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1 Introduction

In order to test new pricing policies and improve prices at Amazon, we created an online pricing
experimentation service that helps teams measure the causal impact of their changes on
strategies/policies that affect prices seen by customers on Amazon. Since we do not price discriminate
(i.e., we do not show different prices to different customers at the same time), we must run product-
randomized experiments. Our service supports online A/B tests through statistical hypothesis testing to
measure incremental effects (other terms loosely describing such experiments include randomized
control trails, z-tests, etc.) of experiments run in real time on the Amazon.com website.

In this paper, we describe 1) what we do as scientists is to improve the functionality of our pricing
service, 2) how we help lab owners design their experiments and understand the analysis results, 3) how
we increase precision through improved experimental design (i.e., crossovers), and better estimators that
control for demand trends and differences between treatment groups, and 4) ways to reduce bias by
improving randomization to prevent spillovers.

2 Overview

In order to run experiments to measure the impact of prices on customers, we randomize products into
treatment group(s) and a control group, where the treatment group is priced by the new pricing policy
and the control group is priced by the existing pricing policy. The purpose of pricing experimentations is
to estimate the average treatment effect (ATE) of a pricing policy to determine whether the policy
should be launched is generally not to measure price elasticity.

The pricing experiments can be categorized into two types. The first type is time-bound experiments
where products will be treated throughout the entire experimental period. Consider you want to test a
change in a ML algorithm that sets the price of a group of products. For experiments like this, we have a
baseline period where no products are treated (i.e. they are priced using the existing ML algorithm). At
the start of the experiments, products assigned to the treatment group receive would be priced using the
updated ML algorithm while the control products remain priced using the existing ML algorithm. At the
end of the experiment, products in the treatment group are compared to those in the control group to
measure the ATE. An illustration is shown in Figure 1 below, where the red cells are when a product is
being treated.

Figure 1: Time-Bound Experimental Design
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Time-bound experiments are not always the best design for pricing experiments at Amazon. Our prices
fluctuate based on a variety of different factors that can change over time (e.g., costs, promotions, prices
at other stores etc). Some of these can change during our experiment regardless of what policy we are
testing. Changes in factors that determine our prices during the experiment can change the experiment
population. We use trigger-based experiments for these cases. A trigger-based experiment is when a
product is only in the experimental analysis after a “trigger” is met. This means that only a subset of the
original experiment population is analyzed. Once a product is triggered, it enters the experiment
regardless of the treatment group it belongs to. If the product is in the treated group, the new policy will
be applied to it after being triggered, while products in the control group continue with the existing
policy. When products get triggered, we consider them as triggered until the end of the experiment.

Below is an example of a trigger-based experiment. Red cells are treated experimental periods and green
cells are control experimental periods. Suppose the trigger is a product being put on promotion at
another store. Once a product is triggered (another store puts it on promotion), it enters the experiment
and is assigned to either treatment or control. In this example, products A and E are on promotion at
another store on day 8 (the first day of the experiment). Products B, F, G, | and J are put on promotion at
another store during the experiment and are added to the analysis the day that they are put on promotion.
Note that in this example, three products (C, D, and H) are never triggered and are left out of the
analysis.

Figure 2: Trigger-Based Experimental Design
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3 Improving Precision

Because of factors that we cannot detail in this manuscript, such as promotions, advertisements,
influencer recommendations, or supply chain problems, product demand can have high variation. The
noisy data environment in pricing experiment often leads to noisy ATE estimates in the product level
experiment results. Noisy ATE estimates create confusion for the partner teams working with pricing
experimentation service. To improve our precision, we have begun using a better experimental design
called crossovers and developed a more precise estimator called the Heterogeneous Panel Treatment
Effect (HPTE).

3.1 Experimental Design

Switchbacks are a common tool to improve precision and power in experiments. For this paper, we
define switchbacks as when treatment varies across products and time during our experiment.
Switchbacks generally occur when the treatment turns on or off multiple times for each product in the
experiment. For the time-bound example above, products would switch between the new ML algorithm



price and the old ML algorithm price multiple times throughout the experiment. This is beneficial for
many reasons: it exposes more products to treatment since each product can be treated during the
experiment, it increases the variation of when the treatment is applied to each product since the start of
the treatment is different for different products, and it provides a more effective counterfactual since
each product has both treatment and control periods during the experiment.

In this setting, since the treatments start on different days for different products, it allows us to separate
demand shifts across Amazon or among groups of products from the treatment more effectively. Further,
we will have days within the experiment where each product is not treated, which will provide a more
effective counterfactual than the control group or the treated group before the experiment began, the
standard counterfactual periods in normal A/B tests. Below is an example of a switchback design called
random days which randomly assigns each product-day to either treatment or control. Random days
experiments can shrink standard errors by about 60%.

Figure 3: Random-Days Experimental Design
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Random-days ATE estimates are only accurate if the prices on one day do not effect demand the
following day. That is not the case in our environment. Lowering price one day, can lead to higher
demand the next day. Higher demand one day can lead to increased traffic the following day through
customer traffic mechanisms like search queries and recommended product widgets that may have past
customer demand as an input. This is called the carry-over effect. Therefore, random-days ATE
estimates can be biased as the treatment can affect the demand during control periods.

Under the crossover design, we split the experimental population into two groups: A and B. Group A is
treated and Group B is control for the first half of the experiment. In the second half, Group B is treated
and Group A is control. To minimize the bias from carry-over effect, we consider a blackout period at
the beginning of the first and second half of the experiment.

Below is an example of crossover experimental design where week 7 is the start of the experiment and
week 10 is the start of the second half of the experiment. Weeks 7 and 10 are blacked out because they
are dropped from our analysis, but have the same treatment status as weeks 8 and 11 respectively.
Consider we are comparing two ML algorithms. Group A would be priced with the new ML algorithm
from week 7 to week and the old algorithm from week 10 to week 12. Group B would be priced with the
old algorithm for weeks 7-9 and the new algorithm for weeks 10-12. Our analysis would not include
weeks 7 and 10 because those effects could be biased by carryover effect from the prices in the previous
week.



Figure 4: Crossover Experimental Design
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Crossover experiments shrink standard errors by about 40-50%. That is not as much as random-days but
avoids potential carry-over effect. It is still effective, because it has most of the benefits of a random-
days design as every product is exposed to both treatment and control during the experiment. This
design can only be done for time-bound experiments and cannot be done for triggered-based
experiments.

3.2 Heterogeneous Panel Treatment Effect (HPTE)

The goal of HPTE is to estimate the ATE of a new pricing policy compared to an existing policy at
Amazon. The intuition behind HPTE follows the difference-in-difference (DID) structure: First, we use
time-series data to identify the first difference of each product. Second, match similar products across
the treatment and control group to take the difference of similar products’ first difference (i.e., second
difference).

The empirical steps of HPTE estimator are as follows: 1) Detrend the data using pre-experimental
product-level trends; 2) Filter outlier products from detrended data; 3) Use causal forests to
nonparametrically control for differences between treatment and control group; 4) Resample the data
and estimate the ATE on the resampled data (bootstrapping) to estimate the distribution of possible
ATE. A flowchart is shown below:

Estimate ASIN-level Filter Outliers Estimate second- Bootstrap data to

first-difference difference from estimate noise
from detrended E> grouped ASINs using
data causal forest

3.2.1 Methodology
3.2.1.1 Step 1: Estimate the product-level first-difference

In the classic DID model, the first difference refers to the difference between before and after the
experiment start time. The second difference refers to the difference between the treatment and control
groups’ first differences. Given the rich data structure at Amazon, such as the time series data of the
business metric at product level, we can filter out some of the confounders that add noise to our
estimates. We estimate the first-differences at the product level to help identify the heterogeneous
effects of our treatment. The first-differences are estimated by taking the difference between the



product-level experimental period mean minus the product-level expectation based on the time trends
from the pre-experimental period which we refer to as g;.

3.2.1.2 Step 2: Filter out the outlier products

During the experiment, there are always unobserved noises that could lead to extreme changes to the
business metric of a product. This leads to fat-tailed ATE distribution, under which basic averages or
regression without considering outliers is no longer the most efficient estimator (see Athey et al. 2021).
These extreme products add more noise than signal for our estimates. We define a rule to filter out those
extreme products outlined below.

First, we obtain a threshold percentage from the following equation:

Prp, = 1/(2VN) * 100
where N is the total number of products that are in the data. This cutoff is inspired work by Vehtari et al.
(2015). This threshold was validated through simulations and follows the intuition that as N increases,
the proportion of products in tails goes to zero while the number of tail products increases. We then drop
any products whose g;falls outside the Py, and 1 — Py, quantiles of the S; distribution of their treatment
group.

3.2.1.3 Step 3: Product matching and second-difference

Controlling for differences between treatment groups can improve the accuracy of estimates in
randomized controlled trials (RCTs) (Deng et al 2013). While imbalance can be mitigated with proper
randomization on the aggregate, differences between some metrics will naturally occur. We use Causal
Forests (Wager and Athey 2018) to control for differences between treatment groups. This allows us to
nonparametrically group products in the treatment group to similar products in the control group based
on specific product characteristics. Using causal forests, we can calculate estimated heterogeneous
treatment effects (HTE) for each product by comparing these similar products. However, we only report
the ATE to most lab owners to keep our results straightforward and easy to understand. We use each
products’ average daily value of various financial metrics from the pre-experiment period as well as
other product characteristic information to group similar products in our Causal Forest.

3.2.1.4 Step 4: Standard Error

To estimate the standard error, we randomly sample products from our experimental population
(including outliers) with replacement. From this bootstrapped sample, we repeat our procedure, drop
outliers and estimate ATE using causal forests. We iterate K bootstraps to get the distribution of ATE
and then calculate the confidence bounds for the ATE of our important business metrics. This is called
randomization inference.

3.2.2 HPTE Simulation

To compare the effectiveness of our HPTE method compared to standard DID estimation, we used a
past experiment to simulate 200 random assignments of products to treatment and control groups. This is
called an A/A test. For each assignment, we estimate the ATE and standard error of the ATE. We
compare the average standard error and fraction of the time that we have a p-value less than 0.05
(indicating statistical significance). Because we are randomly assigning treatment, we expect the ATE to
be zero and the p-value to be less than 0.05 about 5% of the time. We report the average standard error,
the percentage of the time we have a P-value less than 0.05, and the standard deviation of our ATE


https://www.nber.org/papers/w29242
https://arxiv.org/pdf/1507.02646.pdf
https://arxiv.org/pdf/1507.02646.pdf
https://exp-platform.com/Documents/2013-02-CUPED-ImprovingSensitivityOfControlledExperiments.pdf
https://www.tandfonline.com/doi/pdf/10.1080/01621459.2017.1319839

estimates in our simulation. We observe that HPTE estimates shrink the standard errors by about 30%
compared to DID.

Table 1: HPTE Simulation Results
Average SE  [Pr(P-value<0.05) [SD of Sample ATE Estimates

DID [0.142 0.04 0.141
HPTE [0.104 0.03 0.087

4  Spillover Effect

Any A/B experiment consists of treatment and control groups. The treatment group is exposed to a new
policy while the control group is expected to be unaffected by the treatment. In the presence of
substitutable or complementary products in a pricing setting, the treatment can affect (spill to) the
controlled observations and bias the estimated treatment effect. This issue is known in the literature and
practice as spillover or interference. Such bias can result in significant deviations of the estimates from
true values and compromise the customer trust in pricing experiments. In this section, we aim to
characterize such bias using an exposure mapping technique (this method estimates the direct treatment
effect and indirect treatment effect due to spillovers), and reduce the bias using an effective cluster
randomization technique. In our numerical study, we observe a 30% reduction in bias on average when
using cluster randomization compared to the traditional DID approach with no spillover consideration
(referred to as Naive approach henceforth).

In online pricing experiments, our main goal is to estimate the global treatment effect (i.e., the difference
in average outcomes when all units are exposed to treatment versus when all units are exposed to
control) and not the spillover effect. Yet, to motivate why and when the spillover bias problem should be
addressed, we study the measurement of the spillover effect. First, we identify the network of related
(i.e., substitutable or complementary) products. Next, we measure the spillover effect using an exposure
mapping technique. Finally, we address the spillover concerns using a balanced cluster randomization
and assess the performance of this approach in relation to a Naive approach with no consideration for
spillovers. Throughout the paper to perform necessary numerical studies, we use past experiments run
on Amazon.com.

4.1 Methodology
4.1.1 Building Network of Related Products

In order to build the network of related products, we should start from a consideration set that identifies
which products can potentially be significant substitutes or complements of each other. We chose a
substitutable product service (SPS) at Amazon as a consideration set for this study which aggregates
substitute list from a variety of different models across Amazon and is available for more products
compared to the other sets available at Amazon. This substitutable product service identifies the
substitutes without considering price changes. In most pricing experiments, however, we are interested
in the substitution effect due to pricing changes for which an elasticity model that considers cross-price
elasticities is needed. We can find subsets of products within the consideration set that are significant
substitutes or complements of each other using cross-price elasticities. To build these cross-price
elasticity models, we use about a year of historical data for the products in the experiment. We use a
Poisson cross-price elasticity model that can be run for each experiment to identify relevant substitutes
using cross price elasticities from the set of possible substitutes identified by the substitute identification



service. The Poisson model seems to perform well in a few anecdotes that we checked. We present an
example in Figure 5. Here, we find the related products to a stool. We observe that the Poisson model
picks the stool with the same color and style from the consideration set as a substitute. The remainder of
the consideration set, however, are items that are significantly different in terms of quantity, style, and
price per unit. Hereafter, we use this model for identifying the network of related products.

Figure 5: Identifying Substitutes Using a Poisson Cross-Price Elasticity Model

$65.46 White &
— Natural
Natural SPS

‘ $74 White & Same Poisson,

a% $112.8 Brown different SPS
%% $48.24 Black different SPS

T $46.11 Natural  different SPS

4.1.2 Measuring the Spillover Effect

One common approach to estimate the spillover effect is using the exposure models in combination with
an inverse probability weighting (IPW) scheme like the Horowitz-Thompson (HT) estimator (Aronow et
al. 2021). Here, we assume only direct peer spillover, in which case there are four possible exposures for
a product:

1) Receiving the direct treatment only also called the isolated treatment effect (d4,),

2) Receiving direct treatment and indirect treatments through substitutes (d;),

3) Receiving only indirect treatment through a substitute also called the spillover effect (dy;),
4) Receiving no treatment (dg).

We next build a large enough sample using random draws of possible assignments to calculate the
probabilities of exposures. Finally, we use Horviz-Thompson (HT) estimate to calculate the treatment
effects. For this analysis we focus on HT estimator that is known to have a lower bias compared to other
IPW methods. We implemented this idea on the experiment using two months of pre-experiment and 4
weeks of experimental data. We summarize the daily average aggregated treatment effects on QTY and
the corresponding estimated standard deviations (SD) in Table 1.

Table 2: Daily Average Aggregated Treatment Effects for the Experiment

Estimand{ Aggregated effect SD

Spillover -404.43 123.72
Isolated Direct 936.32 389.15
Naive Treatment 1420 70.84

Below are a few highlights:
» The experiment cannibalizes quantity sold in the control group.



» Ignoring spillover effect is inflating the treatment effect estimates under the Naive DID approach
with no spillover consideration.

« The Naive approach aims at estimating the global effect which fails if SUTVA does not hold.
This estimate in definition is different from the isolated direct effect. Estimating the global effect
is not feasible when using the exposure mapping techniques. However, given the negative
spillover in this study, one expects the global effect to be even less than the direct effect. Hence,
we expect at least a 30% bias over-estimating the treatment effect when using the Naive
approach.

Given our interest in estimating the global treatment effects in pricing experiments, in the next section
we focus on reducing spillover bias in global effect estimation using cluster randomization.

4.1.3 Addressing Spillover Concerns

One primary tool to address the spillover concern is cluster randomization, where clusters of substitute
or compliment products are designed and same treatment is assigned to an entire cluster. This prevents
spillover of treatment effect to the control through the related products if the related products are
identified correctly. The downside of this approach is the larger variance and lower power as a result of
smaller effective sample size since the number of clusters is less than the number of products.

4.1.3.1 Balancing treatment assignment and Power Analysis

Cluster randomization can lead to imbalance across the treatment assignments and hence introduce
selection bias to our results. Thus, to improve the cluster randomization, we should factor in some cluster-
level characteristics and cluster size. There are several techniques to achieve balance across the treatment
and control groups upon cluster randomization including: 1) stratified block randomization, 2) clustered
matched-pair randomization, and 3) constrained randomization. We selected constrained randomization
after performing comparison studies across these methods. Under constrained randomization the
following steps are taken to achieve balance:

i.  Specify important cluster-level covariates

i.  Simulate a large number of unique potential randomizations

iili.  Choose a subset of randomizations where sufficient balance across covariates is achieved
Iv.  Randomly sample one randomization from this constrained space

We next performed power analysis. We observed that cluster randomization significantly reduces power
compared to the product-level matched-pair randomization (status quo) as expected. This indicates that
clustering is not suitable for low-powered experiments. We also observe that the constrained and matched-
pair randomizations have comparable power results. Finally, the simulation-based power analysis results
in 18-35% higher power while being more computationally intensive. More details are provided in
Appendix 1.

4.1.3.2 Results

We next assess the performance of cluster randomization. We used a constrained randomization achieved
in Section 4.1.3.1. We simulate the treatment and spillover effects and compare the Naive approach to the
Poisson cluster randomization. The bias and standard error (SE) trade-off highlights when one model is
preferred to the other.

We simulated potential outcomes using the pre-experiment average for a financial performance metric at
the product-level as the potential outcome for the control group. We next generate potential outcome for



products under direct treatment, indirect treatment, and both direct and indirect treatment using constant
multipliers. We simulate a negative spillover effect by adjusting these multipliers. We created over 400
of such multiplier vectors. Using the exposure map and the potential outcomes, we next calculated the
observed outcomes and estimated the global treatment effect and standard error (SE) under the Naive
approach (with no account for the spillovers) and Poisson network cluster randomization. Additionally,
we estimated the global treatment effect by generating one vector of potential outcomes for treatment
(which was informed by whether the products were exposed to the direct/indirect treatment) and compare
it to the potential outcomes for control. Table 3 illustrates a comparison of these estimates for a multiplier
vector (@11, @19, @p1) = (1.2,1.4,0.85) when moderately significant treatment effect is detected under the
Poisson model. Here we assume direct effect of 40% lift, spillover effect of 15% loss, and direct-indirect
effect of 20% lift. Table 3 also includes the global treatment effect as the ground truth and bias
improvement. Bias improvement measures the deviation of each estimate from the global treatment effect
and illustrates the improvements in bias when using cluster randomization as opposed to the Naive
approach.

Table 3: Comparison of Naive vs. cluster randomization

Q11 xX10 ap1 Model ATE (SE)
Naive 51.23 (7.76)
Poisson clustering 31.15(15.44)

L2 14 085 —Gipaleffect 389
Bias improvement 37%

Table 3 shows that this multiplier has a large direct treatment effect and the cluster randomization
approach performs well in this case (recommending a launch based on the estimated standard errors). The
Naive approach in this case is highly inflated. In our numerical example of simulating 700+ treatment
effects varying in a wide range, we observe:

» Using the Naive approach can result in inflated estimates.

» The bias is highly sensitive to the simulated treatments.

» We observed an average of 30% reduction in bias by using cluster randomization compared to the
Naive approach.

« Standard deviation on average doubles when using the clustered randomization.

» Cluster randomization performs best when the treatment and spillover effect sizes are large and
does not perform well when effect sizes are close to zero.

4.2  Spillover Summary

In this study, we performed an exposure mapping methodology to detect spillover and used a clustered
constrained randomization to reduce spillover bias in our treatment effect estimates. We observed an
average of 30% reduction in bias when using cluster randomization. However, cluster randomization does
not perform well for low-powered experiments and can lead to noisy and unclear results. Thus, despite
the presence of spillovers in all labs, certain categories of products may benefit more from the current
proposed solution to address spillover. In particular, labs where high cannibalization is feared and larger
sample sizes are available are most appropriate.



5 Conclusion

In pricing experiments, we want to make the lab owners learn as much as possible from the experiments
they run. This involves making the results easy to understand and interpret for their use cases. This also
involves making our estimates as accurate as possible. To help with this we improve experimental
design by using things like Crossovers and improve our estimates by using HPTE. We also want to
minimize bias which we do by studying and controlling for spillovers. Other avenues we continue to
research to improve our experiments are improved randomization to ensure balanced treatment groups,
cluster randomization to prevent spillovers, and HPTE enhancements to get more precise estimates of
ATE.
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Appendix 1 Power analysis with cluster randomization

There are two different approaches in estimating the power that we study here: 1) an analytical closed-
form expression considering a normality assumption, or 2) simulation-based power analysis. The closed-
form expression is more computationally efficient while its assumptions are more difficult to justify. In
particular, the closed-form expression is not valid for our constrained randomization and causal forest
treatment effect estimation.

We next perform power calculations mentioned above using the experiment data. In randomizing the
clusters, we balanced across the treatment and control groups on different financial metrics and the
cluster size following the process described in Section 4.1.3. We consider a 6%, 8%, and 10% effect
sizes (since this experiment was not well-powered, we selected larger effect sizes). Table 4 summarizes
the power results.

Table 4: Closed-Form and Simulation-Based Power Calculations

CPPCP Power
ASIN-level randomization Clustered randomization
Matched-pair Constrained Matched-pair
Effect size Closed-form Closed-form Simulation Closed-form Simulation
6% 0.3 0.17 0.2 [0.16,0.2:3’»}Jr 0.16 0.19 [0.15, 0.23]
8% 047 0.26 0.31 [0.27,0.35] 0.24 0.31 [0.27,0.35]
10% 0.66 0.38 0.45 [0.4, 0.5] 0.37 0.5 [0.45, 0.54]

Notes: TThe 95% confidence intervals are included for simulation-based power analysis.



