDi,pj+h

)]
∑G

j=1
∑i∈CCSj,h

∆̃D
2

i,pj

=
∑G

j=1
∑i∈CCSj,h

[
∆̃Di,pj

E
(

τi,pj+hDi,pj

)]
∑G

j=1
∑i∈CCSj,h

∆̃D
2

i,pj
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= ∑G
j=1

∑i∈CCSj,h

∆̃Di,pj

∑G
j=1

∑i∈CCSj,h
∆̃D

2

i,pj

E
(

τi,pj+hDi,pj

)

= ∑G
j=1

∑i∈j
∆̃Di,pj

∑G
j=1

∑i∈j ∆̃D
2

i,pj

τi,pj+h

= ∑g 6=0

Ng∆̃Dg,pg

∑g 6=0
Ng∆̃D

2

g,pg
τg,pg+h

= ∑g 6=0
ωLP–DiD

g,h τg(h) ,

where the weights are given by

ωLP–DiD
g,h =

Ng∆̃Dg,pg

∑g 6=0
Ng∆̃D

2

g,pg

=
Ng

(
1 – Ng

NCCSg,h

)
∑g 6=0

Ng

(
1 – Ng

NCCSg,h

) =
NCCSg,h

[ngh(nc,g,h)]

∑g 6=0
NCCSg,h

[ng,h(nc,g,h)]
, (A.6)

where ng,h = Ng
NCCSg,h

is the share of treated units in the CCSg,h subsample; and nc,g,h =
Nc,g,h

NCCSg,h
is

the share of control units in the CCSg,h subsample. Recall that τg(h) was defined in the main text
as the dynamic ATET for group g at time-horizon h (equation 1).

A.2 Weights with control variables
What are the weights of the LP-DiD estimator in a more general specification that includes
exogenous and pre-determined control variables? If covariates have a linear and homogenous
effect on the outcome, and parallel trends holds conditional on covariates, it is possible to show
that the weights assigned to each group-specific effect by the LP-DiD estimator are unchanged by
the inclusion of exogenous or pre-determined covariates. In more general settings, the weights
are proportional to the residuals of a regression of the treatment indicator on time effects and the
covariates.

To explore the role of covariates, we now assume that no anticipation and parallel trends hold
after conditioning on a set of observable exogenous or pre-determined covariates (Assumptions ??
and ?? in the main text).

A.2.1 Covariates with linear and homogeneous effects

The DGP Assume that covariates have a linear and homogeneous effect on the outcome.
Specifically, assume the following DGP:

∆yi,t+h = δh
t + ρh∆xit + τi,t+hDi,t+h – τi,t–1

Di,t–1
+ eh

i,t , (A.7)
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LP-DiD specification with covariates The LP-DiD estimating equation with clean controls
and control variables is

yi,t+h – yi,t–1
= βLP–DiD

h ∆Dit } treatment indicator
+ ρh∆xit } covariates
+ δh

t } time effects
+ eh

it; for h = 0, . . . , H ,

(A.8)

restricting the sample to observations that respect condition A.3.

Weights derivation All the definitions of clean control subsamples and indicators, and the
results related to those, that have been described in Section A.1 above, still hold.

The LP-DiD specification of Equation A.8 can be rewritten as

∆yi,t+h – ρh∆xit = βLP–DiD
h ∆Dit + δh

t + eh
it;

Therefore, by the Frisch-Waugh-Lovell theorem, we have

E
(

β̂ LP–DiD
h

)
=

∑G
j=1

∑i∈CCSj,h

[
∆̃Di,pj

E
(
∆yi,t+h – ρ̂h∆xit

)]
∑G

j=1
∑i∈CCSj,h

∆̃D
2

i,pj

, (A.9)

where ∆̃Di,pg is the residual from a regression of ∆D on time indicators in the sample defined
by condition A.3.

The equivalence of eq. A.5 above still holds; therefore, for all observations belonging to the

same group g > 0, we have ∆̃Di,pg = ∆̃Dg,pg = 1 – Ng
NCCSg,h

Given the assumptions about the DGP, we have

E
(

β LP–DiD
h

)
=

∑G
j=1

∑i∈CCSj,h

[
∆̃Di,pj

E(∆yi,t+h–ρ̂h∆xit)
]

∑G
j=1

∑i∈CCSj,h
∆̃D

2

i,pj

=
∑G

j=1
∑i∈CCSj,h

[
∆̃Di,pj

E
(

τi,pj+hDi,pj+h

)]
∑G

j=1
∑i∈CCSj,h

∆̃D
2

i,pj

This is the same expression as in the case of unconditional parallel trends and no covariates
analyzed above, and it therefore leads to the same result:

E
(

β LP–DiD
h

)
= ∑g 6=0

ωLP–DiD
g,h τg(h)

where the weights are given by equation A.6 above.

A.2.2 More general setting

Now consider a more general setting, in which Assumptions ?? and ?? from the main text hold,
but we do not restrict the effect of covariates to be linear or homogeneous. In this more general
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setting, the Frisch-Waugh-Lovell theorem implies

E
(

βh LP–DiD
)

=
∑G

j=1
∑i∈CCSj,h

[
∆̃D

c
i,pj

E
(

∆yi,pj+h

)]
∑G

j=1
∑i∈CCSj,h

(
∆̃D

c
i,pj

)
2

, (A.10)

where ∆̃D
c
i,pg = ∆̃D

c
g,pg is the residual from a regression of ∆D on time indicators and the control

variables xit in the sample defined by condition A.3.
The weights are thus given by

ωc LP–DiD
g,h =

Ng∆̃D
c
g,pg

∑g 6=0
Ng
(

∆̃D
c
g,pg

)
2

, (A.11)

As noted in the main text (Section 2.6.1), it is always possible to preserve the weights of the
baseline LP-DiD estimator by employing semi-parametric propensity-score methods.
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