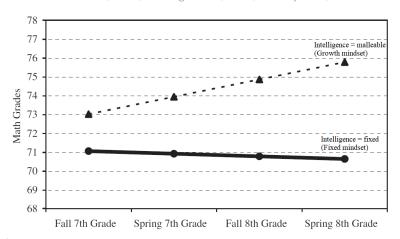
# Gendered Teacher Feedback, Students' Math Performance and Enrollment Outcomes

A Text Mining Approach

**Pauline Charousset** 


Paris School of Economics

Marion Monnet

Ined

1. Students viewing intelligence as malleable (growth mindset) perform better at school, persevere more and set higher goals

Blackwell et.al, 2007; Bettinger et.al, 2018; Huillery et.al, 2021



Source: Blackwell et.al, 2007

1. Students viewing intelligence as malleable (growth mindset) perform better at school, persevere more and set higher goals

Blackwell et.al, 2007; Bettinger et.al, 2018; Huillery et.al, 2021

 Students viewing intelligence as malleable (growth mindset) perform better at school, persevere more and set higher goals Blackwell et.al, 2007; Bettinger et.al, 2018; Huillery et.al, 2021

Teachers play a key role in shaping students' mindset through their everyday classroom interactions namely through the feedback provided

Alan & Ertac, 2018; Alan, Boneva et.al, 2019

Students viewing intelligence as malleable (growth mindset)
perform better at school, persevere more and set higher goals
Blackwell et.al, 2007; Bettinger et.al, 2018; Huillery et.al, 2021

Teachers play a key role in shaping students' mindset through their everyday classroom interactions namely through the feedback provided

Alan & Ertac, 2018; Alan, Boneva et.al, 2019

- Male and female students do not react to the different types of feedback in the same manner
- ⇒ females perform better and are more motivated when given a growth-mindset type of feedback

Coprus & Lepper, 2007; Good et.al, 2012

- Research questions:
  - 1. Do math teachers provide different feedback to equally able G-12 Science track female and male students?

#### Research questions:

- 1. Do math teachers provide different feedback to equally able G-12 Science track female and male students?
- **2.** If so, what type of feedback do they use for one sex over the other?

### Research questions:

- 1. Do math teachers provide different feedback to equally able G-12 Science track female and male students?
- 2. If so, what type of feedback do they use for one sex over the other?
- **3.** What is the impact of a differentiated feedback on school performance, higher education choices and enrollment?

#### Research questions:

- 1. Do math teachers provide different feedback to equally able G-12 Science track female and male students?
- 2. If so, what type of feedback do they use for one sex over the other?
- **3.** What is the impact of a differentiated feedback on school performance, higher education choices and enrollment?

#### Contributions:

- 1. New index to measure the degree of teachers' gender differentiation using textual data
- 2. Using comprehensive and non-experimental data
- **3.** Analyse the effect of gendered feedback on students' choices (rank-order lists)
- 4. Policy relevant (awareness-raising campaigns)

### **Outline**

- 1. Motivation
- 2. Research questions and contributions
- 3. Data and descriptive stats
- 4. Teacher gendered vocabulary index (GDV)
- 5. Effects on performance and enrollment outcomes

#### **Data sources**

### Higher education application data 2012-2017:

- Grade-12 students' school reports (grades + written feedback)
   ⇒ teacher GDV index
- Rank-order lists of higher ed. programs ⇒ outcome variables
- Students' and teachers' characteristics

### **Data sources**

### Higher education application data 2012-2017:

- Grade-12 students' school reports (grades + written feedback)
   ⇒ teacher GDV index
- Rank-order lists of higher ed. programs  $\Rightarrow$  outcome variables
- Students' and teachers' characteristics

#### National exams data 2012-2017:

- End-of middle school exam (DNB): control for initial math ability
- End-of high school exam (Baccalauréat): outcome variable

### **Data sources**

### Higher education application data 2012-2017:

- Grade-12 students' school reports (grades + written feedback)
   ⇒ teacher GDV index
- Rank-order lists of higher ed. programs  $\Rightarrow$  outcome variables
- Students' and teachers' characteristics

#### National exams data 2012-2017:

- End-of middle school exam (DNB): control for initial math ability
- End-of high school exam (Baccalauréat): outcome variable

#### Higher education enrollment data 2012-2017:

– Enrollment after high school graduation  $\Rightarrow$  outcome variable

# **Summary Statistics - G12 students Science Track**

Students' socioeconomic characteristics

|                     | All     | Boys    | Girls   |
|---------------------|---------|---------|---------|
| Demographics        |         |         |         |
| Female student      | 0.47    |         |         |
| Age (years)         | 18.09   | 18.12   | 18.06   |
| Scholarshio student | 0.13    | 0.12    | 0.14    |
| High SES            | 0.43    | 0.44    | 0.41    |
| Medium-high SES     | 0.16    | 0.16    | 0.16    |
| Medium-low SES      | 0.24    | 0.24    | 0.25    |
| Low SES             | 0.17    | 0.16    | 0.18    |
| Nb. of observations | 691,093 | 368,922 | 322,171 |

# **Summary Statistics - G12 students Science Track**

#### School performance and electives

|                                           | All     | Boys    | Girls   |  |  |
|-------------------------------------------|---------|---------|---------|--|--|
| School performance (end-of middle school) |         |         |         |  |  |
| Rank at DNB: math                         | 50.28   | 52.18   | 48.13   |  |  |
| Rank at DNB: French                       | 50.33   | 44.69   | 56.73   |  |  |
| Elective course in G-12 science track     |         |         |         |  |  |
| Maths                                     | 0.23    | 0.27    | 0.19    |  |  |
| Physics-Chemistry                         | 0.26    | 0.27    | 0.25    |  |  |
| Earth & Life Science                      | 0.37    | 0.26    | 0.50    |  |  |
| Engineering & Info                        | 0.13    | 0.20    | 0.06    |  |  |
| Nb. of observations                       | 691,093 | 368,922 | 322,171 |  |  |

# **Summary Statistics**

#### Grade-12 math teachers' characteristics

| Characteristics                      |       |
|--------------------------------------|-------|
| Male math teacher                    | 0.58  |
| Share of head teacher at least once  | 0.53  |
| Number of teacher observations       | 3.70  |
| Average number of classes per year   | 1.09  |
| Average number of students per class | 28.02 |
| Nb. of teachers                      | 6,772 |

### **Outline**

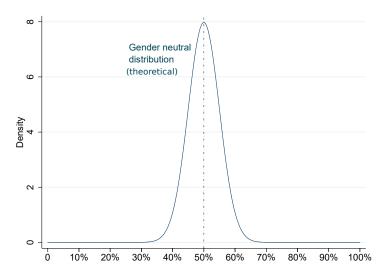
- 1. Motivation
- 2. Research questions and contributions
- 3. Data and descriptive stats
- 4. Teacher gendered vocabulary index (GDV)
- 5. Effects on performance and enrollment outcomes

# Measuring teacher GDV - Intuition

### Purpose of the GDV index:

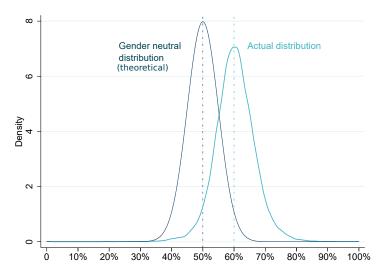
- Measuring the degree of gender differentiation in the vocabulary used by math teachers in their written feedback:
  - i) depending on student's gender
  - ii) with equal math aptitudes

# Measuring teacher GDV - Intuition


### • Purpose of the GDV index:

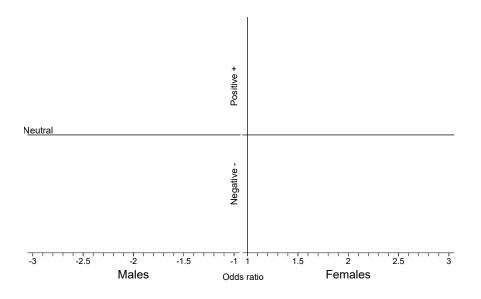
- Measuring the degree of gender differentiation in the vocabulary used by math teachers in their written feedback:
  - i) depending on student's gender
  - ii) with equal math aptitudes

### Measuring teacher GDV: Details Appendix

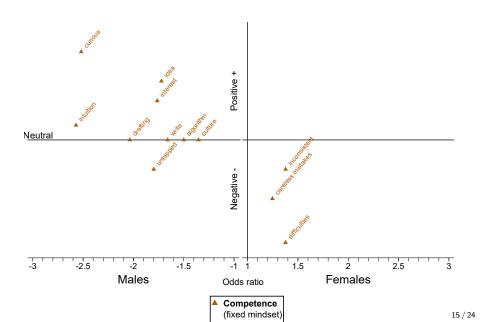

- Step 1: Predict students' gender based on the words used in the written feedback
- Step 2: Compute the quality of the prediction for each teacher
- Metric used: accuracy ⇒ % of students correctly classified (actual sex = predicted sex)
- The higher the accuracy ⇒ the more the teacher uses a vocabulary specific to males and females

### Distribution of teachers' GDV

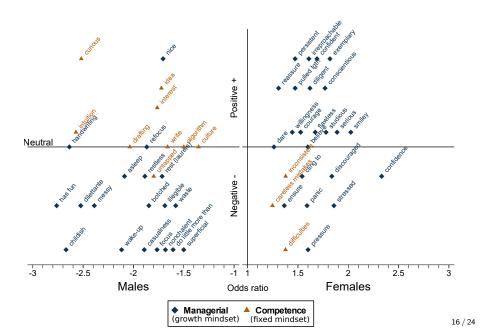



If the vocabulary used is gender-neutral + assuming the sample is made of 50% of male and 50% females, the average accuracy should be 50% (= random guessing).

### Distribution of teachers' GDV




The proportion of correctly classified students is 60% on average  $\rightarrow$  evidence of gendered vocabulary.


# Classification of the top 30 gender predictors



# Classification of the top 30 gender predictors



# Classification of the top 30 gender predictors



### **Outline**

- 1. Motivation
- 2. Research questions and contributions
- 3. Data and descriptive stats
- 4. Teacher gendered vocabulary index (GDV)
- 5. Effects on performance and enrollment outcomes

# **Identification strategy**

### Identifying the effect of teacher GDV:

- Compare students from the same high school s, same elective course e but exposed to teachers with varying GDV
- The within high school comparison allows to control for some unobservable characteristics
- More specifically, we estimate the following equation:

$$Y_{isjet} = \alpha + \beta_1 GDV_{jc} + \gamma_s + \eta_e + \delta_t + \epsilon_{isjet}$$
 (1)

# **Identification strategy**

### Identifying the effect of teacher GDV:

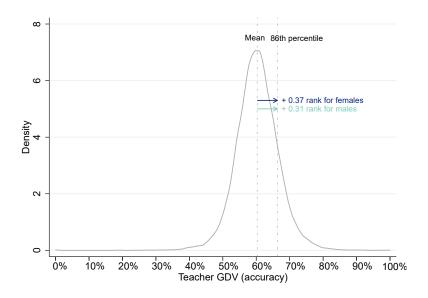
- Compare students from the same high school s, same elective course e but exposed to teachers with varying GDV
- The within high school comparison allows to control for some unobservable characteristics
- More specifically, we estimate the following equation:

$$Y_{isjet} = \alpha + \beta_1 GDV_{jc} + \gamma_s + \eta_e + \delta_t + \epsilon_{isjet}$$
 (1)

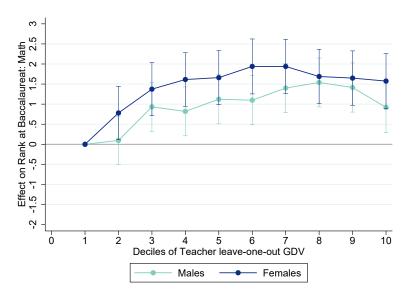
#### Identifying assumptions:

- Relies on the quasi random allocation of teachers to classes conditional on elective courses
- Statistical tests provide support for the validity of the design:
  - 1. "Balancing test" between GDV and students' X (Table)
  - 2.  $\chi^2$  test of random allocation Table

### Effects of teacher GDV - Rank at Baccalauréat


#### Average effects on rank at Baccalauréat:

|                                     | All       | Males      | Females    |
|-------------------------------------|-----------|------------|------------|
| Rank at baccalauréat: math          | 0.3351*** | 0.3113***  | 0.3735***  |
|                                     | ( 0.0668) | ( 0.0747 ) | ( 0.0811 ) |
| Rank at <i>baccalauréat</i> : philo | -0.0235   | -0.0381    | -0.0093    |
|                                     | ( 0.0646) | ( 0.0746 ) | ( 0.0786 ) |
| Nb. observations                    | 649,105   | 345,201    | 303,904    |


N.B: ranks are percentile ranks where 0 is for the lowest performing student and 100 the highest performing one

 Being exposed to a teacher with a one-standard deviation higher GDV increases the rank at Baccalauréat by 0.37 for females and by 0.31 fore males

# **Graphical representation GDV effects**



### Effects on Baccalauréat - GDV deciles



 $\underline{\text{Note}}$ : Compared to females exposed to the bottom 10% of the GDV distribution, females students exposed to teachers from the  $4^{th}$  decile or above see their rank increase by 1.5 to 2 ranks

### Effects of teacher GDV - Choices and enrollment

- Effects on rank-order lists and enrollment:
  - No effect on the probability to top rank a scientific program in the rank-order list Graph
  - No effect on enrollment Graph
  - No heterogenous effects
- Mecanisms for the effects on baccalauréat:
  - More in the paper !!

### **Conclusion**

- On average, G12 math teachers provide different feedback to their male and female students
- They are more likely to mention the positive attitude and efforts for female students . . .
- ... as well as the unruly behaviour and the intellectual skills of their male students (to a lesser extent)
- Students exposed to high-GDV teachers perform better at the Baccalauréat exam
- But this does not translate into different higher education outcomes

# Thanks for your attention!

marion.monnet@ined.fr pauline.charousset@gmail.com

# **APPENDIX**

# Measuring teacher GDV - Estimation steps

#### 1. Transforming written feedback into a database:

- Cleaning feedback:
  - neutralize words' gender (e.g. "sérieuse" and "sérieux"
     → "sérieux");
  - remove first names and very frequent words;
  - replace words by their root (e.g. "sérieux" and "sérieusement" → "sérieux")

# Measuring teacher GDV - Estimation steps

### 1. Transforming written feedback into a database:

- Cleaning feedback:
  - neutralize words' gender (e.g. "sérieuse" and "sérieux"
     → "sérieux");
  - remove first names and very frequent words;
  - replace words by their root (e.g. "sérieux" and "sérieusement" → "sérieux")
- $\Rightarrow$  Gives the vocabulary (**W**) used in math feedbacks (**W**  $\simeq$  1600 words)
  - The vocabulary is transformed into a matrix: 1 column = 1 word and 1 row = 1 student Matrix
  - Column = 1 if the word is contained in the student's feedback

#### 2. Identifying the best gender predictors:

• We assume a logistic form for  $P(Female_i = 1|W_i)$ :

$$P(Female_i = 1|W_i) = \frac{exp(\alpha W_i)}{1 + exp(\alpha W_i)} \quad \forall i$$
 (2)

- $oldsymbol{lpha}$  coefficients are obtained by minimizing the (penalized) log-likelihood (Logistic-LASSO)
- The α coefficients are interpreted as odds-ratios: "The word Y
  is X times more likely to appear in a female's feedback than in
  a male's feedback."
- The model is fitted on a training sample, balanced by gender and math performance
- The 10 best males' and females' feedback predictors : Graph

#### 3. Predicting students' gender for each teacher:

• Use the model fitted in step 2 to predict students' gender on the (balanced) test sample:

$$\widehat{Sex_i} = \widehat{P}(Female_i = 1|W_i) = \frac{exp(\widehat{\alpha}W_i)}{1 + exp(\widehat{\alpha}W_i)}$$
(3)

#### 3. Predicting students' gender for each teacher:

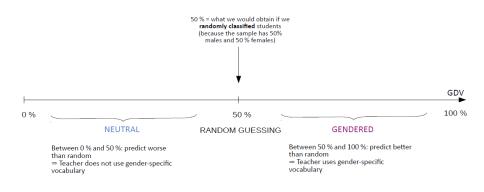
• Use the model fitted in step 2 to predict students' gender on the (balanced) test sample:

$$\widehat{Sex_i} = \widehat{P}(Female_i = 1|W_i) = \frac{exp(\widehat{\alpha}W_i)}{1 + exp(\widehat{\alpha}W_i)}$$
 (3)

#### 4. Compute teachers' gender-differenciated vocabulary:

- For each teacher j and class c, we compute two GDV indices:
  - 1. GDV = % of correctly predicted cases (accuracy) :

$$GDV_{jc} = \frac{1}{N_{jc}} \sum_{i=1}^{N_{jc}} \mathbb{1} \{ Sex_i = \widehat{Sex_i} \} \times 100 \quad \forall j, c \quad (4)$$


- 4. Compute teachers' gender-differenciated vocabulary (cont'd):
  - For each teacher j and class c, we compute two GDV indices:
    - 2. Leave-one-out GDV : Class c gets the average GDV measured in other teacher j's classes:

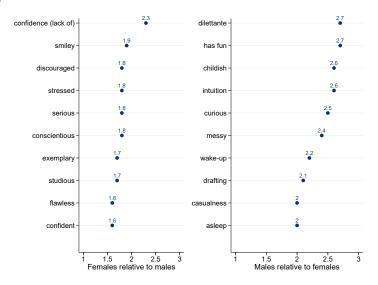
$$GDV_{j\setminus c} = \frac{1}{N_j - 1} \sum_{c' \neq c} GDV_{jc'} \ \forall j, c$$
 (5)

- $\Rightarrow$  ensures that GDV  $\perp$  unobserved class-characteristics
- ⇒ removes noise

#### Interpretation of teacher GDV indices

- Both GDV indices range between 0 and 100
- The higher the GDV, the more the teacher uses the gender-specific vocabulary identified in step 2.

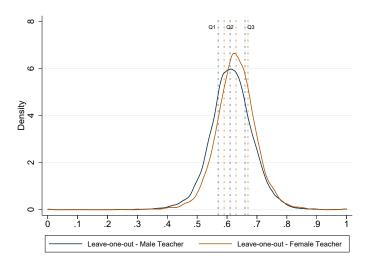



# The vocabulary matrix

|           | Vocabulary |         |          |      |      |        |       |      |  |  |  |
|-----------|------------|---------|----------|------|------|--------|-------|------|--|--|--|
| Student   | Sex        | results | alarming | good | work | effort | messy | exam |  |  |  |
| Student 1 | 1          | 1       | 1        | 0    | 0    | 0      | 1     | 0    |  |  |  |
| Student 2 | 0          | 0       | 0        | 1    | 1    | 1      | 0     | 1    |  |  |  |
| Student 3 | 0          | 1       | 0        | 1    | 1    | 1      | 0     | 1    |  |  |  |

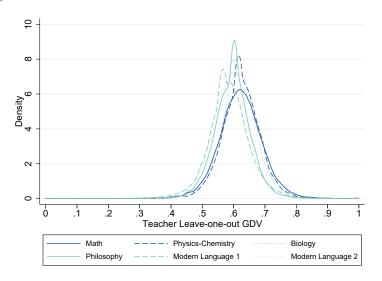
Reading: Student 1 is a female (sex=1) and has the words "results", "alarming" and "messy" in her feedback.

### The 10 best males' and females' predictors


Retour

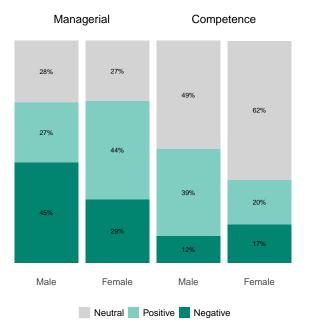


Reading: The word "confidence" is 2.5 times more likely to appear in a females' rather than in a males' feedback.

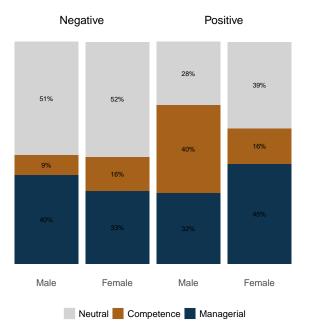

#### Distribution of GDV - By teacher's gender






### Distribution of GDV - By core subjects






 $\underline{\text{Note}}$ : Steps 1 to 3 have been repeated separately for each subject.

# Conditional % of positive vs. negative predictors (Back)

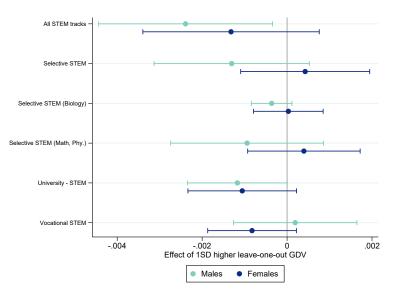


### Conditional % of managerial vs. competence (Back)



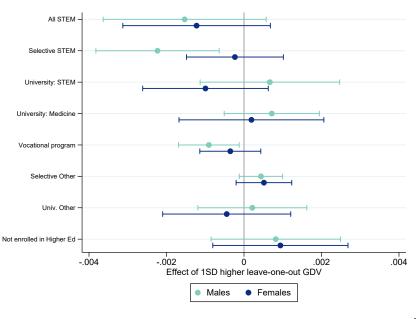
## Balancing test: GDV on students' characteristics

|                                        | Coeff.    | S.e      | p-value |
|----------------------------------------|-----------|----------|---------|
| Female student                         | -0.0038   | 0.0028   | 0.1747  |
| Age (years)                            | -0.0050 * | 0.0026   | 0.0567  |
| Free lunch student                     | 0.0052    | 0.0037   | 0.1575  |
| Foreign student                        | 0.0034    | 0.0086   | 0.6929  |
| High SES                               | -0.2377   | 0.2682   | 0.3755  |
| Medium-high SES                        | -0.2365   | 0.2682   | 0.3780  |
| Medium-low SES                         | -0.2413   | 0.2680   | 0.3681  |
| Low SES                                | -0.2385   | 0.2683   | 0.3739  |
| Rank at DNB: math                      | -0.0000   | 0.0000   | 0.5614  |
| Rank at DNB: French                    | 0.0000    | 0.0001   | 0.8591  |
| Rank at baccalauréat: French (written) | 0.0000    | 0.0001   | 0.4050  |
| Rank at baccalauréat: French (oral)    | 0.0001    | 0.0001   | 0.1510  |
| High school, elective, year FE         | Yes       |          |         |
| F-stat (p-value)                       | 1.22      | ( 0.264) |         |
| Nb. of observations                    | 573,600   |          |         |




# $\chi^2$ tests of random allocation

|                                        | Share of significant at |      |  |
|----------------------------------------|-------------------------|------|--|
|                                        | 5%                      | 1%   |  |
| Female                                 | 11.32                   | 3.37 |  |
| Age (years)                            | 8.04                    | 2.60 |  |
| Free-lunch                             | 5.08                    | 1.29 |  |
| Foreign student                        | 4.05                    | 1.36 |  |
| High SES                               | 6.72                    | 1.44 |  |
| Medium-high SES                        | 4.46                    | 0.78 |  |
| Medium-low SES                         | 5.27                    | 0.93 |  |
| Low SES                                | 5.53                    | 1.15 |  |
| Rank at DNB: Math                      | 6.12                    | 1.21 |  |
| Rank at DNB: French                    | 6.82                    | 1.34 |  |
| Rank at Baccalaureat: French (written) | 7.29                    | 1.58 |  |
| Rank at Baccalaureat: French (oral)    | 7.18                    | 1.41 |  |




#### Effet of teacher GDV on first wishes Back



Note: Being exposed to a 1SD higher GDV-teacher reduces the probability of top-ranking a STEM program by 0.2 percentage point for male students.  $_{24/24}$ 

#### Effet of teacher GDV on enrollment Back

