Stock Returns, Market Trends, and Information Theory:
A Statistical Equilibrium Approach

Emanuele Citera
Ph.D. Candidate
Department of Economics
New School for Social Research

www.emanuelecitera.com

ICAPE 2022 Virtual Conference

January 10, 2022
Introduction

The search for serial correlations in stock returns has been one the main criteria to assess market efficiency (Fama, 1965; Bhowmik and Wang, 2020).

Three main issues associated with serial correlations:

1. Sample size and power of econometric test (Shiller, 2015).
2. Sources of statistical dependence and randomness (Fama, 1965).
3. Informational component of stock prices (Mantegna and Stanley, 1999).
Objectives

- Analyzing the **statistical regularities** of stock returns through an **entropy-constrained statistical equilibrium model**.

- Explaining **randomness in stock prices** as the result of unintended consequence of investors seeking higher rates of return.

- Providing an **original assessment of the Efficient Market Hypothesis** by considering the role of **unfulfilled expectations of investors**, and how they impact stock market volatility.
Data Collection

S&P 500 individual companies’ daily adjusted stock prices (Yahoo Finance), from which we compute daily logarithmic returns:

\[r_{i,t} = \log[p_{i,t}] - \log[p_{i,t-1}] \] \hspace{1cm} (1)

Sample:

- Observations: 3,004,150.
- Divided into bull markets, bear markets, and corrections.

We consider the cross-sectional distributions of individual companies’ returns, and then analyze their statistical regularities.
Figure 1: Cross-sectional distributions over bull, bear markets, and corrections.
Figure 2: Empirical moments over bull, bear markets (red bars), and corrections (grey bars).
Quantal Response Statistical Equilibrium

The Quantal Response Statistical Equilibrium model (Scharfenaker and Foley, 2017) provides a theoretical framework which explains observed statistical regularities through a process of Smithian competition.

Entropy-constrained model, which derives equilibrium as an information theoretic probability distribution representing all possible states of the system.

Three main components of the model:

1. Quantal response behavior of market participants (μ, T).
2. Negative feedback of individual actions on outcomes (α, S).
3. Role of expectations ($\zeta = \mu - \alpha$).
Figure 3: Logit quantal response conditional probabilities for various values of T and $\mu = 0$.
Figure 4: Marginal and joint frequency distributions for different values of δ.

\[\hat{f}(r) \]

\[f(a, r) \]

\[f(\text{sell}, r) \]
\[f(\text{buy}, r) \]

$\delta = 0.005$ $\delta = 0.007$ $\delta = 0.011$
Expectations

(a) Symmetry ($\zeta = 0$).

(b) Positive skewness ($\zeta < 0$).

(c) Negative skewness ($\zeta > 0$).

Figure 5: Marginal, conditional, and joint frequency distributions for fulfilled and unfulfilled expectations.
Figure 6: Parameter estimates (%/day).
Figure 7: Bull market: 2003/03/11 – 2007/10/09.

<table>
<thead>
<tr>
<th>ID</th>
<th>μ</th>
<th>T</th>
<th>α</th>
<th>S</th>
<th>(\bar{r})</th>
<th>ζ</th>
<th>δ</th>
<th>(f[\text{buy}])</th>
<th>(f[\text{sell}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0048</td>
<td>-0.0702</td>
<td>0.9314</td>
<td>0.2077</td>
<td>1.5154</td>
<td>-0.2780</td>
<td>0.0924</td>
<td>0.8641</td>
<td>0.4726</td>
<td>0.5274</td>
</tr>
</tbody>
</table>

Table 1: Parameter estimates (%/day).
Figure 8: Bear market: 2007/10/09 – 2009/03/09.

Table 2: Parameter estimates (%/day).

<table>
<thead>
<tr>
<th>ID</th>
<th>µ</th>
<th>T</th>
<th>α</th>
<th>S</th>
<th>(\bar{r})</th>
<th>ζ</th>
<th>δ</th>
<th>(f[\text{buy}])</th>
<th>(f[\text{sell}])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0036</td>
<td>0.1064</td>
<td>1.4626</td>
<td>-0.4501</td>
<td>3.2834</td>
<td>0.5566</td>
<td>-0.2159</td>
<td>1.9037</td>
<td>0.5315</td>
</tr>
</tbody>
</table>
Conclusions

- We find evidence of punctuated statistical equilibrium over multiple market periods, disrupted by structural changes affecting the stock market.

- We find evidence of significant deviations of individual expectations from market outcomes over extended time periods, even though they remain consistent in the long-run.

- We show how the stochastic nature of stock prices can be explained as the spontaneous convergence of the system towards a market convention.
Thank You!

