Progressing into efficiency:
the role for labor tax progression in privatizing social security

Oliwia Komada (FAME|GRAPE)
Krzysztof Makarski (FAME|GRAPE and Warsaw School of Economics)
Joanna Tyrowicz (FAME|GRAPE, University of Regensburg, and IZA)
Motivation
Motivation

Social security is essentially about insurance:

- mortality (annuitized)
 Benartzi et al. 2011, Bruce & Turnovsky 2013, Reichling & Smetters 2015, Caliendo et al. 2017

- low income (redistribution)
Motivation

Social security is essentially about insurance:

- mortality (annuitized)
 Benartzi et al. 2011, Bruce & Turnovsky 2013, Reichling & Smetters 2015, Caliendo et al. 2017

- low income (redistribution)

Prevailing consensus:

- redistribution is costly (distorts incentives)
 e.g. Diamond 1977 + large and diverse subsequent literature

- but provides insurance against low income, so some is desirable
Motivation

Social security is essentially about insurance:

- mortality (annuitized)
 Benartzi et al. 2011, Bruce & Turnovsky 2013, Reichling & Smetters 2015, Caliendo et al. 2017
- low income (redistribution)

Prevailing consensus:

- redistribution is costly (distorts incentives)
 e.g. Diamond 1977 + large and diverse subsequent literature
- but provides insurance against low income, so some is desirable

Our approach: replace redistribution in social security with tax progression
Social security is essentially about insurance:

- mortality (annuitized)
 Benartzi et al. 2011, Bruce & Turnovsky 2013, Reichling & Smetters 2015, Caliendo et al. 2017

- low income (redistribution)

Prevailing consensus:

- redistribution is costly (distorts incentives)
 e.g. Diamond 1977 + large and diverse subsequent literature

- but provides insurance against low income, so some is desirable

Our approach: replace redistribution in social security with tax progression

Bottom line: Shift insurance from retirement to working period → improve efficiency of social security → raise welfare.
Table of contents

Motivation

Theoretical model

Quantitative model

Results

Conclusions
Theoretical model
(Stylized) theoretical model: partial equilibrium OLG model

Incomes:

- wage w_t grows at the constant rate γ, $z_t = (1 + \gamma)^t$, interest rate r is constant
- two types $\theta \in \{\theta_H, \theta_L\}$, with productivities $\omega_{\theta} \in \{\omega_L, \omega_H\}$, and $\omega_H > \omega_L$
 - denote $y(\theta) = (1 - \tau)w_t\omega_{\theta}l_t(\theta)$ (and $\bar{y}(\theta) = (1 - \tau)\bar{w}\omega_{\theta}l_t(\theta)$, $\bar{w} = w_t/z_t$)
Incomes:

- wage w_t grows at the constant rate γ, $z_t = (1 + \gamma)^t$, interest rate r is constant
- two types $\theta \in \{\theta_H, \theta_L\}$, with productivities $\omega_\theta \in \{\omega_L, \omega_H\}$, and $\omega_H > \omega_L$
 denote $y(\theta) = (1 - \tau)w_t\omega_\theta \ell_t(\theta)$ (and $\tilde{y}(\theta) = (1 - \tau)\tilde{w}\omega_\theta \ell_t(\theta)$, $\tilde{w} = w_t/z_t$)

Households:

- Live for 2 periods, population is constant,
- choose labor, consumption and assets

 first period: $c_{1,t}(\theta) + a_{1,t+1}(\theta) = (1 - \tau)w_t\omega_\theta \ell_t(\theta) - z_t T(\tilde{y}(\theta))$
 second period: $c_{2,t+1}(\theta) = (1 + r)a_{1,t+1}(\theta) + b_{2,t+1}(\theta)$

$T(y(\theta))$ is the progressive income tax and τ is social security contribution
Incomes:

- wage w_t grows at the constant rate γ, $z_t = (1 + \gamma)^t$, interest rate r is constant
- two types $\theta \in \{\theta_H, \theta_L\}$, with productivities $\omega_\theta \in \{\omega_L, \omega_H\}$, and $\omega_H > \omega_L$

 denote $y(\theta) = (1 - \tau)w_t\omega_\theta \ell_t(\theta)$ (and $\tilde{y}(\theta) = (1 - \tau)\tilde{w}\omega_\theta \ell_t(\theta)$, $\tilde{w} = w_t/z_t$)

Households:

- Live for 2 periods, population is constant,
- choose labor, consumption and assets

 first period: $c_{1,t}(\theta) + a_{1,t+1}(\theta) = (1 - \tau)w_t\omega_\theta \ell_t(\theta) - z_t T(\tilde{y}(\theta))$
 second period: $c_{2,t+1}(\theta) = (1 + r)a_{1,t+1}(\theta) + b_{2,t+1}(\theta)$

 $T(y(\theta))$ is the progressive income tax and τ is social security contribution

- GHH preferences: Frisch elasticity + risk aversion

 $$U(\theta) = \frac{1}{1 - \sigma}(c_{1,t}(\theta) - \frac{\phi}{1 + \eta} z_t \ell_{1,t}(\theta)^{1 + \eta} + \beta c_{2,t+1}(\theta))^{1 - \sigma}$$
Government:

- needs to collect exogenously given level of revenue $\tilde{R} = \frac{R_t}{z_t} = constant$,
- with progressive income taxation:

$$T(\tilde{y}) = \tau_\ell \cdot \tilde{y} - \tilde{\mu}$$
Government:

- needs to collect exogenously given level of revenue \(\tilde{R} = R_t/z_t = \text{constant} \),
- with progressive income taxation:

\[
T(\tilde{y}) = \tau_\ell \cdot \tilde{y} - \tilde{\mu}
\]

The implied government budget constraint is then

\[
\tilde{R} = \sum_{\theta \in \{\theta_L, \theta_H\}} T(\tilde{y}_t(\theta)),
\]

whatever funds are left are spent on lump-sum grants \(\mu_t \).
(Stylized) theoretical model: partial equilibrium OLG model

Social security

Beveridge (full redistribution)

\[b_{2,t+1}^{BEV}(\theta) = \tau w_{t+1} \left(\frac{1}{2} \sum_{\theta \in \{L,H\}} \omega_{\theta} \ell_{1,t+1}(\theta) \right). \]
(Stylized) theoretical model: partial equilibrium OLG model

Social security

Beveridge (full redistribution)

\[
b^\text{BEV}_{2,t+1}(\theta) = \tau w_{t+1} \frac{1}{2} \sum_{\theta \in \{L,H\}} \omega_\theta \ell_{1,t+1}(\theta).
\]

Bismarck (no redistribution)

\[
b^\text{BIS}_{2,t+1}(\theta) = \tau w_t (1 + \gamma) \omega_\theta \ell_{1,t}(\theta).
\]
(Stylized) theoretical model: partial equilibrium OLG model

Social security

Beveridge (full redistribution)

\[
b^{BEV}_{2,t+1}(\theta) = \tau w_{t+1} \left(\frac{1}{2} \sum_{\theta \in \{L,H\}} \omega_\theta \ell_{1,t+1}(\theta) \right).
\]

Bismarck (no redistribution)

\[
b^{BIS}_{2,t+1}(\theta) = \tau w_t (1 + \gamma) \omega_\theta \ell_{1,t}(\theta)
\]

In stationary equilibrium:

\[
\ell^{BIS}_{1}(\theta) > \ell^{BEV}_{1}(\theta)
\]

→ both types have efficiency gain, what about redistribution?
In BEV social security transfers from \(\theta_H\) to \(\theta_L\) are strictly positive. They are zero in BIS.
With $\beta = \frac{1}{1+r}$, discounted lifetime consumption becomes

$$c_t^{BIS}(\theta) - c_t^{BEV}(\theta) =$$
Basic intuitions

With $\beta = \frac{1}{1+r}$, discounted lifetime consumption becomes

$$c_t^{BIS}(\theta) - c_t^{BEV}(\theta) = (1 - \tau \ell (1 - \tau))\omega \theta w_t(\ell_1^{BIS}(\theta) - \ell_1^{BEV}(\theta))$$

efficiency gain
Basic intuitions

With $\beta = \frac{1}{1+r}$, discounted lifetime consumption becomes

$$c_t^{BIS}(\theta) - c_t^{BEV}(\theta) = (1 - \tau \ell (1 - \tau)) \omega \theta w_t(\ell_1^{BIS}(\theta) - \ell_1^{BEV}(\theta))$$

efficiency gain

$W(\theta_H) \uparrow \& W(\theta_L) \uparrow$
Basic intuitions

With $\beta = \frac{1}{1+r}$, discounted lifetime consumption becomes

$$c_t^{BIS}(\theta) - c_t^{BEV}(\theta) = \left(1 - \tau\ell(1 - \tau)\right)\omega_t \ell_1^{BIS}(\theta) - \ell_1^{BEV}(\theta))$$

efficiency gain

$$- \frac{1}{2}\tau\ell_1^{BEV}(\theta) - \omega_\theta \ell_1^{BEV}(\theta))$$

pension system redistribution

$W(\theta_H) \uparrow$ & $W(\theta_L) \uparrow$
Basic intuitions

With $\beta = \frac{1}{1+r}$, discounted lifetime consumption becomes

$$c_t^{\text{BIS}}(\theta) - c_t^{\text{BEV}}(\theta) = \left(1 - \tau \ell(1 - \tau)\omega \theta w_t(\ell_1^{\text{BIS}}(\theta) - \ell_1^{\text{BEV}}(\theta))\right)$$

efficiency gain

$$- \frac{1}{2} \tau w_t(\omega \theta \ell_{1,t}^{\text{BEV}}(\theta) - \omega_{-\theta} \ell_{1,t}^{\text{BEV}}(-\theta))$$

pension system redistribution

$W(\theta_H) \uparrow$ & $W(\theta_L) \uparrow$

$W(\theta_H) \uparrow$ & $W(\theta_L) \downarrow$
With $\beta = \frac{1}{1+r}$, discounted lifetime consumption becomes

$$c_t^{BIS}(\theta) - c_t^{BEV}(\theta) = (1 - \tau_\ell (1 - \tau)) \omega_\theta w_t (\ell_1^{BIS}(\theta) - \ell_1^{BEV}(\theta))$$

efficiency gain

$$- \frac{1}{2} \tau w_t (\omega_\theta \ell_{1,t}^{BEV}(\theta) - \omega_{-\theta} \ell_{1,t}^{BEV}(-\theta))$$

pension system redistribution

$$+ (\mu_t^{BIS} - \mu_t^{BEV}(\theta))$$

tax system redistribution

$W(\theta_H) \uparrow$ & $W(\theta_L) \uparrow$

$W(\theta_H) \uparrow$ & $W(\theta_L) \downarrow$
Basic intuitions

With $\beta = \frac{1}{1+r}$, discounted lifetime consumption becomes

$$c^{BIS}_t(\theta) - c^{BEV}_t(\theta) = (1 - \tau \ell(1 - \tau)) \omega w_t (\ell^{BIS}_1(\theta) - \ell^{BEV}_1(\theta))$$

efficiency gain

$$- \frac{1}{2} \tau w_t (\omega_\theta \ell^{BEV}_{1,t}(\theta) - \omega_{-\theta} \ell^{BEV}_{1,t}(-\theta))$$

pension system redistribution

$$+ (\mu^{BIS}_t - \mu^{BEV}_t(\theta))$$

tax system redistribution

$W(\theta_H) \uparrow$ & $W(\theta_L) \uparrow$

$W(\theta_H) \uparrow$ & $W(\theta_L) \downarrow$
Basic intuitions

With $\beta = \frac{1}{1+r}$, discounted lifetime consumption becomes

$$c_t^{BIS}(\theta) - c_t^{BEV}(\theta) = (1 - \tau \ell(1 - \tau)) \omega \theta w_t(\ell_1^{BIS}(\theta) - \ell_1^{BEV}(\theta))$$

efficiency gain

$$- \frac{1}{2} \tau w_t(\omega \theta \ell_1^{BEV}(\theta) - \omega - \theta \ell_1^{BEV}(-\theta))$$

pension system redistribution

$$+ (\mu_t^{BIS} - \mu_t^{BEV}(\theta))$$

tax system redistribution

$W(\theta_H) \uparrow \& W(\theta_L) \uparrow$

$W(\theta_H) \uparrow \& W(\theta_L) \downarrow$

redistribution \iff NEW
Effect on labor supply and government revenue

1. θ_H workers work more in both BIS and BEV than θ_L,

$$\frac{\ell_{BIS}(\theta_H)}{\ell_{BIS}(\theta_L)} = \frac{\ell_{BEV}(\theta_H)}{\ell_{BEV}(\theta_L)} = \omega_H \omega_L \equiv \varpi_{1/\eta} > 1$$

2. % ∆ in labor supply depends on η (the smaller η, the larger ∆)

$$\frac{\ell_{BIS}(\theta) - \ell_{BEV}(\theta)}{\ell_{BEV}(\theta)} = \left(1 - \tau \ell(1 - \tau)\right) \left(1 - \tau - \tau \ell(1 - \tau)\right)$$

$$\frac{1}{\eta} - 1 \equiv \xi_{1/\eta} - 1$$

3. % ∆ in gov’nt revenue depends on η (Frisch elasticity)

$$\frac{R_{BIS} - R_{BEV}}{R_{BEV}} \equiv \xi_{1/\eta} - 1$$
Effect on labor supply and government revenue

1. \(\theta_H \) workers work more in both BIS and BEV than \(\theta_L \),

\[
\frac{\ell_{BIS}(\theta_H)}{\ell_{BIS}(\theta_L)} = \frac{\ell_{BEV}(\theta_H)}{\ell_{BEV}(\theta_L)} = \frac{\omega_H}{\omega_L} \equiv \frac{\omega}{1} > 1
\]

2. \(\% \Delta \) in labor supply depends on \(\eta \) (the smaller \(\eta \), the larger \(\Delta \))

\[
\frac{\ell_{BIS}(\theta) - \ell_{BEV}(\theta)}{\ell_{BEV}(\theta)} = \left(1 - \tau \right) \left(1 - \tau - \tau\right) \frac{1}{\eta - 1} \equiv \xi
\]

3. \(\% \Delta \) in gov't revenue depends on \(\eta \) (Frisch elasticity)

\[
\frac{R_{BIS} - R_{BEV}}{R_{BEV}} \equiv \xi
\]
Effect on labor supply and government revenue

1. θ_H workers work more in both BIS and BEV than θ_L, and ratio is constant

$$\frac{\ell^{BEV}(\theta_H)}{\ell^{BEV}(\theta_L)} = \frac{\ell^{BIS}(\theta_H)}{\ell^{BIS}(\theta_L)} = \frac{\omega_H}{\omega_L} \equiv \varpi^{1/\eta} > 1$$

2. % Δ in labor supply depends on η
 (the smaller η, the larger Δ)

$$\frac{\ell^{BIS}(\theta) - \ell^{BEV}(\theta)}{\ell^{BEV}(\theta)} = \left(\frac{(1 - \tau \ell(1 - \tau))}{(1 - \tau - \tau \ell(1 - \tau))} \right)^{1/\eta} - 1 \equiv \xi^{1/\eta} - 1$$
Effect on labor supply and government revenue

1. θ_H workers work more in both BIS and BEV than θ_L, and ratio is constant

\[
\frac{\ell^{BEV}(\theta_H)}{\ell^{BEV}(\theta_L)} = \frac{\ell^{BIS}(\theta_H)}{\ell^{BIS}(\theta_L)} = \frac{\omega_H}{\omega_L} \equiv \varpi^{1/\eta} > 1
\]

2. % Δ in labor supply depends on η
 (the smaller η, the larger Δ)

\[
\frac{\ell^{BIS}(\theta_H) - \ell^{BEV}(\theta_H)}{\ell^{BEV}(\theta)} = \left(\frac{(1 - \tau \ell(1 - \tau))}{(1 - \tau - \tau \ell(1 - \tau))}\right)^{1/\eta} - 1 \equiv \xi^{1/\eta} - 1
\]

3. % Δ in gov't revenue depends on η (Frisch elasticity)

\[
\frac{R^{BIS} - R^{BEV}}{R^{BEV}} \equiv \xi^{1/\eta} - 1
\]
Key results

1. θ_H have strictly higher benefits under BIS than under BEV (efficiency \uparrow & redistribution \uparrow)
Key results

1. θ_H have strictly higher benefits under BIS than under BEV (efficiency \uparrow & redistribution \uparrow)

2. θ_L may have lower benefits under BIS than under BEV (efficiency \uparrow but redistribution \downarrow)
Key results

1. θ_H have strictly higher benefits under BIS than under BEV (efficiency \uparrow & redistribution \uparrow)

2. θ_L may have lower benefits under BIS than under BEV (efficiency \uparrow but redistribution \downarrow)
Key results

1. θ_H have strictly higher benefits under BIS than under BEV (efficiency \uparrow & redistribution \uparrow)

2. θ_L may have lower benefits under BIS than under BEV (efficiency \uparrow but redistribution \downarrow)

\implies reform social security and distribute extra government revenue as lump-sum grants μ

3. $\exists \eta > 1$ such that reform is a Pareto-improvement.
Key results

1. θ_H have strictly higher benefits under BIS than under BEV
 (efficiency ↑ & redistribution ↑)

2. θ_L may have lower benefits under BIS than under BEV
 (efficiency ↑ but redistribution ↓)

 \rightarrow reform social security and distribute extra government revenue as lump-sum grants μ

3. $\exists \quad \eta > 1$ such that reform is a Pareto-improvement.
Key results

1. θ_H have strictly higher benefits under BIS than under BEV (efficiency \uparrow & redistribution \uparrow)

2. θ_L may have lower benefits under BIS than under BEV (efficiency \uparrow but redistribution \downarrow)

\rightarrow reform social security and distribute extra government revenue as lump-sum grants μ

3. $\exists \eta > 1$ such that reform is a Pareto-improvement.

4. $\exists \tilde{\eta} > \eta$ such that $\forall 1 < \eta < \tilde{\eta}$ reform raises social welfare function

$$W = \sum_{\theta \in \{\theta_L, \theta_H\}} U(\theta)$$
Quantitative model
Consumers

- **uncertain lifetimes**: live for 16 periods, with survival $\pi_j < 1$
- **uninsurable productivity risk** + endogenous labor supply
- CRRA utility function
- pay taxes (progressive on labor, linear on consumption and capital gains)
- contribute to social security, face natural borrowing constraint

Firms and markets

- Cobb-Douglas production function, capital depreciates at rate d
- no annuity, financial markets with (risk free) interest rate 10
Consumers

- **uncertain lifetimes**: live for 16 periods, with survival \(\pi_j < 1 \)
- ** uninsurable productivity risk** + endogenous labor supply
- CRRA utility function
- pay taxes (progressive on labor, linear on consumption and capital gains)
- contribute to social security, face natural borrowing constraint

Firms and markets

- Cobb-Douglas production function, capital depreciates at rate \(d \)
- no annuity, financial markets with (risk free) interest rate
Government

- Finances government spending G_t, constant as a share of GDP,
- Balances pension system: subsidy_t
- Services debt: r_tD_t,
- Collects taxes on capital, consumption, labor
 (progressive given by Benabou form)

$$G_t + \text{subsidy}_t + r_tD_t = \tau_{k,t}r_tA_t + \tau_{c,t}C_t + Tax_{\ell,t} + \Delta D_t$$

where $\Delta D_t = D_t - D_{t-1}$
Policy experiment

Status quo: current US social security

- redistribution through AIME
Policy experiment

Status quo: current US social security
- redistribution through AIME
- high distortion (no link between LS and future pension benefits)

\[a_{j+1, t+1} + \tilde{c}_{j, t} + \gamma_t = (1 - \tau)w_t \omega_j, t \cdot l_j, t - \mathcal{T}((1 - \tau)w_t \omega_j, t \cdot l_j, t) + (1 + \tilde{r}_t)a_{j, t} + \Gamma_j, t \]
Policy experiment

Status quo: current US social security

- redistribution through AIME
- high distortion (no link between LS and future pension benefits)

\[a_{j+1,t+1} + \tilde{c}_{j,t} + \gamma_t = (1 - \tau)w_{t} \omega_{j,t} l_{j,t} - T((1 - \tau)w_{t} \omega_{j,t} l_{j,t}) + (1 + \tilde{r}_t)a_{j,t} + \Gamma_{j,t} \]
Policy experiment

Status quo: current US social security
- redistribution through AIME
- high distortion (no link between LS and future pension benefits)

\[a_{j+1,t+1} + \tilde{c}_{j,t} + \gamma_t = (1 - \tau)w_t\omega_{j,t}l_{j,t} - T((1 - \tau)w_t\omega_{j,t}l_{j,t}) + (1 + \tilde{r}_t)a_{j,t} + \Gamma_{j,t} \]

Alternative: fully individualized social security and lump-sum grants
- no redistribution through social security
Policy experiment

Status quo: current US social security

- redistribution through AIME
- high distortion (no link between LS and future pension benefits)

\[a_{j+1,t+1} + \bar{c}_{j,t} + \gamma_t = (1 - \tau)w_t \omega_j,t l_j,t - \mathcal{T}((1 - \tau)w_t \omega_j,t l_j,t) + (1 + \tilde{r}_t)a_j,t + \Gamma_j,t \]

Alternative: fully individualized social security and lump-sum grants

- no redistribution through social security
- no distortion

\[a_{j+1,t+1} + \bar{c}_{j,t} + \gamma_t = (1 - \tau)w_t \omega_j,t l_j,t - \mathcal{T}((1 - \tau)w_t \omega_j,t l_j,t) + (1 + \tilde{r}_t)a_j,t + \Gamma_j,t + \xi_{j,t} \cdot \tau w_t \omega_j,t l_j,t \]

implicit tax: PV of Δb due to contribution
Results
Distortion for $\eta = 0.8$
Labor supply reaction for $\eta = 0.8$
Distribution of welfare effects for $\eta = 0.8$
Welfare effect across η
Fiscal adjustment across η
Macroeconomic adjustment across η
Longevity makes the reform beneficial for even less responsive labor markets
Half-internalizing the reform is sufficient to deliver welfare gains ($\eta = 0.8$)
Conclusions
Conclusions

1. Progression in tax system can effectively substitute for progression in social security ...
Conclusions

1. Progression in tax system can effectively substitute for progression in social security ...
2. ... generating welfare gains [potentially: Pareto improvement]
Conclusions

1. Progression in tax system can effectively substitute for progression in social security ...
2. ... generating welfare gains [potentially: Pareto improvement]
3. Important role for response of labor to the features of the pension system
Questions or suggestions?
Thank you!

w: grape.org.pl

t: grape_org

f: grape.org

e: j.tyrowicz@grape.org.pl