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1 Introduction 3 

In order to test new pricing policies and improve prices at Amazon, we created an online pricing 4 

experimentation service that helps teams measure the causal impact of their changes on 5 

strategies/policies that affect prices seen by customers on Amazon. Since we do not price discriminate 6 

(i.e., we do not show different prices to different customers at the same time), we must run product-7 

randomized experiments. Our service supports online A/B tests through statistical hypothesis testing to 8 

measure incremental effects (other terms loosely describing such experiments include randomized 9 

control trails, z-tests, etc.) of experiments run in real time on the Amazon.com website.  10 

In this paper, we describe 1) what we do as scientists is to improve the functionality of our pricing 11 

service, 2) how we help lab owners design their experiments and understand the analysis results, 3) how 12 

we increase precision through improved experimental design (i.e., crossovers), and better estimators that 13 

control for demand trends and differences between treatment groups, and 4) ways to reduce bias by 14 

improving randomization to prevent spillovers. 15 

2 Overview 16 

In order to run experiments to measure the impact of prices on customers, we randomize products into 17 

treatment group(s) and a control group, where the treatment group is priced by the new pricing policy 18 

and the control group is priced by the existing pricing policy. The purpose of pricing experimentations is 19 

to estimate the average treatment effect (ATE) of a pricing policy to determine whether the policy 20 

should be launched is generally not to measure price elasticity.  21 

The pricing experiments can be categorized into two types. The first type is time-bound experiments 22 

where products will be treated throughout the entire experimental period. Consider you want to test a 23 

change in a ML algorithm that sets the price of a group of products. For experiments like this, we have a 24 

baseline period where no products are treated (i.e. they are priced using the existing ML algorithm). At 25 

the start of the experiments, products assigned to the treatment group receive would be priced using the 26 

updated ML algorithm while the control products remain priced using the existing ML algorithm. At the 27 

end of the experiment, products in the treatment group are compared to those in the control group to 28 

measure the ATE. An illustration is shown in Figure 1 below, where the red cells are when a product is 29 

being treated.  30 

Figure 1: Time-Bound Experimental Design 31 

 32 

http://amazon.com/
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Time-bound experiments are not always the best design for pricing experiments at Amazon. Our prices 33 

fluctuate based on a variety of different factors that can change over time (e.g., costs, promotions, prices 34 

at other stores etc). Some of these can change during our experiment regardless of what policy we are 35 

testing. Changes in factors that determine our prices during the experiment can change the experiment 36 

population. We use trigger-based experiments for these cases. A trigger-based experiment is when a 37 

product is only in the experimental analysis after a “trigger” is met. This means that only a subset of the 38 

original experiment population is analyzed. Once a product is triggered, it enters the experiment 39 

regardless of the treatment group it belongs to. If the product is in the treated group, the new policy will 40 

be applied to it after being triggered, while products in the control group continue with the existing 41 

policy. When products get triggered, we consider them as triggered until the end of the experiment. 42 

Below is an example of a trigger-based experiment. Red cells are treated experimental periods and green 43 

cells are control experimental periods. Suppose the trigger is a product being put on promotion at 44 

another store. Once a product is triggered (another store puts it on promotion), it enters the experiment 45 

and is assigned to either treatment or control. In this example, products A and E are on promotion at 46 

another store on day 8 (the first day of the experiment). Products B, F, G, I and J are put on promotion at 47 

another store during the experiment and are added to the analysis the day that they are put on promotion. 48 

Note that in this example, three products (C, D, and H) are never triggered and are left out of the 49 

analysis. 50 

Figure 2: Trigger-Based Experimental Design51 

 52 

3 Improving Precision 53 

Because of factors that we cannot detail in this manuscript, such as promotions, advertisements, 54 

influencer recommendations, or supply chain problems, product demand can have high variation. The 55 

noisy data environment in pricing experiment often leads to noisy ATE estimates in the product level 56 

experiment results. Noisy ATE estimates create confusion for the partner teams working with pricing 57 

experimentation service. To improve our precision, we have begun using a better experimental design 58 

called crossovers and developed a more precise estimator called the Heterogeneous Panel Treatment 59 

Effect (HPTE). 60 

3.1 Experimental Design 61 

Switchbacks are a common tool to improve precision and power in experiments. For this paper, we 62 

define switchbacks as when treatment varies across products and time during our experiment. 63 

Switchbacks generally occur when the treatment turns on or off multiple times for each product in the 64 

experiment. For the time-bound example above, products would switch between the new ML algorithm 65 
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price and the old ML algorithm price multiple times throughout the experiment. This is beneficial for 66 

many reasons: it exposes more products to treatment since each product can be treated during the 67 

experiment, it increases the variation of when the treatment is applied to each product since the start of 68 

the treatment is different for different products, and it provides a more effective counterfactual since 69 

each product has both treatment and control periods during the experiment.  70 

In this setting, since the treatments start on different days for different products, it allows us to separate 71 

demand shifts across Amazon or among groups of products from the treatment more effectively. Further, 72 

we will have days within the experiment where each product is not treated, which will provide a more 73 

effective counterfactual than the control group or the treated group before the experiment began, the 74 

standard counterfactual periods in normal A/B tests. Below is an example of a switchback design called 75 

random days which randomly assigns each product-day to either treatment or control. Random days 76 

experiments can shrink standard errors by about 60%.  77 

Figure 3: Random-Days Experimental Design 78 

 79 

Random-days ATE estimates are only accurate if the prices on one day do not effect demand the 80 

following day. That is not the case in our environment. Lowering price one day, can lead to higher 81 

demand the next day. Higher demand one day can lead to increased traffic the following day through 82 

customer traffic mechanisms like search queries and recommended product widgets that may have past 83 

customer demand as an input. This is called the carry-over effect. Therefore, random-days ATE 84 

estimates can be biased as the treatment can affect the demand during control periods. 85 

Under the crossover design, we split the experimental population into two groups: A and B. Group A is 86 

treated and Group B is control for the first half of the experiment. In the second half, Group B is treated 87 

and Group A is control. To minimize the bias from carry-over effect, we consider a blackout period at 88 

the beginning of the first and second half of the experiment.  89 

Below is an example of crossover experimental design where week 7 is the start of the experiment and 90 

week 10 is the start of the second half of the experiment. Weeks 7 and 10 are blacked out because they 91 

are dropped from our analysis, but have the same treatment status as weeks 8 and 11 respectively. 92 

Consider we are comparing two ML algorithms. Group A would be priced with the new ML algorithm 93 

from week 7 to week and the old algorithm from week 10 to week 12. Group B would be priced with the 94 

old algorithm for weeks 7-9 and the new algorithm for weeks 10-12. Our analysis would not include 95 

weeks 7 and 10 because those effects could be biased by carryover effect from the prices in the previous 96 

week. 97 
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Figure 4: Crossover Experimental Design 98 

 99 

Crossover experiments shrink standard errors by about 40-50%. That is not as much as random-days but 100 

avoids potential carry-over effect. It is still effective, because it has most of the benefits of a random-101 

days design as every product is exposed to both treatment and control during the experiment. This 102 

design can only be done for time-bound experiments and cannot be done for triggered-based 103 

experiments.  104 

3.2 Heterogeneous Panel Treatment Effect (HPTE) 105 

The goal of HPTE is to estimate the ATE of a new pricing policy compared to an existing policy at 106 

Amazon. The intuition behind HPTE follows the difference-in-difference (DID) structure: First, we use 107 

time-series data to identify the first difference of each product. Second, match similar products across 108 

the treatment and control group to take the difference of similar products’ first difference (i.e., second 109 

difference).  110 

The empirical steps of HPTE estimator are as follows: 1) Detrend the data using pre-experimental 111 

product-level trends; 2) Filter outlier products from detrended data; 3) Use causal forests to 112 

nonparametrically control for differences between treatment and control group; 4) Resample the data 113 

and estimate the ATE on the resampled data (bootstrapping) to estimate the distribution of possible 114 

ATE. A flowchart is shown below: 115 

 116 

 117 

 118 

3.2.1 Methodology 119 

3.2.1.1 Step 1: Estimate the product-level first-difference 120 

In the classic DID model, the first difference refers to the difference between before and after the 121 

experiment start time. The second difference refers to the difference between the treatment and control 122 

groups’ first differences. Given the rich data structure at Amazon, such as the time series data of the 123 

business metric at product level, we can filter out some of the confounders that add noise to our 124 

estimates. We estimate the first-differences at the product level to help identify the heterogeneous 125 

effects of our treatment. The first-differences are estimated by taking the difference between the 126 
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product-level experimental period mean minus the product-level expectation based on the time trends 127 

from the pre-experimental period which we refer to as 𝛽𝑖. 128 

3.2.1.2 Step 2: Filter out the outlier products 129 

During the experiment, there are always unobserved noises that could lead to extreme changes to the 130 

business metric of a product. This leads to fat-tailed ATE distribution, under which basic averages or 131 

regression without considering outliers is no longer the most efficient estimator (see Athey et al. 2021). 132 

These extreme products add more noise than signal for our estimates. We define a rule to filter out those 133 

extreme products outlined below. 134 

First, we obtain a threshold percentage from the following equation: 135 

𝑃𝑇ℎ = 1/(2√𝑁) ∗ 100 141 

where 𝑁 is the total number of products that are in the data. This cutoff is inspired work by Vehtari et al. 136 

(2015). This threshold was validated through simulations and follows the intuition that as 𝑁 increases, 137 

the proportion of products in tails goes to zero while the number of tail products increases. We then drop 138 

any products whose 𝛽𝑖falls outside the 𝑃𝑇ℎ and 1 − 𝑃𝑇ℎ quantiles of the 𝛽𝑖 distribution of their treatment 139 

group. 140 

3.2.1.3 Step 3: Product matching and second-difference 142 

Controlling for differences between treatment groups can improve the accuracy of estimates in 143 

randomized controlled trials (RCTs) (Deng et al 2013). While imbalance can be mitigated with proper 144 

randomization on the aggregate, differences between some metrics will naturally occur. We use Causal 145 

Forests (Wager and Athey 2018) to control for differences between treatment groups. This allows us to 146 

nonparametrically group products in the treatment group to similar products in the control group based 147 

on specific product characteristics. Using causal forests, we can calculate estimated heterogeneous 148 

treatment effects (HTE) for each product by comparing these similar products. However, we only report 149 

the ATE to most lab owners to keep our results straightforward and easy to understand. We use each 150 

products’ average daily value of various financial metrics from the pre-experiment period as well as 151 

other product characteristic information to group similar products in our Causal Forest. 152 

3.2.1.4 Step 4: Standard Error 153 

To estimate the standard error, we randomly sample products from our experimental population 154 

(including outliers) with replacement. From this bootstrapped sample, we repeat our procedure, drop 155 

outliers and estimate ATE using causal forests. We iterate 𝐾 bootstraps to get the distribution of ATE 156 

and then calculate the confidence bounds for the ATE of our important business metrics. This is called 157 

randomization inference. 158 

3.2.2 HPTE Simulation 159 

To compare the effectiveness of our HPTE method compared to standard DID estimation, we used a 160 

past experiment to simulate 200 random assignments of products to treatment and control groups. This is 161 

called an A/A test. For each assignment, we estimate the ATE and standard error of the ATE. We 162 

compare the average standard error and fraction of the time that we have a p-value less than 0.05 163 

(indicating statistical significance). Because we are randomly assigning treatment, we expect the ATE to 164 

be zero and the p-value to be less than 0.05 about 5% of the time. We report the average standard error, 165 

the percentage of the time we have a P-value less than 0.05, and the standard deviation of our ATE 166 

https://www.nber.org/papers/w29242
https://arxiv.org/pdf/1507.02646.pdf
https://arxiv.org/pdf/1507.02646.pdf
https://exp-platform.com/Documents/2013-02-CUPED-ImprovingSensitivityOfControlledExperiments.pdf
https://www.tandfonline.com/doi/pdf/10.1080/01621459.2017.1319839
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estimates in our simulation. We observe that HPTE estimates shrink the standard errors by about 30% 167 

compared to DID.  168 

Table 1: HPTE Simulation Results 169 
 

Average SE Pr(P-value<0.05) SD of Sample ATE Estimates 

DID  0.142 0.04 0.141 

HPTE  0.104 0.03 0.087 

4 Spillover Effect 170 

Any A/B experiment consists of treatment and control groups. The treatment group is exposed to a new 171 

policy while the control group is expected to be unaffected by the treatment. In the presence of 172 

substitutable or complementary products in a pricing setting, the treatment can affect (spill to) the 173 

controlled observations and bias the estimated treatment effect. This issue is known in the literature and 174 

practice as spillover or interference. Such bias can result in significant deviations of the estimates from 175 

true values and compromise the customer trust in pricing experiments. In this section, we aim to 176 

characterize such bias using an exposure mapping technique (this method estimates the direct treatment 177 

effect and indirect treatment effect due to spillovers), and reduce the bias using an effective cluster 178 

randomization technique. In our numerical study, we observe a 30% reduction in bias on average when 179 

using cluster randomization compared to the traditional DID approach with no spillover consideration 180 

(referred to as Naïve approach henceforth). 181 

In online pricing experiments, our main goal is to estimate the global treatment effect (i.e., the difference 182 

in average outcomes when all units are exposed to treatment versus when all units are exposed to 183 

control) and not the spillover effect. Yet, to motivate why and when the spillover bias problem should be 184 

addressed, we study the measurement of the spillover effect. First, we identify the network of related 185 

(i.e., substitutable or complementary) products. Next, we measure the spillover effect using an exposure 186 

mapping technique. Finally, we address the spillover concerns using a balanced cluster randomization 187 

and assess the performance of this approach in relation to a Naïve approach with no consideration for 188 

spillovers. Throughout the paper to perform necessary numerical studies, we use past experiments run 189 

on Amazon.com.  190 

4.1 Methodology 191 

4.1.1 Building Network of Related Products 192 

In order to build the network of related products, we should start from a consideration set that identifies 193 

which products can potentially be significant substitutes or complements of each other. We chose a 194 

substitutable product service (SPS) at Amazon as a consideration set for this study which aggregates 195 

substitute list from a variety of different models across Amazon and is available for more products 196 

compared to the other sets available at Amazon. This substitutable product service identifies the 197 

substitutes without considering price changes. In most pricing experiments, however, we are interested 198 

in the substitution effect due to pricing changes for which an elasticity model that considers cross-price 199 

elasticities is needed. We can find subsets of products within the consideration set that are significant 200 

substitutes or complements of each other using cross-price elasticities. To build these cross-price 201 

elasticity models, we use about a year of historical data for the products in the experiment. We use a 202 

Poisson cross-price elasticity model that can be run for each experiment to identify relevant substitutes 203 

using cross price elasticities from the set of possible substitutes identified by the substitute identification 204 
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service. The Poisson model seems to perform well in a few anecdotes that we checked. We present an 205 

example in Figure 5. Here, we find the related products to a stool. We observe that the Poisson model 206 

picks the stool with the same color and style from the consideration set as a substitute. The remainder of 207 

the consideration set, however, are items that are significantly different in terms of quantity, style, and 208 

price per unit. Hereafter, we use this model for identifying the network of related products. 209 

Figure 5: Identifying Substitutes Using a Poisson Cross-Price Elasticity Model 210 

 211 

4.1.2 Measuring the Spillover Effect 212 

One common approach to estimate the spillover effect is using the exposure models in combination with 213 

an inverse probability weighting (IPW) scheme like the Horowitz-Thompson (HT) estimator (Aronow et 214 

al. 2021). Here, we assume only direct peer spillover, in which case there are four possible exposures for 215 

a product: 216 

1) Receiving the direct treatment only also called the isolated treatment effect (𝑑10), 217 

2) Receiving direct treatment and indirect treatments through substitutes (𝑑11), 218 

3) Receiving only indirect treatment through a substitute also called the spillover effect (𝑑01), 219 

4) Receiving no treatment (𝑑00).  220 

We next build a large enough sample using random draws of possible assignments to calculate the 221 

probabilities of exposures. Finally, we use Horviz-Thompson (HT) estimate to calculate the treatment 222 

effects. For this analysis we focus on HT estimator that is known to have a lower bias compared to other 223 

IPW methods. We implemented this idea on the experiment using two months of pre-experiment and 4 224 

weeks of experimental data. We summarize the daily average aggregated treatment effects on QTY and 225 

the corresponding estimated standard deviations (SD) in Table 1. 226 

Table 2: Daily Average Aggregated Treatment Effects for the Experiment 227 

 228 

Below are a few highlights: 229 

• The experiment cannibalizes quantity sold in the control group.  230 
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• Ignoring spillover effect is inflating the treatment effect estimates under the Naïve DID approach 231 

with no spillover consideration.  232 

• The Naïve approach aims at estimating the global effect which fails if SUTVA does not hold. 233 

This estimate in definition is different from the isolated direct effect. Estimating the global effect 234 

is not feasible when using the exposure mapping techniques. However, given the negative 235 

spillover in this study, one expects the global effect to be even less than the direct effect. Hence, 236 

we expect at least a 30% bias over-estimating the treatment effect when using the Naïve 237 

approach. 238 

Given our interest in estimating the global treatment effects in pricing experiments, in the next section 239 

we focus on reducing spillover bias in global effect estimation using cluster randomization.  240 

4.1.3 Addressing Spillover Concerns 241 

One primary tool to address the spillover concern is cluster randomization, where clusters of substitute 242 

or compliment products are designed and same treatment is assigned to an entire cluster. This prevents 243 

spillover of treatment effect to the control through the related products if the related products are 244 

identified correctly. The downside of this approach is the larger variance and lower power as a result of 245 

smaller effective sample size since the number of clusters is less than the number of products.  246 

4.1.3.1 Balancing treatment assignment and Power Analysis 247 

Cluster randomization can lead to imbalance across the treatment assignments and hence introduce 248 

selection bias to our results. Thus, to improve the cluster randomization, we should factor in some cluster-249 

level characteristics and cluster size. There are several techniques to achieve balance across the treatment 250 

and control groups upon cluster randomization including: 1) stratified block randomization, 2) clustered 251 

matched-pair randomization, and 3) constrained randomization. We selected constrained randomization 252 

after performing comparison studies across these methods. Under constrained randomization the 253 

following steps are taken to achieve balance:  254 

i. Specify important cluster-level covariates 255 

ii. Simulate a large number of unique potential randomizations  256 

iii. Choose a subset of randomizations where sufficient balance across covariates is achieved 257 

iv. Randomly sample one randomization from this constrained space 258 

We next performed power analysis. We observed that cluster randomization significantly reduces power 259 

compared to the product-level matched-pair randomization (status quo) as expected. This indicates that 260 

clustering is not suitable for low-powered experiments. We also observe that the constrained and matched-261 

pair randomizations have comparable power results. Finally, the simulation-based power analysis results 262 

in 18-35% higher power while being more computationally intensive. More details are provided in 263 

Appendix 1.  264 

4.1.3.2 Results 265 

We next assess the performance of cluster randomization. We used a constrained randomization achieved 266 

in Section 4.1.3.1. We simulate the treatment and spillover effects and compare the Naïve approach to the 267 

Poisson cluster randomization. The bias and standard error (SE) trade-off highlights when one model is 268 

preferred to the other. 269 

We simulated potential outcomes using the pre-experiment average for a financial performance metric at 270 

the product-level as the potential outcome for the control group. We next generate potential outcome for 271 
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products under direct treatment, indirect treatment, and both direct and indirect treatment using constant 272 

multipliers. We simulate a negative spillover effect by adjusting these multipliers. We created over 400 273 

of such multiplier vectors. Using the exposure map and the potential outcomes, we next calculated the 274 

observed outcomes and estimated the global treatment effect and standard error (SE) under the Naïve 275 

approach (with no account for the spillovers) and Poisson network cluster randomization. Additionally, 276 

we estimated the global treatment effect by generating one vector of potential outcomes for treatment 277 

(which was informed by whether the products were exposed to the direct/indirect treatment) and compare 278 

it to the potential outcomes for control. Table 3 illustrates a comparison of these estimates for a multiplier 279 

vector (𝛼11, 𝛼10,  𝛼01) = (1.2,1.4,0.85) when moderately significant treatment effect is detected under the 280 

Poisson model. Here we assume direct effect of 40% lift, spillover effect of 15% loss, and direct-indirect 281 

effect of 20% lift. Table 3 also includes the global treatment effect as the ground truth and bias 282 

improvement. Bias improvement measures the deviation of each estimate from the global treatment effect 283 

and illustrates the improvements in bias when using cluster randomization as opposed to the Naïve 284 

approach.  285 

 286 

Table 3 shows that this multiplier has a large direct treatment effect and the cluster randomization 287 

approach performs well in this case (recommending a launch based on the estimated standard errors). The 288 

Naïve approach in this case is highly inflated. In our numerical example of simulating 700+ treatment 289 

effects varying in a wide range, we observe: 290 

• Using the Naïve approach can result in inflated estimates. 291 

• The bias is highly sensitive to the simulated treatments.  292 

• We observed an average of 30% reduction in bias by using cluster randomization compared to the 293 

Naïve approach.  294 

• Standard deviation on average doubles when using the clustered randomization.  295 

• Cluster randomization performs best when the treatment and spillover effect sizes are large and 296 

does not perform well when effect sizes are close to zero. 297 

4.2 Spillover Summary 298 

In this study, we performed an exposure mapping methodology to detect spillover and used a clustered 299 

constrained randomization to reduce spillover bias in our treatment effect estimates. We observed an 300 

average of 30% reduction in bias when using cluster randomization. However, cluster randomization does 301 

not perform well for low-powered experiments and can lead to noisy and unclear results. Thus, despite 302 

the presence of spillovers in all labs, certain categories of products may benefit more from the current 303 

proposed solution to address spillover. In particular, labs where high cannibalization is feared and larger 304 

sample sizes are available are most appropriate. 305 
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5 Conclusion 306 

In pricing experiments, we want to make the lab owners learn as much as possible from the experiments 307 

they run. This involves making the results easy to understand and interpret for their use cases. This also 308 

involves making our estimates as accurate as possible. To help with this we improve experimental 309 

design by using things like Crossovers and improve our estimates by using HPTE. We also want to 310 

minimize bias which we do by studying and controlling for spillovers. Other avenues we continue to 311 

research to improve our experiments are improved randomization to ensure balanced treatment groups, 312 

cluster randomization to prevent spillovers, and HPTE enhancements to get more precise estimates of 313 

ATE.   314 
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Appendix 1 Power analysis with cluster randomization 330 

There are two different approaches in estimating the power that we study here: 1) an analytical closed-331 

form expression considering a normality assumption, or 2) simulation-based power analysis. The closed-332 

form expression is more computationally efficient while its assumptions are more difficult to justify. In 333 

particular, the closed-form expression is not valid for our constrained randomization and causal forest 334 

treatment effect estimation. 335 

We next perform power calculations mentioned above using the experiment data. In randomizing the 336 

clusters, we balanced across the treatment and control groups on different financial metrics and the 337 

cluster size following the process described in Section 4.1.3. We consider a 6%, 8%, and 10% effect 338 

sizes (since this experiment was not well-powered, we selected larger effect sizes). Table 4 summarizes 339 

the power results. 340 

Table 4: Closed-Form and Simulation-Based Power Calculations 341 

 342 

 343 


