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1 Introduction

Electoral campaigns are at the core of democracy. Campaigns matter because they pro-

vide voters with an opportunity to obtain information about candidates, their proposals,

and past performances. The acquisition of information is essential for well-informed

decision-making and has a direct impact on policy outcomes, political selection, and

accountability (Dewan and Shepsle, 2011; Ashworth, 2012). The campaign strategies

adopted by candidates are, therefore, crucial since they affect both the content and qual-

ity of the information transmitted to voters. However, while campaigns may facilitate

access to true and relevant information, they are often carried out with the deliberate

intent to distort and mislead, often focusing on personal and defamatory attacks.1

“Dirty campaigning” and “mudslinging” are by no means new phenomena in politics,

but their potential negative impact has increased significantly in recent years with the

advent of social media and the ability of campaigns to target specific constituencies and

reach ever larger audiences (Allcott and Gentzkow, 2017). Indeed, there is an increasing

concern that campaign attacks and the spread of misinformation may lead to suboptimal

policies, voter demobilization, mistrust in politics and, ultimately, pose serious threats

to democracy (Ansolabehere et al., 1994; Hochschild and Einstein, 2015; Grossman and

Helpman, 2020). However, in spite of the importance of these issues, a more systematic

understanding of the main political and institutional factors that influence the candidates’

decisions to “go dirty” is still needed.

This paper studies the main determinants of electoral campaign attacks, both theo-

retically and empirically. We first propose a model of electoral contests with “impres-

sionable” voters (Baron, 1994; Grossman and Helpman, 1996), where the probability of

winning an election depends on the candidates’ initial levels of political support plus their

binary decisions to attack or not their opponents. A campaign attack is assumed to be

costly and to cause a fraction of the targeted candidate’s support to switch to her rivals.

We provide a general characterization of the equilibrium in races with two and three

candidates. Overall, under single ballot plurality, we show that the 2nd place candidate

is always the most aggressive candidate, while candidates with an electoral advantage are

relatively more likely to receive an attack.

Our model also yields the prediction that, in three-candidate races, the two front-

runners become less aggressive towards each other when the support for the 3rd place

candidate increases. Intuitively, a campaign attack benefits not only the attacking candi-

1A recent example of how the incentives to distort and attack may dominate an entire campaign comes
from the 2020 US presidential elections. The first Biden-Trump debate provides a concrete case in point.
According to CNN, the debate was “rancorous and chaotic (...) full of insults, slashing interruptions,
and callous attacks”.
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date but also all other opponents of the targeted candidate. Our analysis shows that the

first two candidates are particularly concerned about this spillover effect when the 3rd

candidate is strong, which makes them less willing to attack each other in this case. Next,

we show that the pattern of campaign attacks differs in significant ways under single and

dual ballot plurality systems. Specifically, focusing on the behavior of candidates in the

first round of elections, we show that the 3rd place candidate is always the most aggres-

sive under a dual ballot system. Moreover, we also show that campaign attacks between

2nd and 3rd place candidates become more likely to occur and we derive conditions under

which all candidates become more aggressive under dual ballot plurality.

Empirical studies on campaign strategies are usually made difficult by the lack of

available data about how campaigns are actually carried out.2 To overcome these diffi-

culties, we collect detailed information contained in all “right of reply” lawsuits filed in

Brazil (with the exception of three states) during the 2012 and 2016 municipal elections.

The Brazilian electoral legislation protects candidates against slanderous, defamatory,

and false accusations, granting the victim of an attack the right to respond to the offense

at the offender’s cost. “Right of reply” lawsuits are simple, inexpensive, and must be

decided by the local electoral judge within 72 hours. Based on information retrieved

from these lawsuits, we construct a unique dataset of 69,252 ordered pairs of candidates

containing the precise directions of campaign attacks in 10,461 distinct electoral races.

We begin our empirical analysis by examining the general patterns of campaign attacks

in Brazilian municipal elections. Focusing on electoral races with two and three effective

candidates held under single ballot plurality, and controlling for a rich set of candidates’

characteristics and both municipality and election-year fixed effects, we find a pattern

of attacks that closely matches our main theoretical predictions. Specifically, we show

that the 2nd place candidate is always the most aggressive candidate. Moreover, in

three-candidate races, we find that candidates are always more likely to target their

highest-ranked opponent, with the front-runner being the most attack. Finally, we show

that an increase in the electoral strength of the 3rd place candidate significantly reduces

the likelihood of an attack between the two front-runners.

Next, we exploit two different research designs to investigate how certain specific as-

pects of the political and institutional environment affect campaign attacks. A robust

prediction of our model is that candidates with an electoral advantage are more likely

to receive an attack. To test this hypothesis, we exploit quasi-experimental variation in

electoral support arising from virtual ties between 2nd and 3rd place candidates. Our

2According to Lau and Rovner (2009), “the most fundamental problem in the study of political cam-
paigns involves data: the lack, until very recently, of any good evidence on exactly what candidates actually
do when they are running for office.”
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approach follows Anagol and Fujiwara (2016) who used data from municipal elections in

Brazil, India, and Canada to show that close runner-ups are substantially more likely to

run in and win the subsequent elections. Importantly, they provide ample evidence sug-

gesting that these results come from simply being labeled “the runner-up”. We exploit a

similar regression discontinuity design to show that close runner-ups are about 2 percent-

age points more likely to receive an attack in the next elections, which corresponds to a

striking 160% increase relatively to the 3rd place candidates’ mean. Moreover, following

a procedure proposed by Lee (2009) and adapted by Anagol and Fujiwara (2016), we

show that selection into candidacy alone is unlikely to explain these results.

Finally, we investigate whether the pattern of campaign attacks differs under single

and dual ballot plurality systems. To do so, we exploit quasi-experimental variation aris-

ing from the fact that in Brazil municipalities with less than 200, 000 registered voters

must use single ballot plurality, while those above this threshold must use dual ballot plu-

rality. Consistently with the predictions of our model, we find that 3rd place candidates

become significantly more aggressive under dual ballot plurality. Moreover, we show that

the frequency of attacks between 2nd and 3rd place candidates increases substantially

and we find suggestive evidence that campaigns become generally more aggressive under

dual ballot plurality.

Our paper contributes to the political economy and institutional design literatures in

several ways. First, our work relates to a theoretical literature on negative campaigning

in elections (Skaperdas and Grofman, 1995; Harrington and Hess, 1996) and sabotage in

contests (Lazear, 1989; Konrad, 2000; Chen, 2003).3 While these papers are primarily

interested in examining the amount of effort allocated between positive and negative

activities, our analysis focuses on the candidates’ binary decisions to attack or not each

of their opponents.4 Our model turns out to be very tractable under certain conditions.

In particular, we are able to provide a detailed characterization of the equilibrium for any

distribution of initial electoral support in races with two and three candidates. Moreover,

we derive novel comparative static results showing how the pattern of campaign attacks

varies with the competitiveness of races and under different electoral systems.

We also contribute to a large empirical literature on the determinants of the deci-

sion to “go negative” (Theilmann and Wilhite, 1998; Kahn and Kenney, 1999; Lau and

Rovner, 2009; Dowling and Krupnikov, 2016). In particular, we take advantage of a

3Contrarily to negative campaigning, campaign attacks are often illegitimate and illegal and, as such,
tend to be “extreme” events. Jamieson et al. (2000) and Lau and Rovner (2009) emphasize the distinction
between “negative” and “dirty” campaigning noting that, while most political analysts condemn baseless
attacks, many view legitimate criticism as essential for democracy.

4In doing so, our approach is related to papers that study network patterns in the presence of enmity
and antagonism, particularly Hiller (2017).
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unique feature of the Brazilian electoral legislation, which allows us to use detailed in-

formation contained in “right of reply” lawsuits to construct an objective measure of

campaign attacks. Importantly, we are able to systematically identify the precise direc-

tion of attacks in a large number of electoral races held across the country. Our study

establishes novel and robust stylized facts about the patterns of campaign attacks in two

and three-candidate races.

More specifically, we contribute to a literature on negative campaigning in multi-

candidate elections (Hansen and Pedersen, 2008; Elmelund-Praestekaer, 2008). In partic-

ular, Ghandi et al. (2016) showed that electoral races with three or more candidates are

associated with fewer negative ads than two-candidate races. Moreover, in a large field

experiment, Galasso et al. (2020) found causal evidence for the existence of a positive

spillover effect on the third main candidate (neither the target nor the attacker) arising

from negative campaigning. Our analysis complements these studies by showing that

an increase in the strength of the 3rd place candidate reduces the frequency of attacks

between the two front-runners.

Our paper is also related to a strand of the literature which studies sabotage in contests

with heterogeneous agents. A central finding in this literature is that “abler” contestants

are expected to receive more attacks (Skaperdas and Grofman, 1995; Chen, 2003; Münster,

2007; Chowdhury and Gürtler, 2015). This prediction has been corroborated by a number

of experimental studies (Harbring et al., 2007; Gürtler et al., 2013; Charness et al., 2014)

and observational studies using field data from sports (Balafoutas et al., 2012; Deutscher

et al., 2013). To the best of our knowledge, our paper is the first to provide quasi-

experimental evidence on the effect of an electoral advantage on the likelihood of receiving

a campaign attack exploiting virtual ties between 2nd and 3rd place candidates. In doing

so, we provide a novel application of the approach proposed by Anagol and Fujiwara

(2016). More generally, our paper also relates to the literature on rank-based decision-

making in politics (Folke et al., 2016; Meriläinen and Tukiainen, 2018; Fujiwara and Sanz,

2020; Pons and Tricaud, 2020).

Finally, we also contribute to a literature which examines the properties of runoff elec-

toral systems (Duverger, 1954; Fujiwara, 2011; Bouton, 2013; Pons and Tricaud, 2018;

Bouton et al., 2019). While most papers focus on the effects of single versus dual ballot

plurality systems on the behavior of voters, Bordignon et al. (2016) showed that electoral

rules also affect the strategies of parties. In particular, they found that runoff systems

allow moderate candidates to run alone − without having to form coalitions with ex-

treme parties − leading to more moderate policies in equilibrium. Our paper adds to

this literature by showing that campaign strategies also adjust to the electoral rule. In

particular, our findings suggest that politicians, particularly 3rd place candidates, may
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have an incentive to campaign harder and more aggressively under dual ballot plurality.

Our results differ from the conventional view that the two-party majority system adopted

in the US creates the most incentive for negative campaigning. Our theoretical analysis

highlights the fact that certain characteristics of the races, such as the degree of compe-

tition, interact with the electoral rule to shape the incentives to attack. In doing so, our

analysis also contributes to the literature on constitutional design (Aghion et al., 2004;

Persson and Tabellini, 2005).

2 Model

This section proposes a theoretical framework to study the incentives behind campaign

attacks in electoral races with two and three candidates.

2.1 Two-Candidate Races

Setup. Consider an electoral race with two candidates i ∈ {1, 2}, each with initial

support soi ∈ R+ with so1 > so2. The electoral support of a candidate can be interpreted as

a measure of her political strength and is assumed to be common knowledge.5 Candidates

decide simultaneously whether to attack or not each other, with ai ∈ {0, 1} representing

i’s binary decision to attack. For convenience, let ni = a−i indicate whether candidate i

received or not an attack.

We assume that a campaign attack allows a candidate to “steal” a fraction φ ∈ (0, 1)

of her opponent’s initial support. Given both players’ decisions, the final support of

candidate i is given by:

xi (ni, nj) = (1− φni) soi + njφs
o
j + εi (1)

where εi is an iid shock with Type I Extreme Value distribution which is realized after

the players’ decisions have been made and captures all uncertainty associated with the

electoral process in a reduced form fashion.6 We define si (ni, nj) := (1− φni) soi +njφs
o
j .

Elections are held by simple majority and the candidate with the largest final support

5Our analysis assumes that the initial support of candidates is exogenously given at the moment
when they make their decisions to attack or not. We think of this initial support as being determined in
a previous stage of the electoral competition game, where it can be influenced by the choice of platforms,
campaign expenditures, candidates’ characteristics, among other factors. For simplicity, we do not model
these various potential factors explicitly.

6In Appendix B.2, we show that our results are robust to considering a version of the model where
campaign attacks lead to the demobilization of voters of both the attacked and attacking candidates. In
particular, our main conclusions remain unchanged even if an attack serves only to demobilize voters of
rival candidates.
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wins. Following McFadden (1974), the probability that candidate i wins the election is:

pi (ni, nj) =
exp (si (ni, nj))

exp (si (ni, nj)) + exp (sj (ni, nj))
(2)

This particular functional form is often referred to as the Logit contest success function

(CSF).7

The cost of an attack is given by a constant c ∈ R+, which is assumed to be common

knowledge and captures all expenses associated with undertaking a campaign attack,

including those related to the ensuing litigation. We suppose that candidates seek to

maximize their probability of winning net of attacking costs:

ui (ai, aj) = pi (aj, ai)− aic (3)

Equilibrium Analysis. We now proceed to characterize the Nash equilibrium of the

game. Conditional on whether candidate i is being attacked or not, ni ∈ {0, 1}, the

benefit obtained by i when she attacks j is:

∆ij (ni) = pi (ni, 1)− pi (ni, 0) , (4)

i.e. the difference between the probability of winning the election when she attacks and

when she does not attack her opponent. The following proposition establishes some basic

properties of the function ∆ij (ni) .

Proposition 1. The benefit function ∆ij (ni) satisfies the following properties:

i. For candidate 1, the benefit of an attack is larger when she is attacked:

∆12 (0) < ∆12 (1)

ii. For candidate 2, the benefit of an attack is larger when she is not attacked:

∆21 (1) < ∆21 (0)

iii. Candidate 2 is more aggressive than candidate 1 in the sense that:

∆12(1) < ∆21(1)

Observe that candidate 1 is more willing to attack when she is attacked. Intuitively,

7In Appendix B.4, we show that our basic qualitative results are robust to using an alternative widely
used class of functions, the so-called Tullock CSF proposed by Tullock (1980).
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receiving an attack reduces the front-runner’s lead, which in turn makes it more likely

that an attack against 2 may be decisive for the election. The opposite result holds for

candidate 2. Note that receiving an attack reduces her support, which in turn makes it

less likely that an attack against candidate 1 is decisive for the outcome of the election.

We also show that candidate 2 is the most aggressive candidate in that she always benefits

more from an attack. In particular, observe that from Proposition 1 it follows that:

∆12(0) < ∆12(1) < ∆21(1) < ∆21(0)

Given this structure of incentives, the next proposition provides a complete charac-

terization of the unique equilibrium of the game.8

Proposition 2. There exists a unique Nash equilibrium with the following characteristics:

i. Both candidates attack if, and only if, c ≤ ∆12(1).

ii. Only candidate 2 attacks, if and only if, ∆12(1) < c ≤ ∆21(0).

iii. No candidate attacks if, and only if, ∆21(0) < c.

Figure A.1 depicts the region of parameters where each class of equilibrium exists.

Note that, as the cost of attacking increases, we move through three different parameter

regions where the following equilibria exist: (i) an equilibrium where both candidates

attack, (ii) an equilibrium where only candidate 2 attacks, and (iii) an equilibrium where

nobody attacks. Thus, our analysis suggests that the candidate in the lead is always the

one most likely to receive a campaign attack in two-candidate races.

2.2 Three-Candidate Races

Setup. We now consider the case of a race with three candidates, with so1 > so2 > so3 > 0.

As before, players decide simultaneously whether to attack each opponent, with aij ∈
{0, 1} representing candidate i’s binary decision to attack j. For simplicity, we suppose

that each candidate may target at most one rival.9 Let ni =
∑

k 6=i aki represent the

number of attacks received by candidate i and define n = (n1, n2, n3) ∈ N , where N
represents the set of all possible profiles of attacks. The final support of candidate i is

given by:

8For simplicity, we assume that a candidate attacks when indifferent.
9This assumption considerably simplifies the analysis, allowing a more direct and concise exposition

of the main results. In Appendix B.3, we consider the case where candidates are allowed to target
multiple opponents, showing that our main qualitative results remain largely unchanged.
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xi(n) = (1− φni)soi +
∑

j 6=i
njφs

o
j

2
+ εi (5)

where we suppose that an attack against candidate j benefits both of her rivals equally

so that each gets φsoj/2 regardless of who attacked.10 As before, εi is an iid shock with

Type I EV distribution. We define si (n) := (1− φni)soi +
∑

j 6=i
njφs

o
j

2
.

Under the assumption that elections are held by single ballot plurality, the probability

of winning is given by:

p̃i (n) =
exp (si (n))∑3
k=1 exp (sk (n))

(6)

Finally, as before, we assume that candidates seek to maximize their probability of win-

ning net of attacking costs, ui(a) = p̃i(n)− (aij + aik)c.

Equilibrium Analysis. Let Ni ⊂ N denote the set of all possible values which the

vector n may assume when we impose the restriction that player i is not attacking anyone,

i.e. when aij = 0 for j 6= i. For any n ∈ Ni, the benefit obtained by candidate i when

she attacks j is:

∆̃ij(n) = p̃i(ni, nj + 1, nk)− p̃i(ni, nj, nk) (7)

i.e. the difference between the probability of winning the election when i attacks j and

when she does not attack j.

With three candidates, the expression for the benefit function ∆̃ij becomes consid-

erably less tractable. In what follows, we provide a characterization of the equilibrium

focusing on the case where the impact of an attack, as captured by the parameter φ,

is “sufficiently” small. This assumption is consistent with empirical evidence suggesting

that the effect of negative campaigning tends to be small in general (Lau and Rovner,

2009). Moreover, from a technical point of view, it makes our model more tractable by

reducing the dependence of each candidate’s incentives on other players’ strategies.11 The

next proposition establishes some basic properties of the function ∆̃ij (n) when φ is small.

Proposition 3. There exists a threshold φ > 0 such that if φ < φ, then we have:

i. For candidate 1, the benefit of an attack on 2 is larger than that of an attack on 3:

∆̃13(n) < ∆̃12(n
′
) for any n, n

′ ∈ N1

10The main qualitative results of our analysis are robust to allowing for an asymmetric division of the
benefits of an attack.

11Intuitively, as φ decreases, the benefit of an attack for candidate i becomes less dependent on
whether her opponents are engaging or not in campaign attacks, and who exactly they are targeting. In
other words, ∆̃ij (n) becomes less sensitive to changes in n ∈ Ni.
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ii. For candidate 2, the benefit of an attack on 1 is larger than that of an attack on 3:

∆̃23(n) < ∆̃21(n
′
) for any n, n

′ ∈ N2

iii. For candidate 3, the benefit of an attack on 1 is larger than that of an attack on 2:

∆̃32(n) < ∆̃31(n
′
) for any n, n

′ ∈ N3

iv. Candidate 2 is the most aggressive candidate in the sense that:

max{∆̃12(n1), ∆̃31(n3)} < ∆̃21(n2) for any ni ∈ Ni

Thus, each candidate prefers to target her highest-ranked opponent. Moreover, can-

didate 2 is always the most aggressive candidate, while the relationship between ∆̃12 and

∆̃31 is ambiguous in general. Interestingly, it is possible to show that if so2 is close enough

to so1, then ∆̃12(n1) > ∆̃31(n3) for any ni ∈ Ni; whereas if so2 is sufficiently close to so3, then

the opposite holds (see Proposition B.1 in Appendix B.1). Intuitively, the candidate who

is closer to candidate 2 in terms of initial support inherits her more aggressive behavior.

In Appendix B.1, for completeness, we extend the characterization of the function ∆̃ij (n)

to all other pairs of candidates (see Propositions B.2 and B.3 and Corollary B.1).

Given such structure of incentives, we are able to provide a complete characterization

of the unique equilibrium of the game (see Proposition B.4 in Appendix B.1 and Figure

A.2). Overall, our analysis shows that the most likely directions of attacks are, respec-

tively: (i) from candidate 2 against 1 and (ii) either from candidate 1 against 2 or from

candidate 3 against 1. Moreover, candidates with an electoral advantage are always more

likely to receive a campaign attack.12

Comparative Statics. We now use our basic model to examine two comparative statics

questions. First, we investigate how the incentives for candidates 1 and 2 to attack

each other change when we vary the initial support of candidate 3. Our main result is

summarized in the next proposition.

Proposition 4. There exists a threshold φ > 0 such that if φ < φ, then we have:

∂∆̃12(n1)
∂so3

< 0 and ∂∆̃21(n2)
∂so3

< 0 for any ni ∈ Ni

Thus, candidates 1 and 2 become less aggressive towards each other when the electoral

12Given any set of parameter values, candidate 1 is (weakly) more likely to receive a campaign attack
than candidate 2, who is in turn (weakly) more likely to receive an attack than candidate 3.
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strength of candidate 3 increases. Note that the mere presence of a third candidate

“dilutes” the benefit of a campaign attack for candidates 1 and 2, given that now the

resulting electoral gains have to be split with a rival (see Proposition B.5 in Appendix

B.1). Interestingly, the above result shows that this “dilution effect” is amplified when

the initial level of support of candidate 3 increases, in which case she poses a larger

competitive threat to 1 and 2.

Next, we examine how the incentives to attack vary under different electoral systems,

focusing on the comparison between single and dual ballot plurality systems. When

elections are held under dual ballot (runoff) plurality, the probability that a candidate

advances to the second round is given by:

p̃DBi (n) = p̃i (n) + p̃j (n) exp(si(n))
exp(si(n))+exp(sk(n))

+ p̃k (n) exp(si(n))
exp(si(n))+exp(sj(n))

, (8)

with i, j, k ∈ {1, 2, 3}, where p̃i(n) represents the likelihood that candidate i ranks first

(see equation (6)). The above expression, thus, gives the probability that candidate i

finishes either in first or second place. The benefit function is now defined as ∆̃DB
ij (n) =

pDBi (ni, nj + 1, nk)− pDBi (ni, nj, nk). As before, candidates maximize their probability of

advancing to the second round net of attacking costs.13

Our analysis highlights the fact that the pattern of campaign attacks differs in signif-

icant ways under single and dual ballot plurality systems. In particular, we show that,

under dual ballot plurality, candidate 3 is the most aggressive candidate followed by 2

and 1, respectively.

Proposition 5. There exists a threshold φ > 0 such that if φ < φ then under dual ballot

plurality candidate 3 is the most aggressive candidate followed respectively by candidates

2 and 1, in the sense that:

max{∆̃DB
12 (n1), ∆̃DB

13 (n
′

1)} < max{∆̃DB
21 (n2), ∆̃DB

23 (n
′

2)} < max{∆̃DB
31 (n3), ∆̃DB

32 (n
′

3)}

for any ni, n
′
i ∈ Ni.

Thus, if in equilibrium candidate 1 attacks an opponent, then 2 and 3 must attack

someone as well; while if candidate 2 attacks an opponent, then 3 must attack someone

as well. Intuitively, under dual ballot plurality, candidate 3 is the one most fiercely

competing for a spot in the second round and therefore has the largest incentives to attack.

Note that while Duverger’s Law (Duverger, 1954) states that voters have an incentive

to behave differently under single and dual ballot plurality, our analysis highlights the

13Our analysis focuses on characterizing the behavior of candidates in the first round of elections,
given that the incentives in the second round are the same as those in two-candidate races.
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fact that candidates also have an incentive to follow different campaign strategies under

these two systems. Interestingly, we show that under dual ballot plurality candidates 2

and 3 may prefer to target each other rather than the front-runner (see Proposition B.6

in Appendix B.1). Finally, we also show that if the race is sufficiently close in the sense

that so1− so3 > 0 is small enough, then all three candidates become more aggressive under

dual ballot plurality (see Proposition B.7 in Appendix B.1).

2.3 Discussion and Extensions

We conclude this section with a discussion of the welfare implications of greater aggres-

siveness in campaigns. Our model highlights the idea that campaign attacks can cause

important distortions in political outcomes, leading to the choice of bad politicians and

platforms, by interfering with the process of aggregation of information and preferences

via elections. Moreover, our model can be amended to show that the results derived

above also hold under an alternative setting where campaign attacks lead to voter de-

mobilization (see Appendix B.2). Indeed, aggressive campaigning and mudslinging have

been shown to reduce turnout and political participation by alienating voters and increas-

ing mistrust in politics and electoral institutions (Ansolabehere et al., 1994; Kahn and

Kenney, 1999; Chong et al., 2015). Finally, our analysis also suggests that the impact

of campaign attacks may fall disproportionately on the more “impressionable” groups of

society, particularly the poorer and more disillusioned voters, thus causing further dis-

tortions in the political representation system.14 In the long run, all these elements can

pose serious threats to democracy.

Throughout this section we have made a few assumptions which we now discuss. In

Appendix B.3, we show that our main qualitative results remain largely unchanged when

we extend the model to allow candidates to target multiple opponents. Next, in Appendix

B.4, we show that our basic results are robust to considering an alternative functional

form for the probability of winning based on a Tullock CSF. Finally, in Appendix B.5, we

simulate the model for specific parameter values to show that our results hold for reason-

able (i.e. not exceedingly small) values of the parameter φ. Overall, our model provides a

flexible framework for studying the incentives behind campaign attacks. Importantly, our

analysis yields a number of specific predictions about the behavior of candidates which

we can test using data from real world campaigns.

14The recent rise in populism around the world is often associated with voters’ disillusionment with
traditional parties and political institutions. In Europe, Guiso et al. (2020) show that recent shocks to
economic insecurity lead to a significant reduction in turnout and to an increase in the willingness to
support right-wing populist parties.
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3 Campaign Attacks in Brazil

3.1 Institutional Background

Municipal elections in Brazil are held every four years, with each municipality electing a

single mayor. The Brazilian Constitution establishes that municipalities with less than

200,000 registered voters must use a single ballot plurality system, while those above this

threshold must use a dual ballot system. The first round of elections occurs simultane-

ously in the entire country − usually on the first Sunday of October − and campaigning

is allowed only during a specific period.15 For example, in 2012 campaigns were allowed

between July 6 and October 6 (day before Election Day), while in 2016 this period was

shortened to the interval between August 16 and October 2 (day before Election Day).16

During the campaign period, candidates have the chance to advertise themselves and

present their opinions and proposals. They may do so by holding campaign rallies and

displaying ads on traditional media (e.g. TV and radio) and social media (e.g. Facebook

and Instagram). Electoral campaigns must be conducted in strict compliance with the

electoral legislation. For instance, the Brazilian law prohibits anyone from offering goods

and services in exchange for political support. Furthermore, an incumbent is not allowed

to increase certain categories of spending or raise public employees’ salaries during an

election year.

Brazil has one of the world’s most stringent legislations regarding offensive and dirty

campaigning. Any candidate or party targeted by a slanderous, defamatory, or false

accusation (i.e. “campaign attack”) is guaranteed the right to respond to the offense,

using the same media employed for the attack, at the offender’s cost. Thus, for instance,

if the attack occurred through a TV ad, then the offender is obliged to provide some of

his own TV time for a reply of the same length as the attack. Alternatively, if the attack

took place via a Facebook post, then the offender is required to provide space on his own

page for a reply of a similar size and number of characters, which must remain visible for

a period at least twice as long as the offense.17

Importantly, “right of reply” lawsuits are simple and inexpensive, requiring only that

the plaintiff provides adequate proof of the occurrence of the attack. These lawsuits are

15In municipalities where a second round is needed, the runoff is usually held on the last Sunday of
October.

16This reduction in the campaign period was the result of a reform aiming to limit campaign spending
in Brazil (Avis et al., 2021). As we shall describe later in more detail, our analysis includes election-year
fixed effects to control for time-specific shocks, such as legislative changes, that affected all municipalities
simultaneously.

17As in other countries, media exposure is a crucial resource for candidates in Brazil. Using data
from Brazilian gubernatorial elections, da Silveira and Mello (2011) provide quasi-experimental evidence
showing that an increase in a candidate’s TV time leads to a significant increase in her vote share.
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processed by local electoral courts on a fast track in order to ensure an immediate response

to the offended candidate and avoid irreparable damages to the election. According to

the legislation, a decision on a right of reply lawsuit must be issued by the local electoral

judge within 72 hours of the filing of the complaint, and there is abundant anecdotal

evidence suggesting that such deadline is strictly adhered to.18

3.2 Data

In order to examine the incentives of candidates, we construct a unique dataset of cam-

paign attacks based on detailed information collected from Brazil’s Regional Electoral

Courts’ databases.19 Specifically, we recover all “right of reply” lawsuits (henceforth,

RR) filed in the entire country during the municipal elections of 2012 and 2016.20 For

each RR lawsuit, we retrieve information about the identities of the plaintiff and the

defendant, the date in which the complaint was filed, and the municipality where the

attack took place. We then construct a dataset of ordered pairs of candidates for each

municipality and election-year. Our measure of campaign attack is an indicator variable

Yijmt which equals one if candidate i “attacked” j in municipality m and election-year t,

and zero otherwise.

Our measure of campaign attack captures a particularly aggressive type of negative

campaigning, involving slander, defamation, and false accusations. Relatively to previous

studies, our measure has the advantage of being based on an objective criterion, which

allows us to systematically collect data throughout the country. Due to limitations re-

lated to the Electoral Courts’ databases, we were able to recover information about the

courts’ rulings (i.e. whether the decisions were favorable or not to the plaintiff) only for a

limited number of cases. However, a careful inspection of the lawsuits shows that the ma-

jority of them were adequately supported by evidence that an “attack” indeed occurred.

Importantly, our results are robust to using a stricter definition where we consider that

an attack took place if, and only if, we find a RR lawsuit with a decision favorable the

plaintiff.21

Our measure of campaign attack captures the discrete decision of candidates to attack

or not. Our focus on the “extensive margin” is due in part to data limitations, given that

the same RR lawsuit may receive different identification numbers in the Electoral Courts’

18In Appendix E, we provide an in-depth discussion of two cases of right of reply lawsuits.
19Our searches were performed on “Sistema de Acompanhamento de Documentos e Processos”

(SADP), which is a database specific to the Brazilian Electoral Justice.
20We were unable to recover data for the states of Alagoas, Espirito Santo, and Rondonia, which

together amount to less than 5% of the Brazilian population.
21The results of the analysis using this alternative definition of campaign attack are available upon

request.
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databases as it progresses through the Brazilian judicial system. This feature of the data

severely limits our ability to count the number of different attacks between candidates

in a given election.22 Most importantly, however, the focus on the extensive margin is

particularly appropriate in the context of our study because it allows us to directly test

the main predictions of the model.

Our main dataset is thus composed of all ordered pairs of candidates who run in a

given municipality m and election-year t (electoral race), where for each ordered pair

we have information about whether an attack took place or not.23 We complement

this dataset with detailed information obtained from Brazil’s Tribunal Superior Eleitoral

(TSE) about the characteristics of candidates, such as gender, educational level, party

affiliation and campaign expenditures, and electoral races’ characteristics, such as number

of registered voters and final vote shares. Finally, from the 2010 Population Census, we

obtain various municipal characteristics, such as population, income per capita, share of

urban population, illiteracy rate, and Gini index.

3.3 Sample and Summary Statistics

Our basic dataset consists of 69, 252 ordered pairs of candidates, comprising 10, 461 dis-

tinct electoral races which took place during the 2012 and 2016 municipal elections.24

Table 1 provides summary statistics for the main variables in our dataset at various lev-

els of aggregation. Panel A reports descriptive statistics for some selected socioeconomic

characteristics of the municipalities in our sample. The average population of a munici-

pality in 2010 was 33, 807 and the average monthly per capita income was R$ 496.50 (or

approximately US$ 275.00 in 2010). Panel B, in turn, provides general information about

the electoral races in our sample. The average turnout rate was 86% and the percentage

of valid votes (excluding blank and null votes) was 92%.25 The average vote shares of

winners and runner-ups were 55% and 38%, respectively. Finally, the average number

of candidates per race was 2.83, with the average number of candidates who received at

least 10% and 15% of the valid votes being 2.23 and 2.14, respectively.

Next, Panel C reports descriptive statistics for some selected individual characteristics

of the candidates in our sample. The proportion of female candidates is 13% and the

fraction of candidates who have a college degree is 51%. The average campaign expen-

22As we show below, RR lawsuits occur relatively infrequently, potentially due to the disincentives
created by the electoral legislation itself. Therefore, the more interesting dimension for the analysis does
seem to be the extensive margin.

23For example, if there are 4 candidates in a given municipality m and election-year t, then our dataset
will feature 12 observations consisting of all possible ordered pairs of candidates associated with that
particular race.

24Our sample excludes a small number of uncontested races, i.e. those with a single candidate.
25Vote is mandatory in Brazil for all citizens between 18 and 70 years old.
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diture is R$ 119, 401 (or approximately US$ 36, 000 in 2016). Finally, Panel D provides

summary statistics for our sample of ordered pairs of candidates. The overall fraction

of ordered pairs for which an attack was observed is 2.6%. Moreover, conditional on

the race having “2 candidates”, the frequency of attacks is 5.4%; while conditional on it

having “3 candidates” or “4 or more candidates”, the frequency falls to 2.8% and 1.8%,

respectively. Lastly, the likelihood of an attack is 2.5% under single ballot plurality and

4.2% under dual ballot plurality.26

4 Hypotheses and Empirical Strategies

Our model yields a number of specific predictions which we can test using our dataset on

RR lawsuits. In this section, we discuss our main hypotheses and empirical strategies.

Throughout, we denote by “i → j” an attack from candidate i against j. Whenever

necessary, candidates are ordered according to their final position in the race and we

refer to the kth place candidate simply as “candidate k”.27

4.1 Campaign Attacks: General Patterns

Our theoretical analysis yields several implications about the general pattern of campaign

attacks under single ballot plurality. Specifically, in two-candidate races, we expect 2 →
1 to be more likely than 1 → 2. Moreover, in three-candidate races, we expect each

candidate to be more likely to attack her highest-ranked opponent, with 2 → 1 being

more likely than 1 → 2 and 3 → 1.

We begin our empirical investigation by examining whether these general theoretical

predictions find support in the data, without necessarily attempting to recover causal

effects. To do so, we consider only races held under single ballot plurality and we restrict

the sample to include only “effective candidates”. An effective candidate is defined as one

who obtains more than a certain share of the votes. The idea here is to exclude candidates

who have no real chances of winning and, therefore, may be subject to different electoral

incentives. To check the robustness of our results, we perform our analysis using various

different thresholds.
26In Figure A.4 we show that campaign attacks tend to be more frequent in larger, richer and more

urban municipalities, where electoral races tend to be more competitive. Interestingly, we find no rela-
tionship between frequency of attacks and income inequality, as measured by the gini index.

27Note that the initial level of support of candidates is generally unobserved. Thus, following a
standard approach in the literature, we use the final (“ex-post”) ranks of candidates as a proxy for their
initial (“ex-ante”) positions. This procedure seems appropriate in the context of our study. Indeed,
based on a sample of 78 electoral races (comprising 464 candidates), for which we were able to recover
opinion polls conducted at the beginning of the campaign period, we find that the correlation between
the initial voting intentions and the final vote shares are 0.87.
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We, first, restrict the sample to include only races with two effective candidates and

consider only the pairs formed by the first two candidates. We then estimate the following

regression:

Yijmt = α + β21D21mt +Ximtγ +Xjmtζ + δm + δt + εijmt (9)

where Yijmt represents whether candidate i attacked j in municipality m and election-

year t, D21mt is a dummy which equals one if candidate i is the 2nd place candidate

and j is the 1st place candidate, and Ximt and Xjmt are vectors of candidate-specific

characteristics.28 We also include municipality fixed effects δm and election-year fixed

effects δt. Standard errors are clustered at the municipality level. Our coefficient of

interest here is β21, which captures the likelihood of an attack 2 → 1 relatively to 1 → 2

(omitted category). Consistently with our theory, we expect β21 > 0.

Next, we restrict the sample to include only races with three effective candidates

and consider only the pairs formed by the first three candidates. We then estimate the

following regression:

Yijmt = α + β12D12mt + β13D13mt + β21D21mt + β31D31mt (10)

+ β32D32mt +Ximtγ +Xjmtζ + δm + δt + εijmt

where we include the dummies D12mt, D13mt, D21mt, D31mt, and D32mt, defined similarly

as before. Note that the omitted category here is D23mt so that all coefficient estimates

should be interpreted relatively to the frequency of attacks 2 → 3.29 In line with our

theoretical predictions, we expect: (i) β12 > β13, β21 > 0 and β31 > β32, and (ii) β21 > β12

and β21 > β31.30 Or to put it in another way, we expect: (i) each candidate to be more

likely to target her highest-ranked opponent and (ii) candidate 2 to be the most aggressive

candidate. As before, standard errors are clustered at the municipality level.

Finally, our model predicts that the first two candidates should become less aggressive

towards each other when the electoral support for the 3rd place candidate increases. To

test this hypothesis, we restrict the sample to include only races with three or more

effective candidates and focus only on the pairs formed by the first two candidates.31 We

28We control for gender, age, age squared, marital status, high school and college degrees, the loga-
rithm of campaign spending, incumbency status, and affiliation to three main parties, PT, PSDB, and
PMDB. We also include a dummy indicating whether the pair was formed by candidates from the PT
and PSDB since Brazilian politics was polarized between these two parties during the period of our
analysis.

29Indeed, as shown in Corollary B.1, our model predicts 2→ 3 to be the least likely direction of attack
in three-candidate races.

30Formally, we test the joint null hypotheses H1
o : β12 = β13, β21 = 0, β31 = β32, and H2

o : β21 = β12,
β21 = β31, which amount to testing the predictions derived in Proposition 3, items i-iii and item iv,
respectively.

31Our results are robust to restricting the sample to include only races with exactly three effective
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then estimate the following regression:

Yijmt = α + β21D21mt + π12D12mtShare3rdmt (11)

+ π21D21mtShare3rdmt +Ximtγ +Xjmtζ + δm + δt + εijmt

where Share3rdmt is the vote share of the 3rd place candidate in municipality m and

election-year t. Our coefficients of interest are π12 and π21, which capture how the fre-

quency of attacks 1 → 2 and 2 → 1 vary when the vote share of 3rd candidate increases,

respectively. Consistently with our theoretical predictions, we expect π12 < 0 and π21 < 0.

As before, standard errors are clustered at the municipality level.

4.2 Electoral Advantage Effect on Campaign Attacks

Our model also predicts that better-ranked candidates should be more likely to be targets

of campaign attacks. The ideal experiment to test this hypothesis would be to take

pairs of identical candidates across several municipalities, randomly assign an “electoral

advantage” to a member of each pair and then compare the frequency of attacks received

by candidates in treatment and control groups. Naturally, such an experiment would be

totally unfeasible. In practice, the best one could hope to achieve would be to exploit an

exogenous source of variation in candidates’ support.

Our analysis exploits quasi-experimental variation in electoral support arising from

virtual ties between 2nd and 3rd place candidates. Our approach follows Anagol and

Fujiwara (2016) who used data from local elections in Brazil, India, and Canada to

compare the subsequent electoral performances of candidates who finished almost tied

for 2nd and 3rd places. They find that runner-ups are significantly more likely to run in

and win the next elections relatively to close 3rd place candidates. Importantly, they show

that the “runner-up effect” is not driven by systematic differences between candidates,

such as distinct degrees of media coverage. Anagol and Fujiwara (2016) argue that simply

being labeled “the runner-up” makes a candidate more salient and, therefore, more likely

to be coordinated on by voters.

Our study examines whether runner-ups are also more likely to receive campaign at-

tacks in the following elections.32 Our analysis is performed at the candidate-municipality-

election-year level. Let xjmt be the running variable for candidate j in municipality m

candidates.
32An alternative strategy based on elections decided by a close margin, comparing winners and runner-

ups, would be problematic in the context of our study because incumbency affects a number of dimensions,
other than just electoral support, that may directly impact campaign attacks. For instance, an incumbent
may receive more attacks simply because more issues can be brought up against her, in which case
candidates in treatment and control groups would be systematically different.
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and election-year t. For a 2nd place candidate, xjmt is defined as the candidate’s own

vote share minus the vote share of the 3rd place candidate. Similarly, for a 3rd place

candidate, this variable is defined as her vote share minus the vote share of the 2nd place

candidate. The main outcome variable Yjmt is a dummy that equals one if candidate j

received at least one attack in municipality m and election-year t.

Under the usual continuity assumption on conditional expectations, the effect of being

the close runner-up rather than the close 3rd place candidate on the likelihood of receiving

a campaign attack in the following elections is given by:

τ = lim
x↓0

E[Yjmt+1|xjmt = x]− lim
x↑0

E[Yjmt+1|xjmt = x] (12)

To avoid selection problems, we perform our analysis unconditionally on the candidates’

decisions to run again in the subsequent elections.33

We estimate the treatment effect by restricting the sample to include only races held

under single ballot plurality and running the following local linear regression using only

observations within a bandwidth h of the threshold:

Yjmt+1 = α + τ1[xjmt > 0] + β1xjmt + β2xjmt1[xjmt > 0] + δt + εjmt, (13)

where τ is our parameter of interest. The model includes election-year fixed effects to

control for certain features of the electoral competition that are specific to races held in

the same year, e.g. the national political environment and legislative changes. Standard

errors are clustered at the municipality level. Our preferred specification uses a linear

polynomial fully interacted with the treatment indicator, with a triangular kernel and

the Calonico et al. (2014b) optimal bandwidth. We check the robustness of our results by

using alternative bandwidth sizes and different polynomial orders, as well as controlling

for state fixed effects and a number of candidate characteristics. Our results are robust

to using a rectangular kernel.

4.3 Single vs. Dual Ballot Plurality Systems

Finally, our model predicts that the pattern of campaign attacks should differ systemat-

ically under single and dual ballot plurality systems. In particular, our analysis suggests

that 3rd place candidates should become more aggressive relatively to other candidates

under dual ballot plurality, while 2nd and 3rd place candidates may become more likely

to attack each other. Furthermore, it is ultimately an empirical question whether cam-

33As discussed below, we provide bounds on the conditional treatment effect following the approach
proposed by Anagol and Fujiwara (2016).
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paigns are more aggressive under single or dual ballot systems. To test these hypotheses,

we exploit quasi-experimental variation arising from the fact that, in Brazil, municipali-

ties with less than 200, 000 registered voters are obliged to adopt a single ballot plurality

system, while those above this threshold must use a dual ballot system.

Our analysis is performed at the candidate pair-municipality-election-year level, where

the main outcome Yijmt is a dummy representing whether candidate i attacked j in

municipality m and election-year t. The running variable vmt is the number of registered

voters in municipality m and election-year t. Under the usual continuity assumption on

conditional expectations, the effect of a change from single to dual ballot plurality on the

likelihood of a campaign attack between any pair of candidates i and j is:

λ = lim
v↓200,000

E[Yijmt|vmt = v]− lim
v↑200,000

E[Yijmt|vmt = v] (14)

Moreover, in order to directly test our main theoretical predictions, we examine

whether the treatment effect is heterogeneous across different types of pairs. We are

particularly interested in investigating whether the effect varies with the rank of the at-

tacking candidate. Formally, the effect of a change in the electoral rule on the probability

of an attack by a candidate in the kth position is given by:

λ(k) = lim
v↓200,000

E[Y
(k)
ijmt|vmt = v]− lim

v↑200,000
E[Y

(k)
ijmt|vmt = v] (15)

where we use the superscript (k) to indicate that the analysis is restricted to consider

only pairs where the attacking candidate was in the kth position, with k ∈ {1, 2, 3}.
Consistently with our theoretical predictions, we expect the treatment effect to be largest

for 3rd place candidates.

To estimate these effects, we restrict the sample to include only races with three or

more effective candidates and consider only the pairs formed by the first three candidates.

We then estimate the following local linear regression using only observations within a

bandwidth h of the threshold:

Yijmt = α + λ1[vmt > 200, 000] + β1vmt + β2vmt1[vmt > 200, 000] + δt + εijmt (16)

where λ is our parameter of interest. As before, our analysis includes election-year fixed

effects and the standard errors are clustered at the municipality level. Our preferred

specification uses a linear polynomial fully interacted with the treatment indicator, with

a triangular kernel and the Calonico et al. (2014b) optimal bandwidth. Our main het-

erogeneity analysis is performed by running separate regressions for subsamples of pairs

where the attacking candidate placed in 1st, 2nd, and 3rd. We also examine whether
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the estimated effects vary across pairs formed by 1st and 2nd, 1st and 3rd, and 2nd

and 3rd place candidates. Finally, we check the robustness of our results by using alter-

native bandwidth sizes and different polynomial orders, as well as controlling for state

fixed effects and a number of candidate characteristics. Our results are robust to using a

rectangular kernel.

5 Main Results

5.1 Campaign Attacks: General Patterns

We begin our analysis by reporting in Figure 1 the frequency of campaign attacks in

races with two and three effective candidates, using a 15% threshold for the definition of

effective candidate and focusing only on races held under single ballot plurality. Observe

that in races with two effective candidates the frequency of attacks 2→ 1 is 6.7 percentage

points (pp), while the frequency of attacks 1→ 2 is 5.4 pp (diff = 1.3 pp, p-value < 0.01).

Moreover, in races with three effective candidates, the most likely directions of attacks

are 2 → 1 (5.2 pp), 1 → 2 (4.5 pp), and 3 → 1 (3.1 pp).34 These figures are generally

consistent with the main predictions of the model. In what follows, we perform a detailed

regression analysis in order to examine the robustness of these findings.

Table 2 reports coefficient estimates for equation (9) using a sample of electoral races

with two effective candidates. We consider four different thresholds for the definition of

effective candidate, 5%, 10%, 15%, and 20%, and the results obtained for each separate

regression are reported in columns 1− 4.35 Note that the point estimates are very stable

across specifications, implying that the likelihood of an attack 2 → 1 is about 1.2 pp

larger than that of an attack 1→ 2. These results are consistent with our prediction that

2nd place candidates are the most aggressive ones in two-candidate races. In all cases,

we are able to reject the null hypothesis that β21 = 0 at 1% significance level.

Next, Table 3 reports coefficient estimates for equation (10) using a sample of electoral

races with three effective candidates. As before, the results show that the most likely

directions of attack are, in order, 2 → 1, 1 → 2, and 3 → 1.36 Specifically, according

34The difference between the frequency of attacks 2 → 1 and 1 → 2 is 0.7 pp (p-value = 0.36), the
difference between the frequency of attacks 2→ 1 and 3→ 1 is 2.0 pp (p-value < 0.01) and the difference
between the frequency of attacks 1 → 2 and 3 → 1 is 1.3 pp (p-value = 0.05).

35Moreover, in order to guarantee that our results are not being influenced by measurement error in
the classification of candidates, given that we use their final ranks as proxy for their initial positions,
we perform an additional robustness check where we exclude from the sample all races where the final
vote shares of any two effective candidates are too “close” (e.g. within 5 pp distance). We show that all
results reported in this subsection remain unchanged. Additional details are available upon request.

36Note that the estimates associated with these three directions of attack are always statistically
significant, while those associated with 1 → 3 and 3 → 2 are never significant.
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to the estimates reported in column 1, based on a 5% threshold, an attack 2 → 1 is 4.0

pp more likely to occur than 2 → 3 (omitted category), while 1 → 2 and 3 → 1 are,

respectively, 3.3 pp and 0.8 pp more likely. Furthermore, joint hypothesis tests provide

support for our predictions that candidates are more likely to target their highest-ranked

opponents (H1
o ) and that 2nd place candidates are the most aggressive in three-candidate

races (H2
o ).37

In columns 2 − 4, we show that our main qualitative results are robust to using

alternative thresholds for the definition of effective candidate. Interestingly, note that as

the threshold increases the magnitudes of the estimates associated with attacks 1 → 2

and 2 → 1 gradually go down, meaning that candidates 1 and 2 become less aggressive

towards each other. This pattern is consistent with the “dilution effect” identified in our

theoretical analysis. Indeed, note that as the threshold increases the vote shares of 3rd

place candidates included in the sample necessarily go up, so that we are progressively

focusing on three-candidate races where the 3rd candidate is stronger.

We provide a more direct test of the “dilution effect” by estimating equation (11).38

The results reported in Table 4 show that the frequency of attacks between the first two

candidates decreases as the 3rd candidate becomes stronger. This effect is particularly

pronounced for attacks originating from the 2nd place candidate, with the estimates for

the interaction between 2 → 1 and the 3rd candidate’s vote share being always negative

and statistically significant. According to the results reported in column 1, based on a

0% threshold, a 10 pp increase in the vote share of the 3rd candidate is associated with a

reduction in the frequency of attacks 2 → 1 by 2.3 pp. In columns 2− 4, we increase the

threshold used for the definition of effective candidate to 2%, 5%, and 10%. Note that

as the threshold goes up the magnitudes of the estimates for both interactions increase

substantially. These results suggest that the “dilution effect” becomes stronger as the

vote share of the 3rd place candidate increases.

5.2 Electoral Advantage Effect on Campaign Attacks

In this subsection, we estimate the effect of an electoral advantage on the likelihood of re-

ceiving a campaign attack by exploiting quasi-experimental variation in electoral support

arising from virtual ties between 2nd and 3rd place candidates. We begin our analysis

by discussing two important assumptions required for the validity of our research design.

First, 2nd and 3rd place candidates should be comparable in terms of their individual

37We reject both null hypotheses in all cases, with the exception of H2
o in the specification reported

in column 4, based on a 20% threshold.
38For this analysis, we employ smaller thresholds for the definition of effective candidate, since doing

so allows us to more fully exploit the variation in the vote shares of 3rd place candidates.
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characteristics around the discontinuity. We provide evidence for this assumption by

showing in Table A.1 that a number of pre-determined characteristics, such as gender,

age, marital status, level of schooling, campaign expenditures, and party affiliation, vary

smoothly around the cutoff − with the possible exception of affiliation to the Labor Party

(PT).39 As we show below, our results are robust to controlling for all these variables in

the regressions.

Second, our research design depends crucially on the existence of the “runner-up

effect” in our study context. In Figure 2, we examine this question by plotting binned

averages of the candidates’ chances of running again (Panel A), their vote shares (Panel B)

and their chances of winning the next elections (Panel C) against the vote share differences

between 2nd and 3rd place candidates, together with a second-order polynomial fitted

separately on each side of the discontinuity.40,41 Consistently with Anagol and Fujiwara

(2016), we find a significant jump at the discontinuity in all three variables. In particular,

close runner-ups are about 12 pp more likely to run again and 10 pp more likely to win

the next elections.

We complement the graphical analysis above by presenting estimation results in Panel

A of Table 5. For each dependent variable, we report the sample mean to the left of the

threshold (3rd place candidates’ mean) and the optimal bandwidth. According to our

preferred specification (column 1), which is based on a local linear regression, close runner-

ups are about 11.6 pp more likely to run again, their vote shares are 4.2 pp larger and

they are 6.6 pp more likely to win the next elections.42 We check the robustness of these

findings by controlling for candidates’ characteristics and state fixed effects (column 2),

fitting a quadratic polynomial on each side of the discontinuity (column 3), and estimating

the difference in means for a narrow bandwidth of 5 pp (column 4). All our results are

robust to these various specifications.

Next, turning to our main question, we examine the effect of being the close runner-up

on the likelihood of receiving a campaign attack. In Panel D of Figure 2, we plot the

frequency of attacks in the next elections against our running variable, with a second-

order polynomial fitted separately on each side of the discontinuity. The graph displays

a clear discontinuous jump at the cutoff, suggesting that barely 2nd place candidates are

39The point estimates reported in column 1 of Table A.1 are obtained by estimating the local linear
regression specified in equation (13). In column 2, we report estimates for an additional specification
using a quadratic polynomial, with the Calonico et al. (2014b) optimal bandwidth.

40As noted before, our analysis is performed unconditionally on running again, so that both average
vote shares and proportion of candidates who win the next elections are calculated taking into account
all candidates, including those who did not to run again.

41The binned averages are computed within quantile-spaced bins of the vote share difference, where
the number of bins is chosen optimally according to Calonico et al. (2014a).

42These estimated effects are substantial and represent an increase of about 47%, 48%, and 70%
respectively, relatively to the 3rd place candidates’ means.
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about 2 pp more likely to receive an attack relatively to close 3rd place candidates.

We complement our graphical investigation by reporting in Panel B of Table 5 the

results of a detailed regression analysis. According to our preferred specification (column

1), close runner-ups are about 2 pp more likely to receive a campaign attack in the next

elections. This effect is quite substantial and corresponds to an increase of approximately

160% relatively to the 3rd place candidates’ mean. Our results are robust to a number

of different specifications (columns 2−4), with estimates ranging from 1.3 pp to 2.1 pp.

Furthermore, in Figure A.5 we plot point estimates obtained from local linear regressions

using a variety of bandwidths. The graph shows that the estimated effects are very stable

at around 2 pp, with the point estimates being generally statistically significant at 10%

confidence level.43

Placebo and Heterogeneous Effects. Next, we report the results of a placebo test,

where we compare the likelihood of receiving an attack between close 3rd and 4th place

candidates. Anagol and Fujiwara (2016) showed that these candidates do not differ

systematically in terms of their probabilities of running again and winning the next

elections. In Panel A of Table A.2, we confirm those findings in our sample by showing

that there are, indeed, no significant differences in subsequent electoral outcomes between

close 3rd and 4th place candidates. Then, consistently with these results, in Panel B

we find no significant effect on the likelihood of receiving an attack in the subsequent

elections. These results are presented graphically in Figure A.6.44

We also investigate whether the electoral advantage effect varies with the share of

votes received by almost tied 2nd and 3rd place candidates. The idea is that a larger

electoral strength should make voters more likely to coordinate on the runner-up, which

in turn should increase the chances that she receives an attack in the subsequent elections.

Following Anagol and Fujiwara (2016), we perform separate analyses for two subsamples,

one containing races in which the sum of the shares of 2nd and 3rd place candidates is

larger than the share of the winner, s2 + s3 ≥ s1, and another containing races where the

opposite holds, s2 + s3 < s1. The results reported in Table A.4 show that the runner-

up effect comes entirely from the subsample of “strong” 2nd and 3rd place candidates.

Most importantly, according to our preferred specification (Panel A, column 1), “strong”

43In a complementary analysis, we employed a fuzzy RDD approach to estimate the contemporaneous
effect of an increase in the vote share on the likelihood that a candidate receives a campaign attack,
using the cutoff between 2nd and 3rd place candidates in the previous election as instrument for vote
shares. We find that a 10 pp increase in a candidate’s vote share raises the probability that she receives
an attack by about 4.9 pp. Additional details are available upon request.

44Furthermore, in Table A.3 we perform an additional placebo test where we compare close 2nd and
3rd place candidates in terms of their likelihood of receiving an attack in the same election (at period
t). As expected, we find no significant differences between them.
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runner-ups are about 3.3 pp more likely to receive a campaign attack in the subsequent

elections, which correspond to a 270% increase relatively to the 3rd place candidates’

mean. Conversely, the corresponding effect for “weak” runner-ups is negative and statis-

tically insignificant (Panel B, column 1).

Bounds on Conditional Effects. Our basic analysis was performed unconditionally

on the candidates’ decisions to run again in the next elections. We now complement our

study by investigating whether the previous results cannot be simply attributed to the

fact that barely 2nd place candidates choose to run again more often and are, therefore,

“mechanically” more likely to receive an attack in the next elections. To investigate this

question, we follow Anagol and Fujiwara (2016), who adapted an approach proposed by

Lee (2009), to provide bounds for the runner-up effect on the probability of receiving an

attack conditional on running again. Their methodology rests on the standard assumption

that there are no “defiers”, i.e. candidates who choose to run again if they place 3rd but

not if they place 2nd. Crucially, the approach requires an assumption on the probability

of being attacked after finishing in 3rd place for a “complier”, which by definition cannot

be observed since a “complier” never runs again in this case.45 The lower bound on the

conditional effect can then be obtained by assuming a “conservatively” large value for

this probability.

A reasonable assumption to calculate the lower bound is to suppose that 3rd place

compliers are attacked with the same probability as runner-ups who choose to run again,

which we estimate to be 7.3 pp. Under this assumption, the lower bound would be 3.7

pp (s.e. = 2.3), which is a quite substantial effect.46 Moreover, we calculate that for

the conditional effect to be zero, a 3rd place complier would have to be attacked with a

probability of 20 pp, which is an implausibly large probability.

5.3 Single vs. Dual Ballot Plurality

In this subsection, we turn to the analysis of the impact of a change in the voting rule

on the pattern of campaign attacks. To do so, we focus on a sample of electoral races

with three or more effective candidates, using a 5% threshold for the definition of effec-

tive candidate.47 We begin our investigation by discussing the assumptions required for

the validity of our research design, which exploits a discontinuity in the assignment of

electoral rules at 200, 000 registered voters. First, municipalities should not be able to

45Formally, a “complier” chooses to run again if she places 2nd but not if she places 3rd.
46The upper bound can be obtained by assuming that 3rd place compliers are attacked with probability

zero, which yields an estimated upper bound of 5.9 pp (s.e. = 2.8).
47Our results are robust to using alternative thresholds.
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systematically sort themselves around the discontinuity. Figure A.7 plots the distribution

of the number of registered voters across Brazilian municipalities, pooling data from 2012

and 2016. As expected, we find no evidence of strategic manipulation around the cutoff.

Second, the validity of our research design relies on the assumption that municipalities

just above and just below the threshold are comparable in terms of their general char-

acteristics. We provide evidence for this requirement by documenting in Table A.5 that

a number of pre-determined characteristics of the municipalities in our sample, namely

latitude, longitude, income per capita, share of urban population, share of population

living under extreme poverty and Gini coefficient, vary smoothly around the threshold.48

We now turn to our main question of how a change from single to dual ballot plurality

affects the likelihood of campaign attacks among pairs formed by the first three effective

candidates. Panel A of Figure 3 plots the frequency of attacks against our running

variable, together with a second-order polynomial fitted on each side of the discontinuity.

The graph displays a slight positive jump in the likelihood of a campaign attack at

the cutoff, suggesting that dual ballot plurality tends to exacerbate the general level of

aggressiveness of the campaigns.

In Panel A of Table 6, we refine the graphical analysis above by means of a more

detailed regression analysis. According to our preferred specification (column 1), which

is based on a local linear regression with the optimal bandwidth, the likelihood of a

campaign attack increases by about 21.6 pp under dual ballot plurality. Our results

are robust to a number of different specifications (columns 2−4), with estimates ranging

from 15.1 pp to 24.7 pp. Furthermore, in Panel A of Figure A.9, we show that the point

estimates obtained from local linear regressions are always statistically significant at 10%

level for a variety of bandwidth choices. Overall, our results suggest that dual ballot

plurality has a positive local effect on the likelihood of campaign attacks.

Next, we examine whether the impact of a change in the electoral rule varies with the

position of the attacking candidate. In Panels B−D of Figure 3, we plot the frequency of

attacks against our running variable separately for pairs where the attacking candidate

was placed in 1st, 2nd and 3rd, respectively. Consistently with the predictions of the

model, we find a large positive jump in the frequency of attacks coming from 3rd place

candidates at the cutoff (Panel D), suggesting that these candidates become more aggres-

sive under dual ballot plurality. Moreover, we observe a positive but relatively smaller

effect on attacks coming from 2nd place candidates (Panel C) and no discernible impact

on the behavior of 1st place candidates (Panel B).

In Panel B of Table 6, we complement our investigation by presenting the results of

a regression analysis performed separately for attacking candidates in different positions.

48All socioeconomic variables used here were taken from the 2010 Brazilian Population Census.

26



Consistently with the graphical evidence presented above, we find that 3rd place candi-

dates are the ones whose campaign strategies are most impacted by a change from single

to dual ballot plurality. Specifically, according to our preferred specification (column 1),

the likelihood that a 3rd place candidate attacks an opponent increases by about 29.3

pp under dual ballot plurality, which represents a 300% increase relatively to the single

ballot’s mean.49 Our results are robust to a number of different specifications (columns

2−4). In Panel D of Figure A.9, we show that the estimated effects obtained from local

linear regressions are always statistically significant for various bandwidth choices. 50

Moreover, the estimates presented in Panel B of Table 6 also suggest that 2nd place

candidates become more aggressive under dual ballot plurality, with the probability of

an attack coming from them increasing by about 18.7 pp (column 1).51 Finally, note

that the estimated effect for 1st placed candidates is much smaller in magnitude and

very imprecisely estimated. As before, these results are robust to a number of different

specifications (columns 2−4) and bandwidth choices (Panels B and C of Figure A.9).

We complement our analysis by investigating whether the impact of a change in the

electoral rule varies across different types of pairs, focusing on those formed by 1st and

2nd, 1st and 3rd, and 2nd and 3rd place candidates. The graphical evidence reported in

Figure A.8 shows the existence of a particularly large jump in the likelihood of attacks

between 2nd and 3rd place candidates (Panel C). These results are confirmed by a regres-

sion analysis reported in Table A.6. According to our preferred specification (column 1),

the likelihood of attacks between 2nd and 3rd place candidates increases by about 23.6

pp under dual ballot plurality, which represents a substantial increase relatively to the

single ballot’s mean. Finally, we show that our findings are robust to a number of dif-

ferent specifications (columns 2−4) and bandwidth choices (Figure A.10). These results

are consistent with the implications of the model.

Placebo and Alternative Mechanisms. To further assess the robustness of our re-

sults, we perform a placebo test where we estimate local treatment effects at false thresh-

olds, above and below the true discontinuity at 200,000 registered voters. For conciseness,

Figure A.11 reports results only for our main outcomes variables, namely frequency of

49Interestingly, our results suggest that 3rd place candidates become the most aggressive candidates
under dual ballot plurality. Based on the point estimates reported in column 1, and adding them to
the corresponding single ballot’s mean, we estimate that the frequency of attacks coming from 3rd place
candidates is 38.8%, while the frequency of attacks coming from 2nd and 1st place candidates are 32.8%
and 17.3%, respectively.

50As before, we perform an additional robustness check where we exclude from the sample all races
where the final vote shares of any two effective candidates are too “close” (e.g. within 5 pp distance).
We show that all our results remain unchanged. Additional details are available upon request.

51Although this particular point estimate is not statistically significant, note that the estimates re-
ported in columns 2 and 4 are similar in magnitude and statistically significant.
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attacks among the first three effective candidates (Panel A), frequency of attacks coming

from 3rd place candidates (Panel B), and frequency of attacks between 2nd and 3rd place

candidates (Panel C). Note that the point estimates obtained at placebo thresholds are

much smaller in magnitude and almost always statistically insignificant. These results

are in sharp contrast with the treatment effects obtained at the real cutoff, which are

always positive and very precisely estimated.

Finally, we conclude the analysis by discussing alternative mechanisms that might

be driving our results. Indeed, electoral races held under single and dual ballot plurality

might differ in dimensions other than just those considered in our model, such as turnout,

number of candidates, campaign spending and distribution of support across candidates.

In Table A.7, we investigate whether these characteristics of electoral competition are

similar in races held just above and just below the threshold. Interestingly, we find no

systematic differences in turnout, number of candidates, maximum and average campaign

spending, and the final vote shares of the first three candidates.52 Moreover, we find

no evidence of discontinuity in the sum of the vote shares of the 3rd and lower-placed

candidates and the sum of the shares of the 4th and lower-placed candidates.

6 Discussion and Conclusion

This paper studied both theoretically and empirically the determinants of electoral cam-

paign attacks. We first proposed a model to study the main factors that influence the

candidates’ decisions to attack. Our theoretical analysis yielded a number of predictions

which we tested using detailed information obtained from all “right of reply” lawsuits

filed in Brazil during the 2012 and 2016 municipal elections. As our model suggests,

campaign attacks and the spread of misinformation may have potentially large conse-

quences on political outcomes, leading to the choice of bad politicians and platforms, to

a generalized sense of mistrust in politics and institutions, and to a decrease in political

participation and voter turnout.53

While a thorough investigation of the welfare implications of campaign attacks is be-

yond the scope of this paper, we conclude our study with a brief discussion of the potential

impacts of aggressive campaigning and false information on electoral outcomes, focusing

on the case of the 2018 Brazilian presidential elections.54 To do so, we take advantage of

52For races held under dual ballot plurality, campaign expenditures refer only to the amount spent in
the first round of elections.

53The recent evidence suggesting Russian interference in elections in the US and other western democ-
racies (e.g. France, Germany, and UK) shows that these concerns are of utmost importance.

54The 2018 presidential election was sharply polarized between Jair Bolsonaro in the far-right and
Fernando Haddad, former president Luiz Inacio Lula da Silva’s protégé, in the left. According to The
Guardian, this was “the bitterest and most polarized election in recent history”.
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a data set from a nationally representative survey that interviewed voters after the first

round of the 2018 elections focusing specifically on questions about campaign attacks

received via WhatsApp. The survey revealed some interesting yet disturbing facts. First,

among the respondents, 25% claimed to have received at least one message attacking one

of the candidates in the week preceding the elections.55 Moreover, conditional upon re-

ceiving one or more of these messages, 23% declared that their content actually influenced

their choice of whom to vote for.56 Taken at face value, these numbers imply that at least

36.8 million Brazilian voters were exposed to campaign attacks via WhatsApp in the

week before the first round of elections, and approximately 8.5 million of them (or about

5.7% of the electorate) were influenced to some degree by these messages. While these

numbers were not large enough to overturn the outcome of the election, they highlight the

magnitude and extent of the problem. A better understanding of the impact of campaign

attacks on political outcomes constitutes an important topic for future research.

References

Aghion, P., A. Alesina, and F. Trebbi (2004). Endogenous political institutions. The

Quarterly Journal of Economics Vol. 119 (No. 2), pp. 565–611.

Allcott, H. and M. Gentzkow (2017). Social media and fake news in the 2016 election.

Journal of Economic Perspectives Vol. 31 (No. 2), pp. 211–236.

Anagol, S. and T. Fujiwara (2016). The runner-up effect. Journal of Political Econ-

omy Vol. 124 (No. 4), pp. 927–991.

Ansolabehere, S., S. Iyengar, A. Simon, and N. Valentino (1994, December). Does attack

advertising demobilize the electorate? The American Political Science Review Vol.

88 (No. 4), pp. 829–838.

Ashworth, S. (2012). Electoral accountability: recent theoretical and empirical work.

Annual Review of Political Science Vol. 15 (No. 1), pp. 183–201.

Avis, E., C. Ferraz, F. Finan, and C. Varjão (2021). Money and politics: the effects

of campaign spending limits on political entry and competition. American Economic

Journal: Applied Economics Forthcoming.

55While it is not possible to guarantee that these messages contained slander or false information,
they were most certainly aggressive in tone and malicious in intent. Indeed, Bolsonaro later faced
numerous accusations of spreading misinformation and fake news via WhatsApp during his campaign.
See https://nyti.ms/3p8jqoP.

56In Appendix F we provide a more detailed description of the data. Moreover, in a complementary
regression analysis we show that receiving an attack − which was most likely directed at either Haddad
or Bolsonaro − increases the likelihood that an individual votes for a third candidate in the first round
of elections and, at the same time, raises the probability that she declares an intention to cast a null vote
in the second round. Interestingly, we find that these effects are stronger among the more disillusioned
groups of voters, particularly those pessimistic about the future of the country.

29



Balafoutas, L., F. Lindner, and M. Sutter (2012). Sabotage in tournaments: Evidence

froma natural experiment. Kyklos Vol. 65 (No. 4), pp. 425–441.

Baron, D. P. (1994). Electoral competition with informed and uninformed voters. The

American Political Science Review Vol. 88 (No. 1), pp. 33–47.

Bordignon, M., T. Nannicini, and G. Tabellini (2016, August). Moderating political

extremism: Single round versus runoff elections under plurality rule. The American

Economic Review Vol. 106 (No. 8), pp. 2349–2370.

Bouton, L. (2013). A theory of strategic voting in runoff elections. American Economic

Review Vol. 103 (No. 4), pp. 1248–1288.

Bouton, L., J. Gallego, A. Llorente-Saguer, and R. Morton (2019, June). Runoff elections

in the laboratory. Working paper 25949, National Bureau of Economic Research.

Calonico, S., M. D. Cattaneo, and R. Titiunik (2014a). Optimal data-driven regression

discontinuity plots. Journal of the American Statistical Association Vol. 110 (No. 512),

pp. 1753–1769.

Calonico, S., M. D. Cattaneo, and R. Titiunik (2014b, November). Robust nonparametric

confidence intervals for regression-discontinuity designs. Econometrica Vol. 82 (No. 6),

pp. 2295–2326.

Charness, G., D. Masclet, and M. C. Villeval (2014). The dark side of competition for

status. Management Science Vol. 60 (No. 1), pp. 38–55.

Chen, K.-P. (2003). Sabotage in promotion tournaments. Journal of Law, Economics

and Organization Vol. 19 (No. 1), pp. 119–140.

Chong, A., A. L. De La O, D. Karlan, and L. Wantchekon (2015). Does corruption

information inspire the fight or quash the hope? a field experiment in mexico on voter

turnout, choice, and party identification. The Journal of Politics Vol. 77 (No. 1), pp.

55–71.
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Figure 1: Frequency of Campaign Attacks

Notes: This figure shows the frequency of campaign attacks in races with two (left panel) and three
effective candidates (right panel), using a 15% threshold for the definition of effective candidate and
focusing only on races held under single ballot plurality.

Figure 2: Runner-Up Effect and Electoral Advantage Effect on Campaign Attacks

Notes: This figure plots local averages of the following variables: (i) a dummy indicating whether the
candidate ran in the next election at t+1 (panel A), (ii) the candidate’s vote share at t+1 (panel B),
(iii) a dummy indicating whether the candidate won the election at t+1 (panel C) and (iv) a dummy
indicating whether the candidate received a campaign attack at t+1 (panel D). Averages are calculated
within quantile-spaced bins of the vote share difference (running variable), where the number of bins is
chosen optimally according to Calonico et al. (2014b). A quadratic polynomial is fitted over the original
data on each side of the discontinuity. The sample includes only candidates who placed 2nd and 3rd in
the election at t, focusing only on races held under single ballot plurality.
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Figure 3: Single vs Dual Ballot Plurality

Notes: This figure plots local averages of a dummy indicating whether a campaign attacked took place
between candidates of an ordered pair. The sample is restricted to include only observations (ordered
pairs of candidates) from races with three or more effective candidates, using a 5% threshold for the
definition of effective candidate. Panel A considers all ordered pairs formed by the first three effective
candidates. Panel B focuses on a subsample of ordered pairs where the attacking candidate placed 1st;
panel C considers a subsample where the attacking candidate placed 2nd; and panel D focuses on a
subsample where the attacking candidate placed 3rd. Averages are calculated within quantile-spaced
bins of the distance to the 200,000 voters threshold (running variable), where the number of bins is
chosen optimally according to Calonico et al. (2014b). A quadratic polynomial is fitted over the original
data on each side of the discontinuity.
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Table 1: Summary Statistics

Mean Std. Dev. N

Panel A: Municipalities (2010 Census)
- Population 33,807 203,999 5,323
- Percentage of Urban Population 0.64 0.22 5,323
- Monthly Income per Capita (in Reais) 496.5 243.6 5,323
- Illiteracy Rate 0.16 0.10 5,323
- Poverty Rate 0.11 0.12 5,323
- Gini Index 0.49 0.07 5,323

Panel B: Electoral Races
- No. Registered Voters 25,804 156,617 10,461
- Turnout Rate 0.86 0.06 10,461
- Percentage of Valid Votes 0.92 0.08 10,461
- Vote Share: Winner (% Valid Votes) 0.55 0.11 10,461
- Vote Share: Runner-up (% Valid Votes) 0.38 0.10 10,461
- No. of Candidates 2.83 1.19 10,461

- No. of Cands. with More than 10% of the Votes 2.23 0.56 10,461
- No. of Cands. with More than 15% of the Votes 2.14 0.46 10,461

Panel C: Candidates
- Female 0.13 0.34 29,654
- Age 49.2 10.6 29,651
- Married 0.72 0.45 29,654
- High School 0.84 0.37 29,654
- College 0.51 0.50 29,654
- Campaign Expenditures (in Reais) 119,401 522,877 28,559
- Party Filiation: PMDB 0.14 0.35 29,654
- Party Filiation: PSDB 0.11 0.31 29,654
- Party Filiation: PT 0.09 0.29 29,654

Panel D: Ordered Pairs of Candidates
- Campaign Attack 0.026 0.160 69,252

- Campaign Attack | Races with 2 Cands. 0.054 0.225 10,808
- Campaign Attack | Races with 3 Cands. 0.028 0.165 18,018
- Campaign Attack | Races with 4+ Cands. 0.018 0.134 40,426
- Campaign Attack | Single Ballot 0.025 0.155 62,298
- Campaign Attack | Dual Ballot 0.042 0.201 6,954

Notes: This table reports summary statistics for some of the main variables considered in our analysis.
Panel A reports summary statistics for some socioeconomic characteristics of the municipalities in our
sample based on data from the 2010 Population Census. Panel B provides descriptive statistics for
some selected characteristics of the electoral races in our sample based on information from the Brazil’s
Tribunal Superior Eleitoral (TSE). Panel C reports summary statistics for some individual characteristics
of the candidates in our sample based on information from TSE. Panel D provides descriptive statistics
for our sample of ordered pairs of candidates based on information retrived from right of reply lawsuits.
The variable “campaign attack” is a dummy indicating whether a RR lawsuit was observed between
candidates of an ordered pair. Descriptive statistics for this dummy are reported for the whole sample
and for a few selected subsamples.
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Table 2: Patterns of Campaign Attacks: Two-Candidate Races

Dependent Variable: Campaign Attack

(1) (2) (3) (4)

2nd against 1st (β21) 0.0121*** 0.0123*** 0.0118*** 0.0110***
[0.0035] [0.0033] [0.0032] [0.0031]

Effective Candidate Threshold 5% 10% 15% 20%
Candidate Characteristics Yes Yes Yes Yes
Municipality and Election-Year FEs Yes Yes Yes Yes

Dep. Var. Mean 0.055 0.059 0.060 0.059
No. of Electoral Races 6,726 7,455 8,015 8,487
Observations 13,452 14,910 16,030 16,974
Adj. R-squared 0.300 0.300 0.290 0.266

Notes: This table reports OLS estimates of regressions where the dependent variable is a dummy in-
dicating whether an attack took place between candidates of an ordered pair. The sample is restricted
to include only observations (ordered pairs of candidates) from races with two effective candidates and
considers only the pairs formed by the first two candidates. In columns 1−4, we report estimates using
four different thresholds for the definition of effective candidate, namely 5%, 10%, 15% and 20%, respec-
tively. Candidate characteristics for each member of the pair include: gender, age, age squared, marital
status, high school and college degrees, incumbency status, the logarithm of campaign expenditures and
party affiliation to PT, PMDB and PSDB. We also control for a dummy indicating whether the pair
was formed by candidates from PT and PSDB. All regressions include municipality and election-year
fixed effects. Standard errors clustered at the municipality level are reported in brackets. ∗, ∗∗ and ∗ ∗ ∗
denote statistical significance at 10%, 5% and 1%, respectively.
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Table 3: Patterns of Campaign Attacks: Three-Candidate Races

Dependent Variable: Campaign Attack

(1) (2) (3) (4)

1st against 2nd (β12) 0.0329*** 0.0316*** 0.0223*** 0.0168**
[0.0056] [0.0058] [0.0063] [0.0075]

1st against 3rd (β13) 0.0022 0.0040 0.0074 0.0057
[0.0028] [0.0036] [0.0046] [0.0058]

2nd against 1st (β21) 0.0406*** 0.0364*** 0.0296*** 0.0220***
[0.0059] [0.0061] [0.0067] [0.0077]

3rd against 1st (β31) 0.0081** 0.0129*** 0.0141*** 0.0123*
[0.0040] [0.0046] [0.0053] [0.0067]

3rd against 2nd (β32) −0.0021 0.0009 0.0013 −0.0005
[0.0032] [0.0035] [0.0040] [0.0050]

Joint Hypothesis Tests (p-values)
H1
o : β12 = β13, β21 = 0, β31 = β32 0.000 0.000 0.000 0.012

H2
o : β21 = β12, β21 = β31 0.000 0.000 0.069 0.450

Effective Candidate Threshold 5% 10% 15% 20%
Candidate Characteristics Yes Yes Yes Yes
Municipality and Election-Year FEs Yes Yes Yes Yes

Dep. Var. Mean 0.033 0.031 0.031 0.030
No. of Electoral Races 2,467 2,017 1,582 995
Observations 14,202 11,686 9,156 5,766
Adj. R-squared 0.165 0.144 0.144 0.170

Notes: This table reports OLS estimates of regressions where the dependent variable is a dummy indi-
cating whether an attack took place between candidates of an ordered pair. The sample is restricted to
include only observations (ordered pairs of candidates) from races with three effective candidates and
considers only the pairs formed by the first three candidates. In columns 1−4, we report estimates using
four different thresholds for the definition of effective candidate, namely 5%, 10%, 15% and 20%, respec-
tively. Candidate characteristics for each member of the pair include: gender, age, age squared, marital
status, high school and college degrees, incumbency status, the logarithm of campaign expenditures and
party affiliation to PT, PMDB and PSDB. We also control for a dummy indicating whether the pair
was formed by candidates from PT and PSDB. All regressions include municipality and election-year
fixed effects. Standard errors clustered at the municipality level are reported in brackets. ∗, ∗∗ and ∗ ∗ ∗
denote statistical significance at 10%, 5% and 1%, respectively.
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Table 4: Patterns of Campaign Attacks: The Dillution Effect

Dependent Variable: Campaign Attack

(1) (2) (3) (4)

2nd against 1st (β21) 0.0364*** 0.0434*** 0.0278** 0.0224
[0.0072] [0.0093] [0.0126] [0.0201]

1st against 2nd × Share 3rd (π12) −0.0887 −0.1221 −0.1916* −0.3393**
[0.0694] [0.0803] [0.1083] [0.1601]

2nd against 1st × Share 3rd (π21) −0.2321*** −0.3035*** −0.3004*** −0.4148**
[0.0733] [0.0853] [0.1159] [0.1686]

Effective Candidate Threshold 0% 2% 5% 10%
Candidate Characteristics Yes Yes Yes Yes
Municipality and Election-Year FEs Yes Yes Yes Yes

Dep. Var. Mean 0.063 0.064 0.062 0.054
No. of Electoral Races 4,463 3,805 3,021 2,245
Observations 8,926 7,610 6,042 4,490
Adj. R-squared 0.238 0.240 0.267 0.288

Notes: This table reports OLS estimates of regressions where the dependent variable is a dummy in-
dicating whether an attack took place between candidates of an ordered pair. The sample is restricted
to include only observations (ordered pairs of candidates) from races with three or more effective can-
didates and considers only the pairs formed by the first two candidates. In columns 1−4, we report
estimates using four different thresholds for the definition of effective candidate, namely 0%, 2%, 5%
and 10%, respectively. Candidate characteristics for each member of the pair include: gender, age, age
squared, marital status, high school and college degrees, incumbency status, the logarithm of campaign
expenditures and party affiliation to PT, PMDB and PSDB. We also control for a dummy indicating
whether the pair was formed by candidates from PT and PSDB. All regressions include municipality and
election-year fixed effects. Standard errors clustered at the municipality level are reported in brackets.
∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at 10%, 5% and 1%, respectively.
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Table 5: Runner-Up Effect and Electoral Advantage Effect on Campaign Attacks

Local Linear Regression Alternative Specifications

3rd place
Mean

Optimal
BW

Obs (1) (2) (3) (4)

Panel A: Runner-Up Effect
Candidacy in t+ 1 0.249 0.162 3,032 0.116*** 0.120*** 0.120*** 0.119***

[0.034] [0.033] [0.040] [0.031]
Vote Share in t+ 1 0.088 0.178 3,264 0.042*** 0.044*** 0.041** 0.044***

[0.014] [0.015] [0.018] [0.014]
Winner in t+ 1 0.094 0.183 3,330 0.066*** 0.068*** 0.039 0.064***

[0.024] [0.024] [0.034] [0.023]

Panel B: Campaign Attacks
Attacked in t+ 1 0.012 0.177 3,240 0.020** 0.021** 0.013 0.017**

[0.009] [0.010] [0.013] [0.008]

Bandwidth Method CCT CCT CCT 0.05
Polynomial Order 1 1 2 0
Additional Controls No Yes No No

Notes: This table reports RDD estimates of local polynomial regressions exploiting virtual ties between
2nd and 3rd place candidates. Each estimate reported in columns 1−4 is obtained from a separate
regression; each line corresponds to a different dependent variable. The sample includes only candidates
who placed 2nd and 3rd in the election at t, focusing only on races held under single ballot plurality.
All specifications use a triangular kernel and include election-year fixed effects. The 3rd place mean
corresponds to the mean of the dependent variable to the left of the threshold, calculated based on the
sample used in the specification reported in column 1. Additional controls include state fixed effects
and the following candidate characteristics: gender, age, age squared, marital status, high school and
college degrees, the logarithm of campaign expenditures and party affiliation to PT, PMDB and PSDB.
Standard errors clustered at the municipality level are reported in brackets. ∗, ∗∗ and ∗ ∗ ∗ denote
statistical significance at 10%, 5% and 1%, respectively.
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Table 6: Single vs Dual Ballot Plurality

Local Linear Regression Alternative Specifications

SB
Mean

Optimal
BW

Obs (1) (2) (3) (4)

Panel A: Full Sample
All pairs 0.147 29,552 306 0.216*** 0.247*** 0.250** 0.151***

[0.080] [0.072] [0.101] [0.058]

Panel B: By Attacking Candidate
1st place Candidate 0.158 39,705 136 0.015 0.021 0.020 −0.014

[0.109] [0.051] [0.141] [0.096]
2nd place Candidate 0.141 40,672 138 0.187 0.214* 0.240 0.224*

[0.154] [0.121] [0.192] [0.134]
3rd place Candidate 0.095 38,283 134 0.293** 0.419*** 0.371** 0.243*

[0.147] [0.068] [0.176] [0.126]

Bandwidth Method CCT CCT CCT 15,000
Polynomial Order 1 1 2 0
Additional Controls No Yes No No

Notes: This table reports RDD estimates of local polynomial regressions exploiting the discontinuous
assignment of single and dual ballot plurality systems at the 200, 000 voters threshold. The dependent
variable is a dummy indicating whether an attack took place between candidates of an ordered pair.
Each estimate reported in columns 1−4 is obtained from a separate regression; each line corresponds to a
different (sub)sample. The sample is restricted to include only observations (ordered pairs of candidates)
from races with three or more effective candidates, using a 5% threshold for the definition of effective
candidate. In Panel A, we report estimates for the full sample, where we consider all ordered pairs formed
by the first three effective candidates. In Panel B, we report separate estimates for subsamples of pairs
where the attacking candidate placed 1st, 2nd and 3rd, as indicated. All specifications use a triangular
kernel and include election-year fixed effects. The SB mean corresponds to the mean of the dependent
variable to the left of the threshold, calculated based on the sample used in the specification reported
in column 1. Additional controls include state fixed effects and the following candidate characteristics
for each member of the pair: gender, age, age squared, marital status, high school and college degrees,
incumbency status, the logarithm of campaign expenditures and party affiliation to PT, PMDB and
PSDB. We also control for a dummy indicating whether the pair was formed by candidates from PT
and PSDB. Standard errors clustered at the municipality level are reported in brackets. ∗, ∗∗ and ∗ ∗ ∗
denote statistical significance at 10%, 5% and 1%, respectively.
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Online Appendix (NOT FOR PUBLICATION)

A Additional Tables and Figures

cCand. 1
∆12(0) ∆12(1)

Always
attack

Attack only
if attacked Never attack

cCand. 2
∆21(1) ∆21(0)Always attack

Attack
only if not
attacked

Never
attack

cEq.
Both candidates attack

Only
candidate 2
attacks

Nobody
attacks

Figure A.1: Two-Candidate Races: Equilibria

Notes: This figure depicts (i) the best-response function of candidate 1, (ii) the best-response function of candidate 2 and
(iii) the unique equilibrium existing in each region of the parameters.

c

∆̃31(1,1,0) ∆̃12(1,0,0) ∆̃21(0,0,0)

2 → 1
1 → 2
3 → 1

2 → 1
1 → 2 2 → 1

Nobody
attacks

Figure A.2: Three-Candidate Races: Equilibria

Notes: This figure depicts the unique equilibrium existing in each region of the parameters for the case where ∆̃31 (n3) <

∆̃12 (n1) < ∆̃21 (n2) for any ni ∈ Ni. i → j denotes an attack from candidate i against j.
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c

∆̃23(2,2,1) ∆̃13(2,2,0) ∆̃32(2,1,0) ∆̃31(1,1,0) ∆̃12(1,0,0) ∆̃21(0,0,0)

Everybody
attacks

everybody

2 → 1
1 → 2
3 → 1
3 → 2
1 → 3

2 → 1
1 → 2
3 → 1
3 → 2

2 → 1
1 → 2
3 → 1

2 → 1
1 → 2 2 → 1

Nobody
attacks

Figure A.3: Three-Candidate Races with Multiple Targets: Equilibria

Notes: This figure depicts the unique equilibrium existing in each region of the parameters for the case where candidates
are allowed to target multiple opponents, and supposing that so1 = 0.4, so1 = 0.3, so1 = 0.2 and φ = 0.1. i → j denotes an
attack from candidate i against j.

Figure A.4: Frequency of Campaign Attacks and Municipality Characteristics

Notes: This figure shows the frequency of campaign attacks in races held in municipalities below and above the median
of the following socioeconomic characteristics (medians reported inside parenthesis): population (10,761), share of urban
population (0.65), monthly income per capita (R$ 472.28), illiteracy rate (0.13), poverty rate (0.06) and Gini index (0.49).
The reported statistics are computed based on the full sample of ordered pairs of candidates.
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Figure A.5: Electoral Advantage Effect: Robustness to Bandwidth Choice

Notes: This figure plots point estimates obtained from separate local linear regressions using various bandwidths. The
specification is based on a triangular kernel and includes election-year fixed effects. 90% confidence intervals for each
estimate are computed based on standard errors clustered at the municipality level. For additional details, see footnote to
Table 5.
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Figure A.6: Electoral Advantage Effect: Placebo Test (3rd vs 4th place)

Notes: This figure plots local averages for candidacy in t+1 (Panel A), vote share in t+1 (Panel B), winner in t+1 (Panel
C) and campaign attack in t+1 (Panel D). The sample includes only candidates who placed 3rd and 4th in the election at
t, focusing only on races held under single ballot plurality. For additional details, see footnote to Figure 2.
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Figure A.7: Distribution of the Number of Registered Voters

Notes: This figure plots the distribution of the number of registered voters, pooling data from the 2012 and 2016 elections.
The graph reports the p-value for the manipulation test proposed by Cattaneo et al. (2020).
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Figure A.8: Single vs Dual Ballot Plurality: Heterogeneous Effects by Pairs

Notes: This figure plots local averages of a dummy indicating whether a campaign attacked took place between candidates
of an ordered pair. Panel A considers a subsample of ordered pairs formed by 1st and 2nd placed candidates; panel B
focuses on a subsample of pairs formed by 1st and 3rd placed candidates; and panel C considers a subsample of pairs
formed by 2nd and 3rd placed candidates. For additional details, see footnote to Figure 3.
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Figure A.9: Single vs Dual Ballot Plurality: Robustness to Bandwidth Choice (All Pairs
and by Attacking Candidate)

Notes: This figure plots point estimates obtained from separate local linear regressions using various bandwidths. The
specification is based on a triangular kernel and includes election-year fixed effects. 90% confidence intervals for each
estimate are computed based on standard errors clustered at the municipality level. For additional details, see footnote to
Table 6.
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Figure A.10: Single vs Dual Ballot Plurality: Robustness to Bandwidth Choice (By Pairs)

Notes: This figure plots point estimates obtained from separate local linear regressions using various bandwidths. The
specification is based on a triangular kernel and includes election-year fixed effects. 90% confidence intervals for each
estimate are computed based on standard errors clustered at the municipality level. For additional details, see footnote to
Table 6.
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Figure A.11: Single vs Dual Ballot Plurality: Placebo Thresholds

Notes: This figure plots point estimates obtained from separate local linear regressions using false thresholds, above and
below the true discontinuity at 200,000 registered voters. The specification is based on a triangular kernel with the Calonico
et al. (2014) optimal bandwidth and includes election-year fixed effects. 90% confidence intervals for each estimate are
computed based on standard errors clustered at the municipality level. For additional details, see footnote to Table 6.
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Figure A.12: Simulations: The Dillution Effect

Notes: This figure plots the benefits of campaign attacks between candidates 1 and 2 as a function of the initial support
of candidate 3 for both the Logit CSF (Panel A) and the Tullock CSF with µ = 1.5 (Panel B). The simulations assume
that so1 = 0.4, so2 = 0.3 and φ = 0.1, with so3 varying in the interval [0, 0.3). The benefit functions are always evaluated at
n = (0, 0, 0).
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Table A.1: Electoral Advantage Effect: Covariate Smoothness

Local Linear Regression
Quadratic

Specification

3rd place
Mean

Optimal
BW Obs (1) (2)

Female 0.127 0.148 2,804 −0.016 −0.009
[0.025] [0.034]

Age 49.181 0.177 3,242 0.373 1.019
[0.754] [1.110]

Married 0.719 0.126 2,480 −0.016 −0.015
[0.036] [0.042]

High School 0.829 0.175 3,218 −0.022 −0.043
[0.027] [0.041]

College 0.495 0.151 2,844 0.029 0.018
[0.038] [0.050]

Campaign Expenditures (in Reais) 85,588 0.185 3,145 -3,333 -13,287
[18,613] [28,823]

Party Filliation: PMDB 0.146 0.181 3,304 −0.030 −0.040
[0.025] [0.034]

Party Filliation: PT 0.144 0.141 2,704 0.045* 0.053
[0.026] [0.034]

Party Filliation: PSDB 0.103 0.163 3,040 −0.019 −0.028
[0.022] [0.026]

Bandwidth Method CCT CCT
Polynomial Order 1 2
Additional Controls No No

Notes: This table reports RDD estimates of local polynomial regressions exploiting virtual ties between 2nd and 3rd place
candidates. All specifications use a triangular kernel and include election-year fixed effects. Standard errors clustered at the
municipality level are reported in brackets. ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at 10%, 5% and 1%, respectively.
For additional details, see footnote to Table 5.

Table A.2: Electoral Advantage Effect: Placebo Test (3rd vs 4th place)

Local Linear Regression Alternative Specifications

4th place
Mean

Optimal
BW Obs (1) (2) (3) (4)

Panel A: 3rd vs 4th Place Effect
Candidacy in t+ 1 0.105 0.062 1,408 0.041 0.033 0.053 0.037*

[0.030] [0.033] [0.035] [0.020]
Vote Share in t+ 1 0.014 0.059 1,368 0.001 0.001 0.002 0.009**

[0.006] [0.007] [0.007] [0.005]
Winner in t+ 1 0.016 0.057 1,348 −0.009 −0.011 −0.009 0.003

[0.009] [0.011] [0.011] [0.007]

Panel B: Campaign Attacks
Attacked in t+ 1 0.002 0.043 1,076 0.000 −0.000 −0.000 0.001

[0.002] [0.002] [0.003] [0.002]

Bandwidth Method CCT CCT CCT 0.05
Polynomial Order 1 1 2 0
Additional Controls No Yes No No

Notes: This table reports RDD estimates of local polynomial regressions exploiting virtual ties between 3rd and 4th place
candidates. All specifications use a triangular kernel and include election-year fixed effects. Standard errors clustered at the
municipality level are reported in brackets. ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at 10%, 5% and 1%, respectively.
For additional details, see footnote to Table 5.
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Table A.3: Electoral Advantage Effect: Placebo Test (Attacked in t)

Local Linear Regression Alternative Specifications

3rd place
Mean

Optimal
BW Obs (1) (2) (3) (4)

Attacked in t 0.050 0.156 1,514 0.001 0.010 0.005 0.011
[0.024] [0.021] [0.029] [0.021]

Bandwidth Method CCT CCT CCT 0.05
Polynomial Order 1 1 2 0
Additional Controls No Yes No No

Notes: This table reports RDD estimates of local polynomial regressions exploiting virtual ties between 2nd and 3rd place
candidates. The dependent variable is a dummy indicating whether the candidate received a campaign attack in the election
at t (i.e. same election). All specifications use a triangular kernel. Standard errors clustered at the municipality level are
reported in brackets. ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at 10%, 5% and 1%, respectively. For additional details,
see footnote to Table 5.

Table A.4: Electoral Advantage Effect: Heterogeneous Effects

Local Linear Regression Alternative Specifications

3rd place
mean

Optimal
BW Obs (1) (2) (3) (4)

Panel A: Strong Runner-Ups (s2 + s3 ≥ s1)
Candidacy in t+ 1 0.299 0.116 1,614 0.137*** 0.138*** 0.133** 0.147***

[0.049] [0.047] [0.058] [0.038]
Winner in t+ 1 0.123 0.105 1,512 0.064 0.075* 0.058 0.085***

[0.040] [0.038] [0.043] [0.030]
Attacked in t+ 1 0.012 0.127 1,758 0.033** 0.034** 0.025 0.029***

[0.013] [0.013] [0.016] [0.011]

Panel B: Weak Runner-Ups (s2 + s3 < s1)
Candidacy in t+ 1 0.168 0.153 858 0.043 0.038 0.053 0.047

[0.051] [0.056] [0.058] [0.047]
Winner in t+ 1 0.056 0.139 792 0.016 0.012 0.018 0.009

[0.033] [0.033] [0.039] [0.029]
Attacked in t+ 1 0.012 0.170 954 −0.012 −0.011 −0.018 −0.011

[0.011] [0.013] [0.019] [0.011]

Bandwidth Method CCT CCT CCT 0.05
Polynomial Order 1 1 2 0
Additional Controls No Yes No No

Notes: This table reports RDD estimates of local polynomial regressions exploiting virtual ties between 2nd and 3rd place
candidates. Panel A reports estimates obtained from a subsample of candidates where the combined vote shares of 2nd
and 3rd place candidates were larger than the vote share of the winner in the election at t (s2 + s3 ≥ s1). Panel B, in
turn, reports estimates obtained from a subsample where the combined vote shares of 2nd and 3rd place candidates were
smaller than the vote share of the winner in the election at t (s2 + s3 < s1). All specifications use a triangular kernel and
include election-year fixed effects. Standard errors clustered at the municipality level are reported in brackets. ∗, ∗∗ and
∗ ∗ ∗ denote statistical significance at 10%, 5% and 1%, respectively. For additional details, see footnote to Table 5.
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Table A.5: Single vs Dual Ballot Plurality: Covariate Smoothness

Local Linear Regression
Quadratic

Specification

SB
Mean

Optimal
BW Obs (1) (2)

Latitude −18.432 49,605 52 −4.375 −3.824
[4.488] [5.283]

Longitude −46.763 52,301 53 0.935 −4.734
[3.701] [4.634]

Percentage of Urban Population 0.951 66,979 75 0.022 0.011
[0.031] [0.040]

Monthly Income per Capita (in Reais) 780.45 49,503 52 123.40 136.59
[157.16] [186.55]

Illiteracy Rate 6.380 56,977 65 0.535 −0.341
[2.049] [2.543]

Poverty Rate 2.672 67,880 78 −1.958 −2.486
[1.545] [2.000]

Gini Index 0.506 49,009 52 −0.015 −0.016
[0.031] [0.038]

Bandwidth Method CCT CCT
Polynomial Order 1 2
Additional Controls No No

Notes: This table reports RDD estimates of local polynomial regressions exploiting the discontinuous assignment of single
and dual ballot plurality systems at the 200,000 voters threshold. The unit of observation is a municipality. The sample is
restricted to include only municipalities considered in the main analysis reported in Table 6, i.e. those that had races with
three or more effective candidates in the 2012 or 2016 elections. All socioeconomic characteristics were taken from the 2010
Population Census. All specifications use a triangular kernel and include election-year fixed effects. Robust standard errors
are reported in brackets. ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at 10%, 5% and 1%, respectively. For additional
details, see footnote to Table 6.

Table A.6: Single vs Dual Ballot Plurality: Heterogeneous Effects by Pairs

Local Linear Regression Alternative Specifications

SB
Mean

Optimal
BW Obs (1) (2) (3) (4)

1st vs 2nd 0.207 34,374 118 0.143 0.140 0.198 0.090
[0.098] [0.091] [0.148] [0.075]

1st vs 3rd 0.139 37,762 132 0.135 0.273*** 0.184 0.118
[0.165] [0.087] [0.182] [0.146]

2nd vs 3rd 0.052 44,889 162 0.236*** 0.356*** 0.320*** 0.244***
[0.086] [0.090] [0.111] [0.074]

Bandwidth Method CCT CCT CCT 15,000
Polynomial Order 1 1 2 0
Additional Controls No Yes No No

Notes: This table reports RDD estimates of local polynomial regressions exploiting the discontinuous assignment of single
and dual ballot plurality systems at the 200,000 voters threshold. All specifications use a triangular kernel and include
election-year fixed effects. Standard errors clustered at the municipality level are reported in brackets. ∗, ∗∗ and ∗ ∗ ∗
denote statistical significance at 10%, 5% and 1%, respectively. For additional details, see footnote to Table 6.
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Table A.7: Single vs Dual Ballot Plurality: Alternative Mechanisms

Local Linear Regression
Alternative

Specifications

SB
Mean

Optimal
BW Obs (1) (2)

Turnout 0.827 65,128 126 −0.010 −0.018
[0.018] [0.024]

No. of Candidates 5.045 42,298 76 0.356 −0.509
[0.693] [0.918]

Max. Cand. Campaign Expenditure (in Reais) 1,521,154 28,538 47 284,038 406,963
[327,067] [430,463]

Avg. Cand. Campaign Expenditure (in Reais) 558,000 30,991 56 45,482 108,746
[133,529] [168,202]

Vote Share: 1st placed Candidate 0.482 68,944 133 0.014 0.005
[0.051] [0.079]

Vote Share: 2nd placed Candidate 0.289 65,652 127 0.007 −0.008
[0.025] [0.037]

Vote Share: 3rd placed Candidate 0.145 67,173 128 −0.015 −0.015
[0.022] [0.030]

Vote Share: 3rd and Lower placed Candidates 0.227 76,150 143 −0.007 −0.016
[0.043] [0.058]

Vote Share: 4th and Lower placed Candidates 0.080 69,852 135 0.009 0.013
[0.031] [0.052]

Bandwidth Method CCT CCT
Polynomial Order 1 2
Additional Controls No No

Notes: This table reports RDD estimates of local polynomial regressions exploiting the discontinuous assignment of single
and dual ballot plurality systems at the 200,000 voters threshold. The unit of observation is an electoral race. The sample
is restricted to include only races considered in the main analysis reported in Table 6, i.e. those with three or more effective
candidates. All specifications use a triangular kernel and include election-year fixed effects. Standard errors clustered at the
municipality level are reported in brackets. ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at 10%, 5% and 1%, respectively.
For additional details, see footnote to Table 6.

Table A.8: Simulations: Two-Candidate Races

Logit CSF Tullock CSF

µ = 1.5 µ = 2

φ = 0.05 φ = 0.10 φ = 0.15 φ = 0.05 φ = 0.10 φ = 0.15 φ = 0.05 φ = 0.10 φ = 0.15

∆12(0) 0.0098 0.0197 0.0294 0.0282 0.0557 0.0825 0.0346 0.0673 0.0979
∆12(1) 0.0099 0.0199 0.0299 0.0290 0.0588 0.0891 0.0370 0.0765 0.1173
∆21(0) 0.0149 0.0298 0.0488 0.0433 0.0876 0.1325 0.0549 0.1128 0.1723
∆21(1) 0.0148 0.0296 0.0433 0.0425 0.0845 0.1259 0.0525 0.1036 0.1529

Notes: This table reports the benefits of campaign attacks in two-candidate races under both Logit and Tullock CSFs.
The simulations assume that so1 = 0.6 and so2 = 0.4, and we consider φ ∈ {0.05, 0.1, 0.15} and µ ∈ {1.5, 2}.
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Table A.9: Simulations: Three-Candidate Races

Logit CSF Tullock CSF

µ = 1.5 µ = 2

φ = 0.05 φ = 0.10 φ = 0.15 φ = 0.05 φ = 0.10 φ = 0.15 φ = 0.05 φ = 0.10 φ = 0.15

∆̃12(0, 0, 0) 0.0027 0.0054 0.0081 0.0140 0.0277 0.0409 0.0202 0.0394 0.0574

∆̃13(0, 0, 0) 0.0016 0.0032 0.0049 0.0071 0.0140 0.0206 0.0078 0.0150 0.0216

∆̃21(0, 0, 0) 0.0036 0.0072 0.0108 0.0188 0.0376 0.0563 0.0273 0.0548 0.0822

∆̃23(0, 0, 0) 0.0014 0.0029 0.0044 0.0066 0.0131 0.0195 0.0069 0.0136 0.0200

∆̃31(0, 0, 0) 0.0032 0.0065 0.0098 0.0147 0.0297 0.0449 0.0170 0.0346 0.0527

∆̃32(0, 0, 0) 0.0022 0.0044 0.0066 0.0099 0.0199 0.0299 0.0103 0.0207 0.0310

Notes: This table reports the benefits of campaign attacks in three-candidate races under both Logit and Tullock CSFs.
The simulations assume that so1 = 0.4, so2 = 0.3 and so3 = 0.2, and we consider φ ∈ {0.05, 0.1, 0.15} and µ ∈ {1.5, 2}. The
benefit functions are always evaluated at n = (0, 0, 0).

Table A.10: Simulations: Single vs Dual Ballot Plurality

Logit CSF Tullock CSF (µ = 1.5)

Single Ballot Dual Ballot Variation (%) Single Ballot Dual Ballot Variation (%)

∆̃12(0, 0, 0) 0.0054 0.0057 +0.05 0.0277 0.0114 −0.58

∆̃13(0, 0, 0) 0.0032 0.0041 +0.28 0.0140 0.0189 +0.35

∆̃21(0, 0, 0) 0.0072 0.0077 +0.06 0.0376 0.0139 −0.63

∆̃23(0, 0, 0) 0.0029 0.0044 +0.51 0.0131 0.0354 +1.70

∆̃31(0, 0, 0) 0.0065 0.0083 +0.27 0.0297 0.0428 +0.44

∆̃32(0, 0, 0) 0.0044 0.0067 +0.52 0.0199 0.0533 +1.67

Notes: This table reports the benefits of campaign attacks in three-candidate races under single and dual ballot plurality
for both the Logit CSF and the Tullock CSF with µ = 1.5. The simulations assume that so1 = 0.4, so2 = 0.3, so3 = 0.2 and
φ = 0.1. The benefit functions are always evaluated at n = (0, 0, 0).
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B Model: Extensions and Robustness Checks

B.1 Additional Results

This subsection provides a number of additional results which are intended to complement our main

analysis. The following proposition describes how the relationship between ∆̃12 (n) and ∆̃31 (n) depend

on the initial level of support of the candidates.

Proposition B.1. There exists a threshold φ > 0 such that if φ < φ and so2 is sufficiently close to so1
then:

∆̃31 (n3) < ∆̃12 (n1) for any ni ∈ Ni
Alternatively, if φ < φ and so2 is sufficiently close to so3 then:

∆̃31 (n3) > ∆̃12 (n1) for any ni ∈ Ni

Next, for completeness, we extend the characterization of the benefit function ∆̃ij(n) to all remaining

pairs of candidates.

Proposition B.2. There exists a threshold φ > 0 such that if φ < φ, then we have:

i. The benefit of an attack of candidate 1 on 2 is larger than that of an attack of 3 on 2:

∆̃32(n3) < ∆̃12(n1) for any ni ∈ Ni

ii. The benefit of an attack of candidate 3 on 1 is larger than that of an attack of 1 on 3:

∆̃13(n1) < ∆̃31(n3) for any ni ∈ Ni

iii. The benefit of an attack of candidate 1 on 3 is larger than that of an attack of 2 on 3:

∆̃23(n2) < ∆̃13(n1) for any ni ∈ Ni

iv. The benefit of an attack of candidate 3 on 2 is larger than that of an attack of 2 on 3:

∆̃23(n2) < ∆̃32(n3) for any ni ∈ Ni

The following corollary combines the results derived in Propositions 3 and B.2, summarizing our

main results in a more concise way.

Corollary B.1. From Propositions 3 and B.2, it follows that there exists a threshold φ > 0 such that if

φ < φ , then:

∆̃23(n2) < {∆̃13(n1), ∆̃32(n3)} < {∆̃12(n
′

1), ∆̃31(n
′

3)} < ∆̃21(n
′

2) for any ni, n
′

i ∈ Ni

Interestingly, our analysis shows that while the most likely direction of attack is from candidate 2

against 1, the least likely direction is from 2 against 3. Moreover, note that both the relationship between

∆̃12(n) and ∆̃31(n), as discussed in the main text (see also Proposition B.1), and that between ∆̃13 and

∆̃32 are ambiguous. With respect to the latter, it is possible to show that if so2 is sufficiently close to
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so1, then ∆̃13(n) < ∆̃32(n); whereas if so2 is sufficiently close to so3, then the opposite holds. Intuitively,

everything else constant, a larger initial support so2 increases the benefit of an attack against candidate

2. The following proposition provides a formal statement for this result.

Proposition B.3. There exists a threshold φ > 0 such that if φ < φ and so2 is sufficiently close to so1,

then:

∆̃13(n1) < ∆̃32(n3) for any ni ∈ N

Conversely, if φ < φ and so2 is sufficiently close to so3, then:

∆̃13(n1) > ∆̃32(n3) for any ni ∈ N

Next, based on the properties of the function ∆̃ij (n) derived in Proposition 3, the following result

provides a complete characterization of the unique equilibrium of the game with three candidates.57,58

Proposition B.4. There exists a threshold φ > 0 such that if φ < φ then:

i. First, suppose that ∆̃31 (n3) < ∆̃12 (n1) < ∆̃21 (n2) for any ni ∈ Ni. There exists a unique Nash

equilibrium with the following characteristics:

i.a Candidates 2 and 3 attack 1 and candidate 1 attacks 2 if, and only if, c ≤ ∆̃31 (1, 1, 0).

i.b Candidate 2 attacks 1 and candidate 1 attacks 2 if, and only if, ∆̃31 (1, 1, 0) < c ≤ ∆̃12 (1, 0, 0).

i.c Candidate 2 attacks 1 if, and only if, ∆̃12 (1, 0, 0) < c ≤ ∆̃21 (0, 0, 0).

i.d No candidate attacks if, and only if, ∆̃21 (0, 0, 0) < c.

ii. Second, suppose that ∆̃12 (n1) < ∆̃31 (n3) < ∆̃21 (n2) for any ni ∈ Ni. There exists a unique Nash

equilibrium with the following characteristics:

ii.a Candidates 2 and 3 attack 1 and candidate 1 attacks 2 if, and only if, c ≤ ∆̃12 (2, 0, 0).

ii.b Candidate 2 and 3 attack 1 if, and only if, ∆̃12 (2, 0, 0) < c ≤ ∆̃31 (1, 0, 0).

ii.c Candidate 2 attacks 1 if, and only if, ∆̃31 (1, 0, 0) < c ≤ ∆̃21 (0, 0, 0).

ii.d No candidate attacks if, and only if, ∆̃21 (0, 0, 0) < c.

Figure A.2 depicts the regions of parameters where each class of equilibrium exists for the case where

∆̃31 (n3) < ∆̃12 (n1) < ∆̃21 (n2) (Proposition B.4, item i). Note that, as the cost of attacking increases,

we move through four different regions where the following equilibria exist: (a) an equilibrium where 2

and 3 attack 1 and 1 attacks 2, (b) an equilibrium where 2 attacks 1 and 1 attacks 2, (c) an equilibrium

where 2 attacks 1, and (d) an equilibrium where nobody attacks.

Next, regarding the comparison between races with two and three candidates, the following proposi-

tion shows that the benefit of an attack between candidates 1 and 2 are always smaller in three-candidate

races relatively to two-candidate races, as a result of the “dillution effect”.

Proposition B.5. There exists a threshold φ > 0 such that if φ < φ then:

∆12 (n1) > ∆̃12(n
′

1) for any n1 ∈ {0, 1} and n
′

1 ∈ N1

and

∆21 (n2) > ∆̃21(n
′

2) for any n2 ∈ {0, 1} and n
′

2 ∈ N2

57Note that from Proposition 3, item iii it follows that there are two cases to consider: (i) ∆̃31 (n3) < ∆̃12 (n1) <

∆̃21 (n2) and (ii) ∆̃12 (n1) < ∆̃31 (n3) < ∆̃21 (n2) .
58As a reminder, note that ∆̃ij (n1, n2, n3) represents candidate i’s benefit of attacking j when candidate 1 receives

n1 attacks, candidate 2 receives n2 attacks and candidate 3 receives n3 attacks. Thus, for example, the condition c ≤
∆̃31 (1, 1, 0) implies that candidate 3 is willing to attack 1 when n1 = 1, n2 = 1 and n3 = 0.
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We next show that under dual ballot plurality candidates 2 and 3 might prefer to attack each other

rather than the front-runner − a situation like that would never occur under single ballot plurality in

equilibrium (see Proposition 3, items ii and iii). The following proposition characterizes the conditions

under which this might happen.

Proposition B.6. There exist a threshold φ > 0 such that if φ < φ and so1 is sufficiently large, then

under dual ballot we have:

i. For candidate 2, the benefit of an attack on 3 is larger than that of an attack on 1:

∆̃DB
21 (n) < ∆̃DB

23 (n
′
) for any n, n

′ ∈ N2

ii. For candidate 3, the benefit of an attack on 2 is larger than that of an attack on 1:

∆̃DB
31 (n) < ∆̃DB

32 (n
′
) for any n, n

′ ∈ N3

Intuitively, if the front-runner is sufficiently ahead of the other candidates, then it pays for 2 and 3

to attack each other in an attempt to secure a place in the second round. Finally, we show that all three

candidates might become more aggressive under dual ballot plurality if the race is sufficiently competitive

in the sense that the initial supports of candidates are close enough.

Proposition B.7. There exists a threshold φ > 0 such that if φ < φ and the distance so1 − so3 > 0 is

sufficiently small, then for any i and j with i 6= j we have:

∆̃ij(ni) < ∆̃DB
ij (n

′

i) for any ni, n
′

i ∈ Ni

B.2 Voter Demobilization

In this subsection, we extend our basic model to consider an alternative setting where campaign attacks

lead to voter demobilization. Our main goal is to incorporate in a reduced form fashion the idea that

campaign attacks and mudslinging may generate voter apathy and mistrust in politics (Ansolabehere

and Iyengar (1995)). To do so, we allow voters to cast a null vote or simply choose not to vote, denoting

this alternative (outside option) by ∅ with so∅ > 0. Our proposed framework captures two sources of

voter demobilization while maintaining the assumption that the overall effect of an attack is given by

φ ∈ (0, 1). First, we suppose that a fraction αφ of voters of the attacked candidate become demobilized

and switch to not supporting anyone, while a fraction (1−α)φ move to other candidates, with α ∈ [0, 1].

Second, we assume that a fraction γφ of voters of the attacking candidate also become disengaged and

switch to not voting (i.e. “backlash effect”), with γ ∈ [0, 1].

Let aij ∈ {0, 1} denote candidate i’s binary decision to attack j. In two-candidate races the final

support of candidate i is now given by:

xi(aij , aji) = (1− φaji)soi + aij((1− α)φsoj − γφsoi ) + εi

Thus, on the one hand, if candidate i receives an attack from j, she loses a fraction φ of her initial

support. On the other hand, if candidate i attacks j, she is able to steal a fraction (1−α)φ of j’s initial

support, but at the same time loses a fraction γφ of her own support due to the backlash effect. The

overall level of voter demobilization is thus given by:

x∅(a12, a21) = so∅ + a12φ(αso2 + γso1) + a21φ(αso1 + γso2) + ε∅
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Finally, the probability that a candidate i wins the election is still given by expression (2) while the share

of abstentions and null votes is:

p∅(a12, a21) =
exp(s∅(a12, a21))

exp(s1(a12, a21)) + exp(s2(a12, a21) + exp(s∅(a12, a21)))

Note that this general version of the model reduces to our basic setup when α = 0 and γ = 0.

Similarly, in three-candidate races the final level of support of candidate i is given by:

xi(a) = (1− φni)soi +
∑
j 6=i

nj(1−α)φsoj
2 − (

∑
j 6=i aij)γφs

o
i + εi

where ni denotes the number of attacks received by candidate i, while
∑
j 6=i aij captures whether i

attacked one of her opponents. In this case, the overall level of voter demobilization can be written as:

x∅ (a) = so∅ +
∑
i

∑
j 6=i aijφ(αsoj + γsoi ) + ε∅

Moreover, the probability that a candidate i wins the election under single ballot plurality is still given

by expression (6). As before, our basic setup is obtained when α = 0 and γ = 0.

We conduct our analysis in two parts. First, we consider a version of the model without backlash

effects, γ = 0. Interestingly, in this case, we are able to show that all results go through for any

α ∈ [0, 1].59 Thus, it follows that our main conclusions remain unchanged even if an attack serves only

to demobilize voters of rival candidates. In particular, none of our results depend on voters switching

candidates − i.e. it is enough that they become disengaged for a campaign attack to have its desired

effect.60 Next, we consider the general version of the model with backlash effects, γ > 0. While the

model in this case becomes significantly less tractable, it is still possible to show that our main findings

remain unchanged for any α ∈ [0, 1] provided that γ is not too large. Specifically, for two-candidate races

we show that the restriction on γ is given by γ <
(1−α)so2

so1
, which simply guarantees that the benefit of

an attack for candidate 1 is always strictly positive. Intuitively, the benefit of an attack for candidate

1 is increasing in (1 − α)so2, i.e. the amount of support that she is able to steal from 2, and decreasing

in γso1, i.e. the size of the backlash effect for 1. For three-candidate races, the exact condition is much

harder to pin down, but we can still show that, conditional on attacking someone, each candidate prefers

to target her highest-ranked opponent for any γ > 0. Intuitively, while the backlash effect may reduce

the overall willingness to attack, it does not affect the choice of whom to attack. The other results can

be shown to hold when γ > 0 is sufficiently close to zero.61

B.3 Multiple Attacks per Candidate

In this subsection, we extend our basic model to allow candidates to target multiple opponents. Observe

that the set of all possible profiles of attacks is now given by N = {0, 1, 2}3. Let Ni,` ⊂ N denote the

set of possible 3-tuples which the vector n may assume when we impose the restriction that player i does

not attack `, where ` denotes an individual opponent or a pair of rivals.62 Observe that, as in our main

analysis, for any n ∈ Ni,j , the benefit obtained by candidate i when she attacks a single opponent j is:

∆̃i,j (n) = pi (ni, nj + 1, nk)− pi (ni, nj , nk) ,

59All proofs can be adapted in a direct manner. Additional details are available upon request.
60In this sense, this version of the setup resembles models of negative vote buying, where voters are paid to abstain

(Morgan and Várdy (2012)).
61Additional details are available upon request.
62For the sake of clarity, we alter the notation slightly by adding a comma in the subindex to separate the attacking

candidate i from the attacked candidates `.
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whereas, for any n ∈ Ni,jk, the benefit per attack obtained by candidate i when she targets both j and

k is:

∆̃i,jk (n) =
pi (ni, nj + 1, nk + 1)− pi (ni, nj , nk)

2
,

where we normalize the total benefit by the number of attacks in order to make the measures of cost

and benefit comparable.

As before, we focus our analysis on the case where the parameter φ is small, so that all results

derived in Proposition 3 still hold in the present setting. The following proposition complements the

characterization of the benefit function ∆̃i,`(n) by extending it to consider multiple attacks.

Proposition B.8. There exists a threshold φ > 0 such that if φ < φ, then we have:

i. The benefit of attacking for candidate 1 is such that:

∆̃1,3(n1,3) < ∆̃1,23(n1,23) < ∆̃1,2(n1,2) for any n1,` ∈ N1,`

ii. The benefit of attacking for candidate 2 is such that:

∆̃2,3(n2,3) < ∆̃2,13(n2,13) < ∆̃2,1(n2,1) for any n2,` ∈ N2,`

iii. The benefit of attacking for candidate 3 is such that:

∆̃3,2(n3,2) < ∆̃3,12(n3,12) < ∆̃3,1(n3,1) for any n3,` ∈ N3,`

Thus, similarly to Proposition 3, each candidate prefers to target her highest ranked opponent

alone rather than any other rival or pair of rivals. Moreover, every candidate prefers to target both

of her rivals together rather than the lowest ranked opponent alone, i.e. ∆̃1,3(n1,3) < ∆̃1,23(n1,23),

∆̃2,3(n2,3) < ∆̃2,13(n2,13) and ∆̃3,2(n3,2) < ∆̃3,12(n3,12). In other words, an attack against the lowest

ranked opponent is more valuable when coupled with an attack against the highest ranked opponent. We

also note that the relationship among ∆̃1,23(n), ∆̃2,13(n) and ∆̃3,12(n) is ambiguous in general, so that

it is not possible to completely pin down the structure of the equilibrium. However, from Propositions 3

and B.8, it follows that in any equilibrium two properties must always hold: (i) the most likely direction

of attack is from candidate 2 against 1, and (ii) no candidate attacks her lowest ranked opponent alone.

For specific parameter values, we are able to provide a complete characterization of the unique

equilibrium of the game in pure strategies. Suppose, for instance, that so1 = 0.4, so2 = 0.3, so3 = 0.2 and

φ = 0.1, in which case we have the following ordering:63

∆̃1,23(n1,`) < ∆̃2,13(n2,`) < ∆̃1,2(n
′

1,`) < ∆̃3,12(n3,`) < ∆̃3,1(n
′

3,`) < ∆̃2,1(n2,`),

for any ni,`, n
′

i,` ∈ Ni,`. In this case, the equilibrium is such that:

i. Every candidate attacks every other candidate if, and only if, c ≤ ∆̃1,23(2, 1, 1).

ii. Candidate 2 attacks 1 and 3, candidate 3 attacks 1 and 2 and candidate 1 attacks 2 if, and only

if, ∆̃1,23(2, 1, 1) < c ≤ ∆̃2,13(1, 2, 0).

63For so1 = 0.4, so2 = 0.3, so3 = 0.2 and φ = 0.1, we have: ∆̃1,23(2, 1, 1) = 0.0043, ∆̃2,13(1, 2, 0) = 0.0050, ∆̃1,2(2, 1, 0) =

0.0051, ∆̃3,12(1, 0, 0) = 0.0056, ∆̃3,1(1, 0, 0) = 0.0064 and ∆̃2,1(0, 0, 0) = 0.0072. Additional results using alternative
parameter values are available upon request.
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iii. Candidate 2 attacks 1, candidate 3 attacks 1 and 2 and candidate 1 attacks 2 if, and only if,

∆̃2,13(1, 2, 0) < c ≤ ∆̃1,2(2, 1, 0).

iv. Candidate 2 attacks 1 and candidate 3 attacks 1 and 2 if, and only if, ∆̃1,2(2, 1, 0) < c ≤
∆̃3,12(1, 0, 0).

v. Candidate 2 attacks 1 and candidate 3 attacks 1 if, and only if, ∆̃3,12(1, 0, 0) < c ≤ ∆̃3,1(1, 0, 0).

vi. Candidate 2 attacks 1 if, and only if, ∆̃3,1(1, 0, 0) < c ≤ ∆̃2,1(0, 0, 0).

vii. No candidate attacks if, and only if, c > ∆̃2,1(0, 0, 0).

Figure A.3 depicts the region of parameters where each class of equilibrium exists in this case. Note

that, as the cost of attacking increases, we move through seven distinct regions corresponding to the

different classes of equilibria describe above. Note that the equilibrium structure is similar to the one

characterized in Proposition B.4, although the fact that candidates are now allowed to target multiple

opponents adds significant complexity to it.

B.4 Tullock Contest Sucess Function

In this subsection, we consider an alternative specification for the probability of winning based on the

widely used contest sucess function proposed by Tullock (1980). Specifically, suppose that in a two-

candidate race the final level of support of a candidate i is given by:

xi (ni, nj) = log
((

(1− φni) soi + njφs
o
j

)µ)
+ εi,

where µ > 0 and εi is an iid shock with Type I Extreme Value distribution. As before, let si (ni, nj) :=

(1− φni) soi + njφs
o
j . In this case, the probability that candidate i wins is given by:

pTi (ni, nj) =
si (ni, nj)

µ

si (ni, nj)
µ

+ sj (ni, nj)
µ (17)

This particular functional form is known as Tullock CSF. Note that the parameter µ captures the

sensitivity of a candidate’s winning chances with respect to changes in her electoral support.

Similarly, in a three-candidate race, we assume that the final level of support of a candidate i is:

xi (n) = log
((

(1− φni) soi +
∑
j 6=i

njφs
o
j

2

)µ)
+ εi,

where µ > 0 and εi is an iid shock with Type I EV distribution. Let si (n) := (1− φni) soi +
∑
j 6=i

njφs
o
j

2 .

In this case, the probability that candidate i wins is given by:

p̃Ti (n) =
si (n)

µ∑3
k=1 sk (n)

µ (18)

The benefit functions for two and three-candidate races are defined as in the main text and denoted

by ∆T
ij (n) and ∆̃T

ij (n), respectively. In what follows, we investigate the robustness of our findings under

this alternative setting. Overall, the Tullock CSF is considerably less tractable, although we are still

able to show that our main qualitative results hold in this case.

Two-candidate Races. We begin our analysis by studying races with two candidates. We show that

a version of Proposition 1 holds in this case, provided that φ is sufficiently small.
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Proposition B.9. There exists a threshold φ > 0 such that if φ < φ , then candidate 2 is more aggressive

than candidate 1 in the sense that:

∆T
12 (n1) < ∆T

21 (n2) for any n1, n2 ∈ {0, 1}

Therefore, it follows that our previous result that candidate 2 is always the more aggressive candidate

holds also for a Tullock CSF. Thus, the equilibrium structure remains very similar to that characterized

in Proposition 2. In particular, it is possible to show that, as the cost of attacking increases, we move

through three different parameter regions where the following equilibria exist: (i) an equilibrium where

both candidates attack, (ii) an equilibrium where only candidate 2 attacks, and (iii) an equilibrium

where nobody attacks.

Three-candidate Races. Next, for races with three candidates, we show that a version of Proposition

3 holds for the Tullock CSF, provided that µ > 1.

Proposition B.10. There exists a threshold φ > 0 such that if φ < φ and µ > 1, then we have:

i. For candidate 1, the benefit of an attack on 2 is larger than that of an attack on 3:

∆̃T
13(n) < ∆̃T

12(n
′
) for any n, n

′ ∈ N1

ii. For candidate 2, the benefit of an attack on 1 is larger than that of an attack on 3:

∆̃T
23(n) < ∆̃T

21(n
′
) for any n, n

′ ∈ N2

iii. For candidate 3, the benefit of an attack on 1 is larger than that of an attack on 2:

∆̃T
32(n) < ∆̃T

31(n
′
) for any n, n

′ ∈ N3

iv. Candidate 2 is the most aggressive candidate in the sense that:

max{∆̃T
12 (n1) , ∆̃T

31 (n3)} < ∆̃T
21 (n2) for any ni ∈ Ni

Therefore, as in our main analysis, all candidates prefer to target their highest ranked opponent and

candidate 2 is always the most aggressive candidate, provided that µ > 1. Finally, the model becomes

too intractable to allow us to investigate the robustness of the comparative static results regarding

the dillution effect and the comparison between single and dual ballot plurality systems, derived in

Propositions 4 and 5 respectively. In the next subsection, we present simulation results suggesting that

those findings also hold under a Tullock CSF.

B.5 Simulations

Most of our theoretical results, particularly those obtained for three-candidate races, were derived under

the assumption that the impact of a campaign attack, as captured by the parameter φ, was sufficiently

small. In this subsection, we present simulation results showing that our main findings hold for “rea-

sonable”, i.e. not vanishingly small, values of φ. We begin our analysis by examining the case of

two-candidate races, assuming that so1 = 0.6 and so2 = 0.4.64 We compute the benefits of attacking for

64Our simulation results are robust to the choice of initial levels of support, provided that so1 > so2. Additional results
are available upon request.
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candidates 1 and 2 under both Logit and Tullock CSFs, for φ ∈ {0.05, 0.1, 0.15} and µ ∈ {1.5, 2}.65 The

simulation results are presented in Table A.8. Note that, consistently with Propositions 1 and B.9, we al-

ways have ∆12 (n1) < ∆21 (n2) for any n1, n2 ∈ {0, 1} for both Logit and Tullock CSFs, so that candidate

2 is always the most aggressive. Moreover, in all cases, we have ∆12 (0) < ∆12 (1) < ∆21 (1) < ∆21 (0).

Next, we study the case of three-candidate races, assuming that so1 = 0.4, so2 = 0.3 and so3 = 0.2, and

considering φ ∈ {0.05, 0.1, 0.15} and µ ∈ {1.5, 2}. For this exercise, and the ones to follow, we evaluate

the benefit function ∆̃ij (n) at n = (0, 0, 0), i.e. assuming that no candidate is receiving an attack.66 The

results presented in Table A.9 show that in all cases we have ∆̃13 < ∆̃12, ∆̃23 < ∆̃21 and ∆̃32 < ∆̃31, with

max{∆̃12, ∆̃31} < ∆̃21, which is consistent with Propositions 3 and B.10. That is, all candidates prefer

to target their highest-ranked opponent and candidate 2 is always the most aggressive. Furthermore, in

line with Proposition B.2 and Corollary B.1, we always have ∆̃23 < {∆̃13, ∆̃32} < {∆̃12, ∆̃31} < ∆̃21 for

both Logit and Tullock CSFs.

We next investigate how the incentives for the first two candidates to attack each other vary when

we increase the strength of the 3rd place candidate. Under the assumption that so1 = 0.4, so2 = 0.3 and

φ = 0.1, Figure A.12 plots the benefits of campaign attacks between candidates 1 and 2 as a function of

the initial support of candidate 3, for both the Logit CSF (Panel A) and the Tullock CSF with µ = 1.5

(Panel B). In accordance with the “dillution effect” derived in Proposition 4, we find that ∆̃12 and ∆̃21

are strictly decreasing in so3, implying that both candidates become less aggressive towards each other

when the 3rd place candidate becomes stronger. Interestingly, although Proposition 4 applies only to the

case of a Logit CSF, our simulation results suggest that the “dillution effect” also holds under a Tullock

CSF.

Finally, we compare the benefits of campaign attacks under single and dual ballot plurality systems

for both the Logit CSF and the Tullock CSF with µ = 1.5, assuming that so1 = 0.4, so2 = 0.3, so3 = 0.2

and φ = 0.1. Consistently with Proposition 5, the simulation results reported in Table A.10 show

that max{∆̃12, ∆̃13} < max{∆̃21, ∆̃23} < max{∆̃31, ∆̃32} under dual ballot plurality for both CSFs, i.e.

candidate 3 is always the most aggressive candidate under dual ballot followed by candidates 2 and 1.

Moreover, a change from single to dual ballot plurality leads to a particularly large increase in ∆̃23 and

∆̃32. This result is in line with the gist of Proposition B.6, which shows that candidates 2 and 3 may

become more aggressive towards each other under dual ballot plurality. In particular, note that for the

Tullock CSF we actually have ∆̃23 > ∆̃21 and ∆̃32 > ∆̃31 under dual ballot. 67

65We remind the reader that µ is a parameter of the Tullock CSF. Additional results using alternative values for φ and
µ are available upon request.

66We obtain similar results for alternative values of n = (n1, n2, n2) . Additional results are available upon request.
67Interestingly, the results for the Tullock CSF also show that the benefits of campaign attacks between candidates 1

and 2 actually decrease when we move from single to dual ballot plurality.
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C Proofs

C.1 Proposition 1

Item i. We want to show that ∆12 (0) < ∆12 (1), which can be expressed as:

exp (so1 + φso2)

exp (so1 + φso2) + exp ((1− φ) so2)
− exp (so1)

exp (so1) + exp (so2)
<

exp ((1− φ) so1 + φso2)

exp ((1− φ) so1 + φso2) + exp ((1− φ) so2 + φso1)
− exp ((1− φ) so1)

exp ((1− φ) so1) + exp (so2 + φso1)

After some algebra, we can rewrite the above expression as:

exp (so1 + so2) (exp (2φso2)− 1)

(exp (so1) + exp (so2)) (exp (so2) + exp (so1 + 2φso2))
<

exp ((1 + 2φ) so1 + so2) (exp (2φso2)− 1)

(exp (so1) + exp (2φso1 + so2)) (exp (2φso1 + so2) + exp (so1 + 2φso2))

Rearranging and simplifying, we get:

exp (so1 + so2) (exp (2φso1)− 1) (exp (2φso2)− 1) (exp (2 (so1 + φso2))− exp (2 (φso1 + so2))) > 0

which always holds, since exp (2φso1) > 1, exp (2φso2) > 1 and exp (2 (so1 + φso2)) > exp (2 (φso1 + so2)) for

any 0 < φ < 1 and so1 > so2.

Item ii. We want to show that ∆21 (1) < ∆21 (0), which can be expressed as:

exp (φso1 + (1− φ) so2)

exp ((1− φ) so1 + φso2) + exp (φso1 + (1− φ) so2)
− exp ((1− φ) so2)

exp (so1 + φso2) + exp ((1− φ) so2)
<

exp (φso1 + so2)

exp ((1− φ) so1) + exp (φso1 + so2)
− exp (so2)

exp (so1) + exp (so2)

After some algebra, we can rewrite the above expression as:

exp (so1 + (1 + 2φ) so2) (exp (2φso1)− 1)

(exp (so2) + exp (so1 + 2φso2)) (exp (2φso1 + so2) + exp (so1 + 2φso2))
<

exp (so1 + so2) (exp (2φso1)− 1)

(exp (so1) + exp (so2)) (exp (so1) + exp (2φso1 + so2))

Rearranging and simplifying, we get:

exp (so1 + so2) (exp (2φso1)− 1) (exp (2φso2)− 1) (exp (2 (so1 + φso2))− exp (2 (φso1 + so2))) > 0

which always holds, since exp (2φso1) > 1, exp (2φso2) > 1 and exp (2 (so1 + φso2)) > exp (2 (φso1 + so2)) for

any 0 < φ < 1 and so1 > so2.
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Item iii. We want to show that ∆12 (1) < ∆21 (1), which can be expressed as:

exp ((1− φ) so1 + φso2)

exp ((1− φ) so1 + φso2) + exp ((1− φ) so2 + φso1)
− exp ((1− φ) so1)

exp ((1− φ) so1) + exp (so2 + φso1)
<

exp (φso1 + (1− φ) so2)

exp ((1− φ) so1 + φso2) + exp (φso1 + (1− φ) so2)
− exp ((1− φ) so2)

exp (so1 + φso2) + exp ((1− φ) so2)

After some algebra, we can rewrite the above expression as:

exp ((1 + 2φ) so1 + so2) (exp (2φso2)− 1)

(exp (so1) + exp (2φso1 + so2)) (exp (2φso1 + so2) + exp (so1 + 2φso2))
<

exp (so1 + (1 + 2φ) so2) (exp (2φso1)− 1)

(exp (so2) + exp (so1 + 2φso2)) (exp (2φso1 + so2) + exp (so1 + 2φso2))

Rearranging and simplifying, we get:

exp (2φso1 + so2) + 2 exp (so1 + 2φso1 + 2φso2) + exp (4φso1 + so2 + 2φso2)

− exp (so1 + 2φso2)− exp (so1 + 2φso1 + 4φso2)− 2 exp (2φso1 + so2 + 2φso2) > 0

which in turn can be re-expressed as:

exp ((1 + 2φ) (so1 + so2)) (exp (2φso1)− exp (2φso2)) > 0

which always holds since exp (2φso1)− exp (2φso2) > 0 for any 0 < φ < 1 and so1 > so2. �

C.2 Proposition 2

Note that from Proposition 1, we have ∆12 (0) < ∆12 (1) < ∆21 (1) < ∆21 (0). Thus, we need to consider

five cases for the cost parameter c ∈ R+:

i. Case 1: Suppose that c ≤ ∆12 (0). In this case, both candidates are always willing to attack their

opponent. Thus, in equilibrium, both candidates attack.

ii. Case 2: Suppose that ∆12 (0) < c ≤ ∆12 (1). In this case, candidate 2 is always willing to attack,

whereas candidate 1 is willing to attack only if attacked. Thus, in equilibrium, both candidates

attack.

iii. Case 3. Suppose that ∆12 (1) < c ≤ ∆21 (1). In this case, candidate 2 is always willing to attack,

whereas candidate 1 is never willing to attack. Thus, in equilibrium, only candidate 2 attacks.

iv. Case 4. Suppose that ∆21 (1) < c ≤ ∆21 (0). In this case, candidate 2 is willing to attack only if

not attacked, whereas candidate 1 is never willing to attack. Thus, in equilibrium, only candidate

2 attacks.

v. Case 5. Suppose that ∆21 (0) < c. In this case, both candidates are never willing to attack. Thus,

in equilibrium, no candidate attacks.

Therefore, in equilibrium, we have: (i) both candidates attack if and only if c ≤ ∆12 (1) ; (ii) only

candidate 2 attacks if and only if ∆12 (1) < c ≤ ∆21 (0) ; and (iii) no candidate attacks if and only if

∆21 (0) < c.�
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C.3 Proposition 3

Item i. We want to show that if φ is small enough then ∆̃12 (n) > ∆̃13(n
′
) for any n, n

′ ∈ N1. To do

so, let f1(φ, n, n
′
) := ∆̃12 (n)− ∆̃13(n

′
). We will show that f1(0, n, n

′
) = 0 and ∂f1(0, n, n

′
)/∂φ > 0 for

any n, n
′ ∈ N1, so that by taking a first-order Taylor expansion of the function f1(φ, n, n

′
) around φ = 0

it follows that f1(φ, n, n
′
) > 0 for φ sufficiently small. It is immediate to see that f1(0, n, n

′
) = 0, given

that ∆̃12 (n) = ∆̃13(n
′
) = 0 when φ = 0. Furthermore, after some algebra, we get:

∂f1(φ, n, n
′
)

∂φ
=

3 exp (so1) (so2 exp (so2)− so3 exp (so3))

2(exp (so1) + exp (so2) + exp (so3))2
,

which is always strictly positive, since so2 exp (so2) > so3 exp (so3) .

Item ii. We want to show that if φ is small enough then ∆̃21 (n) > ∆̃23(n
′
) for any n, n

′ ∈ N2. To do

so, let f2(φ, n, n
′
) := ∆̃21 (n)− ∆̃23(n

′
). We will show that f2(0, n, n

′
) = 0 and ∂f2(0, n, n

′
)/∂φ > 0 for

any n, n
′ ∈ N2. It is immediate to see that f2(0, n, n

′
) = 0. Furthermore, after some algebra, we get:

∂f2(0, n, n
′
)

∂φ
=

3 exp (so2) (so1 exp (so1)− so3 exp (so3))

2(exp (so1) + exp (so2) + exp (so3))2
,

which is always strictly positive, since so1 exp (so1) > so3 exp (so3) .

Item iii. We want to show that if φ is small enough then ∆̃31 (n) > ∆̃32(n
′
) for any n, n

′ ∈ N3. To do

so, let f3(φ, n, n
′
) := ∆̃31 (n)− ∆̃32(n

′
). We will show that f3(0, n, n

′
) = 0 and ∂f3(0, n, n

′
)/∂φ > 0 for

any n, n
′ ∈ N3. It is immediate to see that f3(0, n, n

′
) = 0. Furthermore, after some algebra, we get:

∂f3(0, n, n
′
)

∂φ
=

3 exp (so3) (so1 exp (so1)− s2 exp (so2))

2(exp (so1) + exp (so2) + exp (so3))2
,

which is always strictly positive, since so1 exp (so1) > so2 exp (so2) .

Item iv. First, we want to show that if φ is small enough then ∆̃21(n
′
) > ∆̃12 (n) for any n ∈ N1

and n
′ ∈ N2. To do so, let h12(φ, n, n

′
) := ∆̃21(n

′
) − ∆̃12 (n) . We will show that h12(0, n, n

′
) = 0

and ∂h12(0, n, n
′
)/∂φ > 0 for any n ∈ N1 and n

′ ∈ N2. It is immediate to see that h12(0, n, n
′
) = 0.

Furthermore, after some algebra, we get:

∂h12(0, n, n
′
)

∂φ
=

3 exp (so1 + so2) (so1 − s2)

2(exp (so1) + exp (so2) + exp (so3))2
,

which is always strictly positive, since so1 > so2. Next, we want to show that if φ is small enough then

∆̃21(n
′
) > ∆̃31(n

′′
) for any n

′ ∈ N2 and n
′′ ∈ N3. To do so, let h23(φ, n

′
, n

′′
) := ∆̃21(n

′
) − ∆̃31(n

′′
).

We will show that h23(0, n
′
, n

′′
) = 0 and ∂h23(0, n

′
, n

′′
)/∂φ > 0 for any n

′ ∈ N2 and n
′′ ∈ N3. It is

immediate to see that h23(0, n
′
, n

′′
) = 0. Furthermore, after some algebra, we get:

∂h23(0, n
′
, n

′′
)

∂φ
=

3 exp (so1) (exp (so2)− exp (so3)) so1
2(exp (so1) + exp (so2) + exp (so3))2

,

which is always strictly positive, since exp (so2) > exp (so3) . Therefore, we conclude that ∆̃21(n
′
) >

max{∆̃12 (n) , ∆̃31(n
′′
)} for any n ∈ N1, n

′ ∈ N2 and n
′′ ∈ N3.�
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C.4 Proposition 4

First, we want to show that if φ is small enough then ∂∆̃12(n)/∂so3 < 0 for any n = (n1, n2, n3) ∈ N1.

Taking the derivative of ∆̃12(n) w.r.t. so3, re-arranging and simplifying, we get:

∂∆̃12(n)

∂so3
=

Γ1Γ2

2 (Γ3)
2

(Γ4)
2 (3n3φ− 2)

where

Γ1 = exp ((1 + n1φ) so1 + 3n2φs
o
2 + (1 + n3φ) so3)

(
exp

(
3

2
φso2

)
− 1

)
> 0

Γ2 = exp

(
3

2
φ (n1s

o
1 + n3s

o
3)

)
+ exp

(
3

2
φ (n1s

o
1 + so2 + n3s

o
3)

)
+ 2 exp

(
1

2
(3n1φs

o
1 − (2− 3 (1 + n2)φ) so2 + 2so3)

)
+ 2 exp

(
1

2
(2so1 − (2− 3 (1 + n2)φ) so2 + 3n3φs

o
3)

)
> 0

Γ3 = exp

(
1

2
φ (n1s

o
1 + n3s

o
3)

)
+ exp

(
1

2
(2 (1− n1φ) so1 − (2− 3 (1 + n2)φ) so2 + n3φs

o
3)

)
+ exp

(
1

2
(n1φs

o
1 − (2− 3 (1 + n2)φ) so2 + 2 (1− n3φ)) so3

)
> 0

Γ4 = exp

(
1

2
(3n1φs

o
1 + 3n2φs

o
2 + 2so3)

)
+ exp

(
1

2
(3n1φs

o
1 + 2so2 + 3n3φs

o
3)

)
+ exp

(
1

2
(2so1 + 3n2φs

o
2 + 3n3φs

o
3)

)
> 0

Note that the sign of the derivative is completely determined by the term 3n3φ− 2, which is guaranteed

to be negative as long as φ is sufficiently small. More specifically, since n3 ≤ 2, the sufficient condition

is φ < 1
3 .

Next, we want to show that if φ is small enough then ∂∆̃21(n)/∂so3 < 0 for any n = (n1, n2, n3) ∈ N2.

Taking the derivative of ∆̃21(n) w.r.t. so3, re-arranging and simplifying, we get:

∂∆̃21(n)

∂so3
=

Ψ1Ψ2

2 (Ψ3)
2

(Ψ4)
2 (3n3φ− 2)

where

Ψ1 = exp (3n1φs
o
1 + (1 + 3n2φ) so2 + (1 + n3φ) so3)

(
exp

(
3

2
φso1

)
− 1

)
> 0
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Ψ2 = exp

(
3

2
φ (n2s

o
2 + n3s

o
3)

)
+ exp

(
3

2
φ (so1 + n2s

o
2 + n3s

o
3)

)
+ 2 exp

(
1

2
(− (2− 3 (1 + n1)φ) so1 − 3n2φs

o
2 + 2so3)

)
+ 2 exp

(
1

2
(− (2− 3 (1 + n1)φ) so1 + so2 + 3n3φs

o
3)

)
> 0

Ψ3 = exp

(
−1

2
(− (2− 3 (1 + n1)φ) so1 + 3n2φs

o
2 + 2so3)

)
+ exp

(
3

2
(n2φs

o
2 + n3φs

o
3)

)
+ exp

(
−1

2
(− (2− 3 (1 + n1)φ) so1 + 2so2 + 3n3φs

o
3)

)
> 0

Ψ4 = exp

(
1

2
(3n1φs

o
1 + 3n2φs

o
2 + 2so3)

)
+ exp

(
1

2
(3n1φs

o
1 + 2so2 + 3n3φs

o
3)

)
+ exp

(
1

2
(2so1 + 3n2φs

o
2 + 3n3φs

o
3)

)
> 0

Note that, as before, the sign of the derivative is completely determined by the term 3n3φ− 2, which is

guaranteed to be negative as long as φ is sufficiently small. More specifically, since n3 ≤ 2, the sufficient

condition is φ < 1
3 .�

C.5 Proposition 5

First, we want to show that if φ is small enough then max{∆̃DB
31 (n3), ∆̃DB

32 (n
′

3)} > max{∆̃DB
21 (n2), ∆̃DB

23 (n
′

2)}
for any ni, n

′

i ∈ Ni. To do so, we will show that: (i) ∆̃DB
31 (n3) > ∆̃DB

21 (n2) for any ni ∈ Ni and (ii)

∆̃DB
32 (n3) > ∆̃DB

23 (n2) for any ni ∈ Ni. First, let f23(φ, n, n
′
) := ∆̃DB

31 (n
′
) − ∆̃DB

21 (n). We will show

that f23(0, n, n
′
) = 0 and ∂f23(0, n, n

′
)/∂φ > 0 for any n ∈ N2 and n

′ ∈ N3, so that by taking a first-

order Taylor expansion of the function f23(φ, n, n
′
) around φ = 0 if follows that f23(φ, n, n

′
) > 0 for φ

sufficiently small. It is immediate to see that f23(0, n, n
′
) = 0. Furthermore, after some algebra, we get:

∂f23(0, n, n
′
)

∂φ
=

3so1 exp(so1 + so2 + so3)Γ (exp(so2)− exp(so3))

2
,

where

Γ = exp(2so2) + exp(2so3) + 3 exp(2so1) + 3 exp(so2 + so3) + 4 exp(so1 + so2) + 4 exp(so1 + so3) > 0

Note that the derivative above is always strictly positive, since exp (so2) > exp (so3) .Next, let g23(φ, n, n
′
) :=

∆̃DB
32 (n

′
) − ∆̃DB

23 (n). We will show that g23(0, n, n
′
) = 0 and ∂g23(0, n, n

′
)/∂φ > 0 for any n ∈ N2 and

n
′ ∈ N3. It is immediate to see that g23(0, n, n

′
) = 0. Furthermore, after some algebra, we get:

∂g23(0, n, n
′
)

∂φ
=

3 exp(so1 + so2 + so3)(exp(so1) + 2 exp(so2) + 2 exp(so3))(so2 − so3)

2(exp(so2) + exp(so3))2(exp(so1) + exp(so2) + exp(so3))2
,

which is always strictly positive, since so2 > so3. Therefore, from the arguments above, it follows that

max{∆̃DB
31 (n3), ∆̃DB

32 (n
′

3)} > max{∆̃DB
21 (n2), ∆̃DB

23 (n
′

2)}.
Second, we want to show that if φ is small enough then max{∆̃DB

21 (n2), ∆̃DB
23 (n

′

2)}>max{∆̃DB
12 (n1), ∆̃DB

13 (n
′

1)}
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for any ni, n
′

i ∈ Ni. To do so, we will show that: (i) ∆̃DB
21 (n2) > ∆̃DB

12 (n1) for any ni ∈ Ni and (ii)

∆̃DB
23 (n2) > ∆̃DB

13 (n1) for any ni ∈ Ni. First, let g12(φ, n, n
′
) := ∆̃DB

21 (n
′
)− ∆̃DB

12 (n). We will show that

g12(0, n, n
′
) = 0 and ∂g12(0, n, n

′
)/∂φ > 0 for any n ∈ N1 and n

′ ∈ N2. It is immediate to see that

g12(0, n, n
′
) = 0. Furthermore, after some algebra, we get:

∂g12(0, n, n
′
)

∂φ
=

3 exp(so1 + so2 + so3)(2 exp(so1) + 2 exp(so2) + exp(so3))(so2 − so3)

2(exp(so2) + exp(so3))2(exp(so1) + exp(so2) + exp(so3))2
,

which is always strictly positive, since so2 > so3. Similarly, let f12(φ, n, n
′
) := ∆̃DB

23 (n
′
) − ∆̃DB

13 (n). We

will show that f12(0, n, n
′
) = 0 and ∂f12(0, n, n

′
)/∂φ > 0 for any n ∈ N1 and n

′ ∈ N2. It is immediate

to see that f12(0, n, n
′
) = 0. Furthermore, after some algebra, we get:

∂f12(0, n, n
′
)

∂φ
=

3so3 exp(so1 + so2 + so3)Ψ (exp(so1)− exp(so2))

2
,

where

Ψ = exp(2so1) + exp(2so2) + 3 exp(so1 + so2) + 3 exp(2so3) + 4 exp(so1 + so3) + 4 exp(so2 + so3) > 0

Note that the derivative above is always strictly positive, since exp (so1) > exp (so2) . Therefore, from the

arguments above, it follows that max{∆̃DB
21 (n2), ∆̃DB

23 (n
′

2)} > max{∆̃DB
12 (n1), ∆̃DB

13 (n
′

1)}.�
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D Additional Proofs

D.1 Proposition B.1

First, we want to show that if φ is small enough and so2 is sufficiently close to so1, then ∆̃12 (n) > ∆̃31(n
′
)

for any n ∈ N1 and n
′ ∈ N3. To do so, let f(φ, n, n

′
) := ∆̃12 (n)−∆̃31(n

′
). We will show that f(0, n, n

′
) =

0 and limso2→so1 ∂f(0, n, n
′
)/∂φ > 0 for any n ∈ N1 and n

′ ∈ N3, so that by taking a first-order Taylor

expansion of the function f(φ, n, n
′
) around φ = 0 it follows that f(φ, n, n

′
) > 0 for φ sufficiently small

and so2 close enough to so1. It is immediate to see that f (0, n1, n2) = 0. Furthermore, after some algebra,

we get:
∂f(0, n, n

′
)

∂φ
=

3 exp (so1) (so2 exp (so2)− so1 exp (so3))

2(exp (so1) + exp (so2) + exp (so3))2
,

which is positive provided that so2 is close enough to so1. Specifically, observe that limso2→so1(so2 exp(so2) −
so1 exp (so3)) > 0. Therefore, limso2→so1 ∂f(0, n, n

′
)/∂φ > 0 for any n ∈ N1 and n

′ ∈ N3. Next, following a

similar argument, we can show that if φ is small enough and so2 is sufficiently close to so3, then f(φ, n, n
′
) <

0. In fact, note that limso2→so3 s2 exp (s2)− s1 exp (s3)) < 0, so that limso2→so3 ∂f1(0, n, n
′
)/∂φ < 0 for any

n ∈ N1 and n
′ ∈ N3.�

D.2 Proposition B.2

Item i. We want to show that if φ is small enough then ∆̃12 (n) > ∆̃32(n
′
) for any n ∈ N1 and n

′ ∈ N3.

To do so, let f(φ, n, n
′
) := ∆̃12 (n)−∆̃32(n

′
). We will show that f(0, n, n

′
) = 0 and ∂f(0, n, n

′
)/∂φ > 0 for

any n ∈ N1 and n
′ ∈ N3, so that by taking a first-order Taylor expansion of the function f(φ, n, n

′
) around

φ = 0 it follows that f(φ, n, n
′
) > 0 for φ sufficiently small. It is immediate to see that f(0, n, n

′
) = 0.

Furthermore, after some algebra, we get:

∂f(0, n, n
′
)

∂φ
=

3 exp(so2)so2(exp(so1)− exp(so3))

2(exp(so1) + exp(so2) + exp(so3))2
,

which is always strictly positive, since exp(so1) > exp(so3).

Item ii. We want to show that if φ is small enough then ∆̃13(n) < ∆̃31(n
′
) for any n ∈ N1 and n

′ ∈ N3.

To do so, let g(φ, n, n
′
) := ∆̃31(n

′
)− ∆̃13 (n). We will show that g(0, n, n

′
) = 0 and ∂g(0, n, n

′
)/∂φ > 0

for any n ∈ N1 and n
′ ∈ N3. It is immediate to see that g(0, n, n

′
) = 0. Furthermore, after some algebra,

we get:
∂g(0, n, n

′
)

∂φ
=

3 exp(so1 + so3)(so1 − so3)

2(exp(so1) + exp(so2) + exp(so3))2
,

which is always strictly positive, since so1 > so3.

Item iii. We want to show that if φ is small enough then ∆̃13 (n) > ∆̃23(n
′
) for any n ∈ N1 and n

′ ∈ N2.

To do so, let h (φ, n, n2) := ∆̃13 (n)− ∆̃23(n
′
). We will show that h(0, n, n

′
) = 0 and ∂h(0, n, n

′
)/∂φ > 0

for any n ∈ N1 and n
′ ∈ N2. It is immediate to see that h(0, n, n

′
) = 0. Furthermore, after some algebra,

we get:
∂h(0, n, n

′
)

∂φ
=

3 exp(so3)so3(exp(so1)− exp(so2))

2(exp(so1) + exp(so2) + exp(so3))2
,

which is always strictly positive, since exp(so1) > exp(so2).

Item iv. We want to show that if φ is small enough then ∆̃23 (n) < ∆̃32(n
′
) for any n ∈ N2 and n

′ ∈ N3.

To do so, let t(φ, n, n
′
) := ∆̃32(n

′
) − ∆̃23 (n). We will show that t(0, n, n

′
) = 0 and ∂t(0, n, n

′
)/∂φ > 0
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for any n ∈ N2 and n
′ ∈ N3. It is immediate to see that t(0, n, n

′
) = 0. Furthermore, after some algebra,

we get:
∂h23(0, n, n

′
)

∂φ
=

3 exp(so2 + so3)(so2 − so3)

2(exp(so1) + exp(so2) + exp(so3))2
,

which is always strictly positive, since so2 > so3.�

D.3 Proposition B.3

First, we want to show that if φ is small enough and so2 is sufficiently close to so1 then ∆̃13 (n) < ∆̃32(n
′
) for

any n ∈ N1 and n
′ ∈ N3. To do so, let f(φ, n, n

′
) := ∆̃32(n

′
)−∆̃13 (n) . We will show that f(0, n, n

′
) = 0

and limso2→so1 ∂f(0, n, n
′
)/∂φ > 0 for any n ∈ N1 and n

′ ∈ N3, so that by taking a first-order Taylor

expansion of the function f(φ, n, n
′
) around φ = 0 it follows that f(φ, n, n

′
) > 0 for φ and so2 − so1

sufficiently small. It is straightforward to show that f(0, n, n
′
) = 0. Furthermore, after some algebra, we

obtain:
∂f(0, n, n

′
)

∂φ
=

3 exp(so3)(so2 exp(so2)− so3 exp(so1))

2(exp(so1) + exp(so2) + exp(so3))2

which is positive provided that so2 is close enough to so1. Specifically, observe that limso2→so1 (so2 exp(so2)−
so3 exp(so1)) = (so1 − so3) exp (so2) > 0, so that limso2→so1 ∂f(0, n, n

′
)/∂φ > 0 for any n ∈ N1 and n

′ ∈ N3.

On the other hand, we can show that if so2 is sufficiently close to so3, then ∆̃13 (n) < ∆̃32(n
′
) for any

n ∈ N1 and n
′ ∈ N3. In fact, note that limso2→so3(so2 exp(so2)− so3 exp(so1)) = −(exp(so1)− exp(so3))so3 < 0,

so that limso2→so3 ∂f(0, n, n
′
)/∂φ < 0 for any n ∈ N1 and n

′ ∈ N3.�

D.4 Proposition B.4

Let us denote an attack from candidate i against j by i → j. From Proposition 3, we know that

∆̃21(n2) > max{∆̃12(n1), ∆̃31(n3)} for any ni ∈ Ni. Thus, there are two cases to consider, namely: (i)

∆̃31(n3) < ∆̃12(n1) < ∆̃21(n2) and (ii) ∆̃12(n1) < ∆̃31(n3) < ∆̃21(n2).

Item i. Suppose, first, that ∆̃31(n3) < ∆̃12(n1) < ∆̃21(n2) for any ni ∈ Ni. Here, we need to consider

four cases for the cost parameter c ∈ R+:

a. Case 1: Suppose that c ≤ ∆̃31(1, 1, 0). In this case, candidates 2 and 3 are willing to attack 1 and

candidate 1 is willing to attack 2. Thus, in equilibrium, the following attacks occur: 2→ 1, 1→ 2

and 3→ 1.

b. Case 2: Suppose that ∆̃31(1, 1, 0) < c ≤ ∆̃12(1, 0, 0). In this case, candidate 2 is willing to attack

1, candidate 1 is willing to attack 2 and candidate 3 is not willing to attack 1. Thus, in equilibrium,

the following attacks occur: 2→ 1 and 1→ 2.

c. Case 3: Suppose that ∆̃12(1, 0, 0) < c ≤ ∆̃21(0, 0, 0). In this case, candidate 2 is willing to attack

1, candidate 1 is not willing to attack 2 and candidate 3 is not willing to attack 1. Thus, in

equilibrium, the following attack occur: 2→ 1.

d. Case 4: Suppose that ∆̃21(0, 0, 0) < c. In this case, no candidate is willing to attack an opponent.

Thus, in equilibrium, no candidate attacks.

Item ii. Next, suppose that ∆̃12(n1) < ∆̃31(n3) < ∆̃21(n2) for any ni ∈ Ni. As before, we need to

consider the following four cases:
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a. Case 1: Suppose that c ≤ ∆̃12(2, 0, 0). In this case, candidates 2 and 3 are willing to attack 1 and

candidate 1 is willing to attack 2. Thus, in equilibrium, the following attacks occur: 2→ 1, 3→ 1

and 1→ 2.

b. Case 2: Suppose that ∆̃12(2, 0, 0) < c ≤ ∆̃31(1, 0, 0). In this case, candidate 2 is willing to attack

1, candidate 3 is willing to attack 1 and candidate 1 is not willing to attack 2. Thus, in equilibrium,

the following attacks occur: 2→ 1 and 3→ 1.

c. Case 3: Suppose that ∆̃31(1, 0, 0) < c ≤ ∆̃21(0, 0, 0). In this case, candidate 2 is willing to attack

1, candidate 1 is not willing to attack 2 and candidate 3 is not willing to attack 1. Thus, in

equilibrium, the following attack occurs: 2→ 1.

d. Case 4: Suppose that ∆̃21(0, 0, 0) < c. In this case, no candidate is willing to attack an opponent.

Thus, in equilibrium, no candidate attacks.�

D.5 Proposition B.5

First, we want to show that if φ is small enough, then ∆12 (n) > ∆̃12(n
′
) for any n ∈ {0, 1} and n

′ ∈ N1.

To do so, let f1(φ, n, n
′
) := ∆12 (n)−∆̃12(n

′
). We will show that f1(0, n, n

′
) = 0 and ∂f1(0, n, n

′
)/∂φ > 0

for any n ∈ {0, 1} and n
′ ∈ N1. It is immediate to see that f1(0, n, n

′
) = 0. Furthermore, after some

algebra, we get:

∂f1(0, n, n
′
)

∂φ
=

1

2
exp (so1 + so2)

(
4

(exp(so1) + exp(so2))2
− 3

(exp(so1) + exp(so2) + exp(so3))2

)
so2,

which is always positive, given that (exp(so1) + exp(so2))2 < (exp(so1) + exp(so2) + exp(so3))2, so that the

term inside parenthesis is positive.

Next, we want to show that if φ is small enough, then ∆21 (n) > ∆̃21(n
′
) for any n ∈ {0, 1}

and n
′ ∈ N2. To do so, let f2(φ, n, n

′
) := ∆21 (n) − ∆̃21(n

′
). We will show that f2(0, n, n

′
) = 0 and

∂f2(0, n, n
′
)/∂φ > 0 for any n ∈ {0, 1} and n

′ ∈ N2. It is immediate to see that f2(0, n, n
′
) = 0.

Furthermore, after some algebra, we get:

∂f2(0, n, n
′
)

∂φ
=

1

2
exp (so1 + so2)

(
4

(exp(so1) + exp(so2))2
− 3

(exp(so1) + exp(so2) + exp(so3))2

)
so1,

which, using the same argument as above, is always positive.�

D.6 Proposition B.6

Item i. We want to show that if φ is small enough and so1 is sufficiently large, then ∆̃DB
23 (n) > ∆̃DB

21 (n
′
)

for any n, n
′ ∈ N2. To do so, let f2(φ, n, n

′
) := ∆̃DB

23 (n) − ∆̃DB
21 (n

′
). We will show that f2(0, n, n

′
) = 0

and limso1→∞ ∂f2(0, n, n
′
)/∂φ > 0 for any n, n

′ ∈ N2, so that by taking a first-order Taylor expansion of

the function f2(φ, n, n
′
) around φ = 0 it follows that f2(φ, n, n

′
) > 0 for φ sufficiently small and so1 large

enough. It is immediate to see that f2(0, n, n
′
) = 0. Furthermore, after some algebra, we get:

∂f2(0, n, n
′
)

∂φ
= Γ {exp(3so1)so3 + 4 exp(2so1 + so2)so3 + 2 exp(2so1 + so3)so3

− exp (3so3) so1 − 2 exp(so1 + 2so3)so1 − 4 exp (so2 + 2so3) so1 − exp (so1 + 2so2) (2so1 − 5so3)

− exp(2so2 + so3)(5so1 − 2so3)− 2 exp (3so2) (so1 − so3)− 4 exp(so1 + so2 + so3)(so1 − so3)}
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where

Γ =
3 exp (so1 + so2 + so3)

2 (exp (so1) + exp (so2))
2

(exp (so2) + exp (so3))
2

(exp (so1) + exp (so2) + exp (so3))
2 > 0

Note that since we are interested in the sign of the derivative when so1 is arbitrarily large, it is enough

to consider only the terms inside the curly brackets where so1 appears as an exponent, given that these

terms will dominate the expression when so1 →∞. Therefore, we are left with:

exp(3so1)so3 + 4 exp(2so1 + so2)so3 + 2 exp(2so1 + so3)so3 − 2 exp(so1 + 2so3)so1

− exp (so1 + 2so2) (2so1 − 5so3)− 4 exp(so1 + so2 + so3)(so1 − so3)

Next, observe that the exponential terms become dominant when so1 → ∞, so that we can also ignore

the terms multiplying them. Thus, we get:

exp(3so1) + exp(2so1 + so2) + exp(2so1 + so3)− exp(so1 + 2so3)− exp (so1 + 2so2)− exp(so1 + so2 + so3),

which is always positive when so1 is sufficiently large, since limso1→∞ exp(3so1), limso1→∞ exp(2so1 + so2)

and limso1→∞ exp(2so1 + so3) are all greater than limso1→∞ exp(so1 + 2so3), limso1→∞ exp (so1 + 2so2) and

limso1→∞ exp(so1 + so2 + so3). Therefore, limso1→∞ ∂f2(0, n, n
′
)/∂φ > 0 for any n ∈ N2.

Item ii. We want to show that if φ is small enough and so1 is sufficiently large, then ∆̃DB
32 (n) > ∆̃DB

31 (n
′
)

for any n, n
′ ∈ N3. To do so, let f3(φ, n, n

′
) := ∆̃DB

32 (n) − ∆̃DB
31 (n

′
). We will show that f3(0, n, n

′
) = 0

and limso1→∞ ∂f3(0, n, n
′
)/∂φ > 0 for any n, n

′ ∈ N3. It is immediate to see that f3(0, n, n
′
) = 0.

Furthermore, after some algebra, we get:

∂f3(0, n, n
′
)

∂φ
= Ψ {exp(3so1)so2 + 4 exp(2so1 + so3)so2 + 2 exp(2so1 + so2)so2

− exp (3so2) so1 − 2 exp(so1 + 2so2)so1 − 4 exp (2so2 + so3) so1 − exp (so1 + 2so3) (2so1 − 5so2)

− exp(so2 + 2so3)(5so1 − 2so2)− 2 exp (3so3) (so1 − so2)− 4 exp(so1 + so2 + so3)(so1 − so2)}

where

Ψ =
3 exp (so1 + so2 + so3)

2 (exp (so1) + exp (so3))
2

(exp (so2) + exp (so3))
2

(exp (so1) + exp (so2) + exp (so3))
2 > 0

Proceeding as above, the sign of the derivative when so1 →∞ is determined by the following expression:

exp(3so1) + exp(2so1 + so3) + exp(2so1 + so2)− exp(so1 + 2so2)− exp (so1 + 2so3)− exp(so1 + so2 + so3),

which is always positive when so1 is sufficiently large. Therefore, limso1→∞ ∂f3(0, n, n
′
)/∂φ > 0 for any

n ∈ N3.�

D.7 Proposition B.7

We want to show that if φ is small enough and the distance so1 − so3 is sufficiently small, then ∆̃DB
ij (n) >

∆̃ij(n
′
) for any i and j with i 6= j and n, n

′ ∈ Ni. To do so, let fij(φ, n, n
′
) := ∆̃DB

ij (n) − ∆̃ij(n
′
).

We will show that fij(0, n, n
′
) = 0 and lim(so1,s

o
2,s

o
3)→(so,so,so) ∂fij(0, n, n

′
)/∂φ > 0 for any n, n

′ ∈ Ni, so

that by taking a first-order Taylor expansion of the function fij(φ, n, n
′
) around φ = 0 it follows that
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fij(φ, n, n
′
) > 0 for φ and so1−so3 sufficiently small. In what follows, we consider all possible combinations

for i and j.

i. Case 1: Let i = 1 and j = 2. It is immediate to see that f12(0, n, n
′
) = 0. Furthermore, after some

algebra, we get:

∂f12(0, n, n
′
)

∂φ
=

3

2
exp (so1 + so2)

(
1

(exp(so1) + exp(so2))2
− 2

(exp(so1) + exp(so2) + exp(so3))2

)
so2

Then, note that lim(so1,s
o
2,s

o
3)→(so,so,so)

∂f12(0,n,n
′
)

∂φ = 3
2 exp (2so)

(
1

4 exp(so) − 2
9 exp(so)

)
so > 0.

ii. Case 2: Let i = 1 and j = 3. It is immediate to see that f13(0, n, n
′
) = 0. Furthermore, after some

algebra, we get:

∂f13(0, n, n
′
)

∂φ
=

3

2
exp (so1 + so3)

(
1

(exp(so1) + exp(so3))2
− 2

(exp(so1) + exp(so2) + exp(so3))2

)
so3

Then, note that lim(so1,s
o
2,s

o
3)→(so,so,so)

∂f13(0,n,n
′
)

∂φ = 3
2 exp (2so)

(
1

4 exp(so) − 2
9 exp(so)

)
so > 0.

iii. Case 3: Let i = 2 and j = 1. It is immediate to see that f21(0, n, n
′
) = 0. Furthermore, after some

algebra, we get:

∂f21(0, n, n
′
)

∂φ
=

3

2
exp (so1 + so2)

(
1

(exp(so1) + exp(so2))2
− 2

(exp(so1) + exp(so2) + exp(so3))2

)
so1

Then, note that lim(so1,s
o
2,s

o
3)→(so,so,so)

∂f21(0,n,n
′
)

∂φ = 3
2 exp (2so)

(
1

4 exp(so) − 2
9 exp(so)

)
so > 0.

iv. Case 4: Let i = 2 and j = 3. It is immediate to see that f23(0, n, n
′
) = 0. Furthermore, after some

algebra, we get:

∂f23(0, n, n
′
)

∂φ
=

3

2
exp (so2 + so3)

(
1

(exp(so2) + exp(so3))2
− 2

(exp(so1) + exp(so2) + exp(so3))2

)
so3

Note that this expression is always positive since 1
(exp(so2)+exp(so3))

2 − 2
(exp(so1)+exp(so2)+exp(so3))

2 > 0

for any so1 > so2 > so3. Thus, the result that ∆̃DB
23 (n) > ∆̃23(n

′
) for any n, n

′ ∈ N2 does not require

that so1 be close to so3.

v. Case 5: Let i = 3 and j = 1. It is immediate to see that f31(0, n, n
′
) = 0. Furthermore, after some

algebra, we get:

∂f31(0, n, n
′
)

∂φ
=

3

2
exp (so1 + so3)

(
1

(exp(so1) + exp(so3))2
− 2

(exp(so1) + exp(so2) + exp(so3))2

)
so1

Then, note that lim(so1,s
o
2,s

o
3)→(so,so,so)

∂f31(0,n,n
′
)

∂φ = 3
2 exp (2so)

(
1

4 exp(so) − 2
9 exp(so)

)
so > 0.

vi. Case 6: Let i = 3 and j = 2. It is immediate to see that f32(0, n, n
′
) = 0. Furthermore, after some

algebra, we get:

∂f32(0, n, n
′
)

∂φ
=

3

2
exp (so2 + so3)

(
1

(exp(so2) + exp(so3))2
− 2

(exp(so1) + exp(so2) + exp(so3))2

)
so2
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Note that this expression is always positive since 1
(exp(so2)+exp(so3))

2 − 2
(exp(so1)+exp(so2)+exp(so3))

2 > 0

for any so1 > so2 > so3. Thus, the result that ∆̃DB
32 (n) > ∆̃32(n

′
) for any n, n

′ ∈ N3 for any does

not require that so1 be close to so3. �

D.8 Proposition B.8

Item i. First, we want to show that if φ is small enough then ∆̃1,2 (n) > ∆̃1,23(n
′
) for any n ∈ N1,2

and n
′ ∈ N1,23. To do so, let f1(φ, n, n

′
) := ∆̃1,2 (n)− ∆̃1,23(n

′
). We will show that f1(0, n, n

′
) = 0 and

∂f1(0, n, n
′
)/∂φ > 0 for any n ∈ N1,2 and n

′ ∈ N1,23, so that by taking a first-order Taylor expansion

of the function f1(φ, n, n
′
) around φ = 0 it follows that f1(φ, n, n

′
) > 0 for φ sufficiently small. It is

immediate to see that f1(0, n, n
′
) = 0. Furthermore, after some algebra, we get:

∂f1(0, n, n
′
)

∂φ
=

3 exp (so1) (so2 exp (so2)− so3 exp (so3))

4(exp (so1) + exp (so2) + exp (so3))2
,

which is always strictly positive, since so2 exp (so2) > so3 exp (so3) .

Next, we want to show that if φ is small enough then ∆̃1,23(n) > ∆̃1,3(n
′
) for any n ∈ N1,23 and

n
′ ∈ N1,3. To do so, let g1(φ, n, n

′
) := ∆̃1,23(n) − ∆̃1,3(n

′
). We will show that g1(0, n, n

′
) = 0 and

∂g1(0, n, n
′
)/∂φ > 0 for any n ∈ N1,23 and n

′ ∈ N1,3, so that by taking a first-order Taylor expansion

of the function g1(φ, n, n
′
) around φ = 0 it follows that g1(φ, n, n

′
) > 0 for φ sufficiently small. It is

immediate to see that g1(0, n, n
′
) = 0. Furthermore, after some algebra, we get:

∂g1(0, n, n
′
)

∂φ
=

3 exp (so1) (so2 exp (so2)− so3 exp (so3))

4(exp (so1) + exp (so2) + exp (so3))2
,

which is always strictly positive, since so2 exp (so2) > so3 exp (so3) .

Item ii. Second, we want to show that if φ is small enough then ∆̃2,1 (n) > ∆̃2,13(n
′
) for any n ∈ N2,1

and n
′ ∈ N2,13. To do so, let f2(φ, n, n

′
) := ∆̃2,1 (n)− ∆̃2,13(n

′
). We will show that f2(0, n, n

′
) = 0 and

∂f2(0, n, n
′
)/∂φ > 0 for any n ∈ N2,1 and n

′ ∈ N2,13, so that by taking a first-order Taylor expansion

of the function f2(φ, n, n
′
) around φ = 0 it follows that f2(φ, n, n

′
) > 0 for φ sufficiently small. It is

immediate to see that f2(0, n, n
′
) = 0. Furthermore, after some algebra, we get:

∂f2(0, n, n
′
)

∂φ
=

3 exp (so2) (so1 exp (so1)− so3 exp (so3))

4(exp (so1) + exp (so2) + exp (so3))2
,

which is always strictly positive, since so1 exp (so1) > so3 exp (so3) .

Next, we want to show that if φ is small enough then ∆̃2,13(n) > ∆̃2,3(n
′
) for any n ∈ N2,13 and

n
′ ∈ N2,3. To do so, let g2(φ, n, n

′
) := ∆̃2,13(n) − ∆̃2,3(n

′
). We will show that g2(0, n, n

′
) = 0 and

∂g2(0, n, n
′
)/∂φ > 0 for any n ∈ N2,13 and n

′ ∈ N2,3, so that by taking a first-order Taylor expansion

of the function g2(φ, n, n
′
) around φ = 0 it follows that g2(φ, n, n

′
) > 0 for φ sufficiently small. It is

immediate to see that g2(0, n, n
′
) = 0. Furthermore, after some algebra, we get:

∂g2(0, n, n
′
)

∂φ
=

3 exp (so2) (so1 exp (so1)− so3 exp (so3))

4(exp (so1) + exp (so2) + exp (so3))2
,

which is always strictly positive, since so1 exp (so1) > so3 exp (so3) .

Item iii. Third, we want to show that if φ is small enough then ∆̃3,1 (n) > ∆̃3,12(n
′
) for any n ∈ N3,1

and n
′ ∈ N3,12. To do so, let f3(φ, n, n

′
) := ∆̃3,1 (n)− ∆̃3,12(n

′
). We will show that f3(0, n, n

′
) = 0 and

75



∂f3(0, n, n
′
)/∂φ > 0 for any n ∈ N3,1 and n

′ ∈ N3,12, so that by taking a first-order Taylor expansion

of the function f3(φ, n, n
′
) around φ = 0 it follows that f3(φ, n, n

′
) > 0 for φ sufficiently small. It is

immediate to see that f3(0, n, n
′
) = 0. Furthermore, after some algebra, we get:

∂f3(0, n, n
′
)

∂φ
=

3 exp (so3) (so1 exp (so1)− so2 exp (so2))

4(exp (so1) + exp (so2) + exp (so3))2
,

which is always strictly positive, since so1 exp (so1) > so2 exp (so2) .

Next, we want to show that if φ is small enough then ∆̃3,12 (n) > ∆̃3,2(n
′
) for any n ∈ N3,12 and

n
′ ∈ N3,2. To do so, let g3(φ, n, n

′
) := ∆̃3,12 (n) − ∆̃3,2(n

′
). We will show that g3(0, n, n

′
) = 0 and

∂g3(0, n, n
′
)/∂φ > 0 for any n ∈ N3,12 and n

′ ∈ N3,2, so that by taking a first-order Taylor expansion

of the function g3(φ, n, n
′
) around φ = 0 it follows that g3(φ, n, n

′
) > 0 for φ sufficiently small. It is

immediate to see that g3(0, n, n
′
) = 0. Furthermore, after some algebra, we get:

∂g3(0, n, n
′
)

∂φ
=

3 exp (so3) (so1 exp (so1)− so2 exp (so2))

4(exp (so1) + exp (so2) + exp (so3))2
,

which is always strictly positive, since so1 exp (so1) > so2 exp (so2) .�

D.9 Proposition B.9

We want to show that if φ is small enough then ∆T
12 (n) < ∆T

21(n
′
) for any µ > 0 and n, n

′ ∈ {0, 1} . To

do so, let h(φ, n, n
′
) := ∆T

21(n
′
) − ∆T

12 (n). We will show that h(0, n, n
′
) = 0 and ∂h(0, n, n

′
)/∂φ > 0

for any n, n
′ ∈ {0, 1}, so that by taking a first-order Taylor expansion of the function h(φ, n, n

′
) around

φ = 0 it follows that h(φ, n, n
′
) > 0 for φ sufficiently small. It is immediate to see that h(0, n, n

′
) = 0.

Furthermore, after some algebra, we get:

∂h(0, n, n
′
)

∂φ
=
µ(so1)µ−1(so2)µ−1 (so1 + so2) (so1 − so2)

((so1)µ + (so2)µ)2
,

which is always positive, since so1 > so2.�

D.10 Proposition B.10

Item i. We want to show that if φ is small enough then ∆̃T
12 (n) > ∆̃T

13(n
′
) for any µ > 1 and n, n

′ ∈ N1.

To do so, let f1(φ, n, n
′
) := ∆̃T

12 (n)−∆̃T
13(n

′
). We will show that f1(0, n, n

′
) = 0 and ∂f1(0, n, n

′
)/∂φ > 0

for any µ > 1 and n, n
′ ∈ N1, so that by taking a first-order Taylor expansion of function f1(φ, n, n

′
)

around φ = 0 it follows that f1(φ, n, n
′
) > 0 for φ sufficiently small and µ > 1. It is immediate to see

that f1(0, n, n
′
) = 0. Furthermore, after some algebra, we obtain:

∂f1(0, n, n
′
)

∂φ
=

µ(so1)µ−1

2so2s
o
3((so1)µ + (so2)µ + (so3)µ)2

[
(
2so1(so2)µ+1so3 + so1(so2)µ(so3)2 + (so2)µ+2so3 + (so2)2(so3)µ+1

)
−
(
2so1s

o
2(so3)µ+1 + so1(so2)2(so3)µ + so2(so3)µ+2 + (so2)µ+1(so3)2

)
]

Note that the term inside brackets determines the sign of the derivative and can be expressed as:

so1(so2)µso3(2so2 + so3)− so1so2(so3)µ(so2 + 2so3) + ((so2)2so3 − so2(so3)2)((so2)µ + (so3)µ),

which is guaranteed to be positive provided that µ > 1.
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Item ii. We want to show that if φ is small enough then ∆̃T
21 (n) > ∆̃T

23(n
′
) for any µ > 1 and n, n

′ ∈ N2.

To do so, let f2(φ, n, n
′
) := ∆̃T

21 (n)−∆̃T
23(n

′
). We will show that f2(0, n, n

′
) = 0 and ∂f2(0, n, n

′
)/∂φ > 0

for any µ > 1 and n, n
′ ∈ N2. It is immediate to see that f2(0, n, n

′
) = 0. Furthermore, after some

algebra, we get:

∂f2(0, n, n
′
)

∂φ
=

µ(so2)µ−1

2so1s
o
3((so1)µ + (so2)µ + (so3)µ)2

[
(
2(so1)µ+1so2s

o
3 + (so1)µso2(so3)2 + (so1)µ+2so3 + (so1)2(so3)µ+1

)
−
(
2so1s

o
2(so3)µ+1 + (so1)2so2(so3)µ + so1(so3)µ+2 + (so1)µ+1(so3)2

)
]

Note that the term inside brackets can be rewritten as:

(so1)µso2s
o
3(2so1 + so3)− so1so2(so3)µ(so1 + 2so3) + ((so1)2so3 − so1(so3)2)((so1)µ + (so3)µ),

which is guaranteed to be positive provided that µ > 1.

Item iii. We want to show that if φ is small enough then ∆̃T
31 (n) > ∆̃T

32(n
′
) for any µ > 1 and n, n

′ ∈ N3.

To do so, let f3(φ, n, n
′
) := ∆̃T

31 (n)−∆̃T
32(n

′
). We will show that f3(0, n, n

′
) = 0 and ∂f3(0, n, n

′
)/∂φ > 0

for any µ > 1 and n, n
′ ∈ N3. It is immediate to see that f3(0, n, n

′
) = 0. Furthermore, after some

algebra, we get:

∂f3(0, n, n
′
)

∂φ
=

µ(so3)µ−1

2so1s
o
2((so1)µ + (so2)µ + (so3)µ)2

[
(
2(so1)µ+1so2s

o
3 + (so1)µ(so2)2so3 + (so1)µ+2so2 + (so1)2(so2)µ+1

)
−
(
2so1(so2)µ+1so3 + (so1)2(so2)µso3 + so1(so2)µ+2 + (so1)µ+1(so2)2

)
]

Note that the term inside brackets can be rewritten as:

(so1)µso2s
o
3 (2so1 + so2)− so1(so2)µso3 (so1 + 2so2) +

(
(so1)2so2 − so1(so2)2

)
((so1)µ + (so2)µ) ,

which is guaranteed to be positive provided that µ > 1.

Item iv. Finally, we want to show that if φ is small enough then ∆̃T
21(n

′
) > max{∆̃T

12(n), ∆̃T
31(n

′′
)} for

any µ > 1 and n ∈ N1, n
′ ∈ N2 and n

′′ ∈ N3. First, let h12(φ, n, n
′
) := ∆̃T

21(n
′
)− ∆̃T

12(n). We will show

that h12(0, n, n
′
) = 0 and ∂h12(0, n, n

′
)/∂φ > 0 for any µ > 1, n ∈ N1 and n

′ ∈ N2. It is immediate to

see that f3(0, n, n
′
) = 0. Furthermore, after some algebra, we get:

∂h12(0, n, n
′
)

∂φ
=

µ

2so1s
o
2((so1)µ + (so2)µ + (so3)µ)2

[
(
(so1)µ+2(so2)µso3 + (so1)µ+1(so2)2(so3)µ + (so1)2(so2)µ(so3)µ+1

)
−
(
(so1)µ(so2)µ+2so3 + (so1)µ(so2)2(so3)µ+1 + (so1)2(so2)µ+1(so3)µ

)
]

Observe that the term inside brackets can be rewritten as:

(so1)µ(so2)µso3
(
(so1)2 − (so2)2

)
+ (so1)µso2(so3)µ (so1 − so3) so2 − so1(so2)µ(so3)µ (so2 − so3) so1,

But note that since (so1)µ(so2)µso3 > (so1)µso2(so3)µ > so1(so2)µ(so3)µ for any µ > 1, then a sufficient condition

for this expression to be positive is:

(
(so1)2 − (so2)2

)
+ (so1 − so3) so2 − (so2 − so3) so1 > 0,

which always holds.

Next, let h23(φ, n
′
, n

′′
) := ∆̃T

21(n
′
)−∆̃T

31(n
′′
).We will show that h23(0, n, n

′′
) = 0 and ∂h23(0, n, n

′′
)/∂φ >
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0 for any µ > 1, n
′ ∈ N2 and n

′′ ∈ N3. It is immediate to see that h23(0, n
′
, n

′′
) = 0. Furthermore, after

some algebra, we get:

∂h23(0, n
′
, n

′′
)

∂φ
=

µ

2so1s
o
2((so1)µ + (so2)µ + (so3)µ)2

[
(
(so1)µ+2(so2)µso3 + 2(so1)µ+1(so2)µ+1so3 + 2(so1)2(so2)µ(so3)µ+1

)
−
(
(so1)µ+2so2(so3)µ − 2(so1)µ+1so2(so3)µ+1 − 2(so1)2(so2)µ+1(so3)µ

)
]

Observe that the term inside brackets can be written as:

so1s
o
2s
o
3

{
so1
(
(so1)µ(so2)µ−1 − (so1)µ(so3)µ−1

)
+ 2(so1)µ ((so2)µ − (so3)µ)− 2so1

(
(so2)µ(so3)µ−1 − (so2)µ−1(so3)µ

)}
,

which is always positive since 2(so1)µ ((so2)µ − (so3)µ) > 2so1
(
(so2)µ(so3)µ−1 − (so2)µ−1(so3)µ

)
for any µ > 1.�
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E Right of Reply Lawsuits in Brazil

In this appendix, we discuss the details of two right of reply lawsuits, focusing on three main aspects: (i)

the campaign attack, (ii) the electoral judge’s decision and (iii) the reply. Our accounts are based on a

number of court documents, which we were able to access for these two particular cases and provide unique

insight into how these lawsuits work. Both cases occurred during the 2020 municipal election in the city

of Sao Paulo, the largest one in the country, and involved the same two candidates, Celso Russomanno

and Guilherme Boulos. Russomanno is a Brazilian congressman who became notorious for a TV show

in which he confronted businesses owners and shop workers in defense of consumer rights. Boulos, on

the other hand, is the former leader of the Homeless Workers’ Movement (Movimento dos Trabalhadores

sem Teto - MTST ), a social movement which acts against housing shortages in metropolitan areas, often

invading unoccupied plots and abandoned buildings. Both cases occurred during the first round of the

elections, where Boulos and Russomanno were in direct competition for a place in the runoff against the

incumbent, Bruno Covas.

E.1 Russomanno vs. Boulos

Campaign Attack. On October 15, Boulos posted on his Facebook and Instagram accounts a message

saying, “Behind the cameras, Russomanno hates the poor” (see Figure E.1). He also shared in the same

post an excerpt of an interview where Russomanno stated: “homeless people and residents of Cracolandia

are possibly more resistant to Covid-19 because they don’t bathe”.68 On the following day, October 16,

Russomanno filed a lawsuit against Boulos demanding that the post in question be taken down and

that a right of reply be granted in his favor. In his complaint, Russomanno argued that his statement

about the homeless being “more resistant to Covid-19 ” was taken out of context and that the claim

that “Russomanno hates the poor” was defamatory and untrue. The complaint was short and concise,

containing two screenshots of the offending posts and brief references to the relevant legislation and legal

precedents.

Decision. On October 20, after receiving Boulos’ defense statement, the electoral judge ruled in favor

of Russomanno. First, with respect to the accusation that “Russomanno hates the poor”, the magistrate

understood that “while harsh criticism is an integral part of campaigns, in the present case there was

excess from the part of the defendant insofar as he made a frivolous assertion, impossible of being verified,

without any foundation in reality”. However, regarding the excerpt from Russomanno’s interview, the

judge saw no excess from Boulos’ part, since “he just reproduced what the plaintiff actually said”. The

decision granted Russomanno the right to publish a reply on Boulos’ social media which was to remain

visible for a period twice as long as the attack. The judge also ordered that the offending posts be

excluded immediately and imposed a daily fine of R$ 10, 000 (US$ 1, 777) in case the defendant did not

comply with the decision.

Reply. Figure E.1 also shows Russomanno’s reply, as posted on Boulos’s Instagram and Facebook

accounts. The translation reads as follows:

Right of Reply granted by the Electoral Justice. Guilherme Boulos offended Celso Russo-

manno and was punished by the Electoral Justice. Celso Russomanno does not hate the

poor, so much so that he has always fought for the most disadvantaged class in these 30

years of defending consumer rights and will continue to fight if elected mayor of Sao Paulo.

Real politics are made with proposals and not with offenses!

68“Cracolandia” is a region of the city of Sao Paulo well-known for its high incidence of drug trafficking and drug use
in public. The story is available at Globo’s G1 Portal, https://glo.bo/3HMA1X7.
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E.2 Boulos vs. Russomanno

Campaign Attack. About two weeks after the events described above, Russomanno posted a 30 second

video on his Facebook and Instagram accounts accusing Boulos of (i) leading the invasion of a building

in the central zone of Sao Paulo and collecting rent from its occupants69, (ii) omitting personal assets

from the electoral justice, and (iii) using a supermarket cashier in a campaign ad against Russomanno.

Figure E.2 provides a screenshot of the original Instagram post.70 In his complaint, filed on October

31, Boulos argued that the accusation of breaking into the building and collecting rent was false and

defamatory. In fact, the invasion of the building in question, and other unlawful acts, were carried out

by a group called “Movimento Moradia para Todos e Sem Tetos do Centro”, which had all its leaders

arrested. He also argued that the omission of personal assets from the electoral justice was unintentional

and very minor − something worth approximately US$ 100 − and that, in fact, he had already rectified

it. Finally, regarding the supermarket cashier, he argued that she had been humiliated by Russomanno

some years earlier on his TV show and that she had voluntarily agreed to participate in the campaign

ad against him.

Decision. On November 3, after receiving Russomanno’s defense statement, the electoral judge issued

a ruling in favor of Boulos. The judge recognized that the accusation that Boulos led the invasion of the

building and collected rent was false and defamatory, constituting clear offense to his honor. However,

he denied the existence of any illicit act related to the other two charges, namely that Boulos omitted

assets from the justice and that he used the supermarket cashier in his campaing, because both of them

were factually true and neither offended his integrity. Interestingly, the magistrate stated that “it is up

to the candidate, through regular campaign channels, to clarify his voters” about both incidents. The

decision granted Boulos the right to publish a reply on Russomanno’s social media which was to remain

visible for a period twice as long as the attack. As in the previous case, the judge also ordered that

the offending video be excluded immediately and imposed a R$ 20, 000 (US$ 3, 555) fine in case the

defendant did not comply with the decision within 48 hours.

Reply. Boulos’ reply was in the form of a 30 second video in which Cleide Cruz, the supermarket cashier,

talks about how she felt humiliated by Russomanno in his TV show.71 Note that in this particular case,

the content of the reply is not directly related to the part of the attack which was considered defamatory

by the justice. The Brazilian legislation does not impose any restriction on the content of the reply, and

the attacked candidate is allowed to use the allotted space as he wishes. The English transcript of what

Cleide says in the video is as follows:

Narrator: Right of reply granted the Electoral Justice against Russomanno for lies he told

against Boulos.

Cleide Cruz, the supermarket cashier: Not here, Celso Russomanno. You are lying. You

humiliated me that day. You left me feeling terrible, like rubbish. You caused me pain,

you caused me problems, Celso Russomanno. You don’t have the dignity to apologize for

what you did. Serious people, as you say in the video, do their job without humiliating,

offending, or vilifying people.

E.3 Figures

69The building in question, “Edif́ıcio Wilton Paes de Almeida”, became notorious for having been destroyed by fire and
collapsing a few years earlier. For more information, see https://bit.ly/32G4CFs.

70The original video is not available anymore.
71The video is available online at https://bit.ly/3xVpK6q
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(a) Original Publication (b) Reply

Figure E.1: Russomanno vs. Boulos

Figure E.2: Boulos vs. Russomanno: Original Publication
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F Survey Data: Attacks and Voting Behavior

In this appendix, we provide further details about the data used in our discussion in Section 6 and we

complement our analysis by presenting additional regression results. Our data set consists of a 3,010-

person nationally representative survey conducted by the Ibope Institute between the two rounds of

the 2018 elections (October 21-23, 2018).72 In Panel A of Table F.1 we show that the sample means of

several key demographic and socio-economic characteristics of surveyed individuals are, indeed, very close

to the corresponding population means taken from the Tribunal Superior Eleitoral’s (TSE) database of

registered voters − although survey respondents do tend to have more high school education. Moreover,

in Panel B we report the percentage of respondents who claimed to have voted for Bolsonaro, Haddad,

and other candidates in the first round of elections, as well as the distribution of voting intentions for the

second round of elections, alongside the actual electoral results. As we discussed in the paper, the 2018

presidential election was sharply polarized between Jair Bolsonaro, the far-right populist, and Fernando

Haddad, the leftist candidate and former president Lula’s protégé. Interestingly, as shown in Panel B,

the poll results are remarkably close to the actual electoral results.

As mentioned in the main text, the Ibope survey was unique in that, in addition to the usual voting

intention questions, it also included a specific query about whether individuals received a campaign

attack via WhatsApp.73 As shown in Panel C of Table F.1, 25.2% of respondents received at least

one message attacking one of the candidates in the week preceding the first round of elections.74 Not

surprisingly, given the degree of polarization of the 2018 election, among those who received one or more

of these messages, 97.3% said that the attacks were directed at either Bolsonaro or Haddad (not reported

in Panel C), while 23.7% declared that the content of these messages actually influenced their choice of

whom to vote for.75 As discussed in the paper, these numbers imply that at least 36.8 million voters

were exposed to campaign attacks in the week before the first round of elections and approximately 8.5

million of them (or about 5.7% of the electorate) were influenced to some extent by those messages.

We further examine the effect of being exposed to a campaign attack on individual electoral behavior

by estimating the following regression:

Vi = β0 + β1Attacki +Xiφ+ εi

where Vi is a dummy representing declared vote for a certain candidate (Bolsonaro, Haddad or others) in

the first round of elections or intention to cast a null vote in the second round of elections, and Attacki
is a dummy indicating whether the respondent received an attack via WhatsApp. Our analysis controls

for a detailed set of demographic characteristics, including gender, age, education level, income level,

region of residence, race, and religion. Moreover, we also control for the respondent’s current level of life

satisfaction, her view on the future of the country (optimistic or pessimistic), the political party (if any)

of her preference, and the political party (if any) she would never vote for.

The results reported in Table F.2 suggest that being exposed to a campaign attack induces an

individual to become less likely to vote for both Bolsonaro and Haddad (columns 1 and 2), although

only the effect on Bolsonaro is statistically significant. These results are consistent with the idea that

attacks and aggressive campaigning lead voters to demobilize and are in line with experimental evidence

provided by Chong et al. (2015). Indeed, as we show in column 3, receiving an attack − which was most

likely directed at either Haddad or Bolsonaro − leads to a 5.9 pp increase in the likelihood of voting for

a third candidate in the first round of elections.76 Furthermore, in column 4, we show that individuals

72The Ibope Institute is a reputable Brazilian company specialized in public opinion polls. See https://bit.ly/3IeTmje.
73WhatsApp is the most popular messaging app in Brazil. According to a recent survey, approximately 98% of

smartphone owners in Brazil said they had WhatsApp installed on their mobile devices (see https://bit.ly/3IvW845).
Moreover, a survey conducted by the Brazilian Senate in November 2019 found that 79% of respondents used WhatsApp
as their main source of information.

74The exact phrasing of this question was: “Did you receive a message through WhatsApp containing criticisms or
attacks against any candidate in the week before the first round of elections?”

75The exact phrasing of this question was: “Did the content you received helped or not to decide your vote?”
76This finding is consistent with experimental evidence obtained by Galasso et al. (2020) who show that negative
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who were exposed to an attack are also 3.3 pp more likely to declare an intention to cast a null vote in

the second round of elections.

Next, we investigate whether the effect of receiving an attack on voting behavior varies with the

characteristics of the individual exposed to it. In particular, we test whether the impact of an attack

is stronger among the more disillusioned groups of voters, i.e. those most likely to feel abandoned by

traditional politics and electoral institutions. In Table F.3 we split the sample into two groups of voters

according to whether respondents reported feeling “pessimistic” or “optimistic” about the future of the

country.77 Interestingly, we find that the effects are all concentrated in the subsample of “pessimistic”

voters. In particular, in Panel A we show that among “pessimistic” voters an exposure to a campaign

attack is associated with a 8.0 pp reduction in the likelihood of voting for Haddad, accompanied by a

10.3 pp increase in the probability of voting for a third candidate in the first round of elections and a 6.5

pp increase in the likelihood of declaring an intention to cast a null vote in the second round. In Panel

B, on the other hand, we find that among “optimistic” voters the point estimates are all much smaller

in magnitude and none of them is statistically significant. Finally, in an additional exercise (available

upon request) we show that similar results are obtained when dividing the sample by income level, with

all the effects concentrated on the poorer voters.

campaigning generates a positive spillover effect on third candidates (neither the target nor the attacker).
77For this analysis, we exclude the individuals who did not answer or claimed not to have an opinion about the future

of the country.
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F.1 Tables

Table F.1: Summary Statistics: Ibope Survey

Panel A: Demographic Characteristics Ibope Survey TSE Database

Region of Residence
- North/Central-West 0.153 0.152
- Northeast 0.260 0.267
- Southeast 0.437 0.435
- South 0.149 0.146

Demographic and Socio-Economic Characteristics
- Female 0.527 0.525
- 16-17 years old 0.009 0.010
- 18-24 years old 0.166 0.142
- 25-34 years old 0.234 0.212
- 35-44 years old 0.208 0.206
- 45-54 years old 0.176 0.170
- 55-64 years old 0.127 0.133
- 65+ years old 0.081 0.128
- Illiterate 0.041 0.045
- Primary Education or More 0.750 0.700
- High School Education or More 0.553 0.426
- College Education 0.129 0.105

Panel B: 2018 Presidential Elections Ibope Survey Election Results

1st Round of Elections
- Voted for Bolsonaro 0.414 0.420
- Voted for Haddad 0.281 0.267
- Voted for Another Candidate 0.211 0.225
- Null Vote 0.094 0.088

2nd Round of Elections
- Intention to Vote for Bolsonaro 0.512 0.499
- Intention to Vote for Haddad 0.380 0.406
- Intention to Cast a Null Vote 0.108 0.096

Panel C: Attacks via WhatsApp Ibope Survey

- Received an Attack 0.252
- Attack Influenced Voting Decision 0.237

Notes: This table reports summary statistics for selected variables available in the Ibope survey, which was conducted
between the two rounds of the 2018 elections (October 21-23, 2018). In Panel A, we report sample means for several
demographic and socio-economic characteristics of survey respondents, alongside with the corresponding population means
taken from TSE’s database of registered voters. In Panel B we report the percentage of respondents who claimed to have
voted for each candidate in the 1st round of elections as well as their voting intentions for the 2nd round of elections,
alongside with the actual election results. In Panel C, we report sample means for answers to the questions related to
attacks via WhatsApp. The variable “Received an Attack” indicates whether the respondent received a message via
WhatsApp attacking one of the candidates in the week preceding the first round of elections. “Attack Influenced Voting
Decision” indicates whether the attack influenced the choice of whom to vote for conditional upon receiving an attack.
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Table F.2: The Effect of Campaign Attacks on Voting Behavior

1st Round of Elections 2nd Round
of Elections

Voted for
Bolsonaro

Voted for
Haddad

Voted for Another
Candidate Null Vote

(1) (2) (3) (4)

Received an Attack −0.037** −0.018 0.059*** 0.033**
[0.017] [0.015] [0.018] [0.014]

Individual Characteristics Yes Yes Yes Yes
Observations 3,010 3,010 3,010 3,010
Adj. R-squared 0.336 0.362 0.092 0.089

Notes: This table reports OLS estimates of regressions where the dependent variable is a dummy indicating whether the
respondent voted for a certain candidate (Bolsonaro, Haddad or others) in the first round of elections (columns 1−3) or
intends to cast a null vote in the second round of elections (column 4). The variable “Received an Attack” indicates
whether the respondent received a message via WhatsApp attacking one of the candidates in the week preceding the first
round of elections. Individual characteristics include gender, age, education level, income level, region of residence, race,
and religion. We also control for the respondent’s current level of life satisfaction, her view on the future of the country
(optimistic or pessimistic), the political party (if any) of her preference, and the political party (if any) she would never
vote for. Robust standard errors are reported in brackets. ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at 10%, 5% and
1%, respectively.

Table F.3: The Effect of Campaign Attacks on Voting Behavior: Heterogeneous Effects

1st Round of Elections 2nd Round
of Elections

Voted for
Bolsonaro

Voted for
Haddad

Voted for Another
Candidate Null Vote

(1) (2) (3) (4)

Panel A: Pessimistic Voters
Received an Attack −0.042 −0.080*** 0.103*** 0.065***

[0.029] [0.028] [0.031] [0.026]

Individual Characteristics Yes Yes Yes Yes
Observations 1,167 1,167 1,167 1,167
Adj. R-squared 0.256 0.338 0.147 0.084

Panel B: Optimistic Voters
Received an Attack −0.034 0.023 0.021 0.017

[0.023] [0.018] [0.022] [0.015]

Individual Characteristics Yes Yes Yes Yes
Observations 1,652 1,652 1,652 1,652
Adj. R-squared 0.343 0.394 0.086 0.091

Notes: This table reports OLS estimates of regressions where the dependent variable is a dummy indicating whether the
respondent voted for a certain candidate (Bolsonaro, Haddad or others) in the first round of elections (columns 1−3) or
intends to cast a null vote in the second round of elections (column 4). The variable “Received an Attack” indicates whether
the respondent received a message via WhatsApp attacking one of the candidates in the week preceding the first round
of elections. Panel A reports estimates obtained from a subsample of respondents who declared to be pessimistic about
the future of the country. Panel B, in turn, reports estimates obtained from a subsample of respondents who declared to
be optimistic about the future of the country. The analysis excludes the individuals who did not answer or claimed not
to have an opinion about the future of the country. Individual characteristics include gender, age, education level, income
level, region of residence, race, and religion. We also control for the respondent’s current level of life satisfaction, the
political party (if any) of her preference, and the political party (if any) she would never vote for. Robust standard errors
are reported in brackets. ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at 10%, 5% and 1%, respectively.
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