Real-Time Predictability of Mutual Fund Performance Predictors

Yu Xia

McGill University

AFA 2022

Why mutual fund performance matters?

• Mutual funds are widely used

- Actively managed funds hold 60% U.S. total net assets in equity
- ho \approx 50% U.S. households own mutual funds
- Hard to gauge their value added to investors

• Question:

Can investors gain from using predictors to select actively managed mutual funds in real time?

Why mutual fund performance matters?

- Mutual funds are widely used
 - Actively managed funds hold 60% U.S. total net assets in equity
 - ▶ \approx 50% U.S. households own mutual funds
- Hard to gauge their value added to investors

• Question:

Can investors gain from using predictors to select actively managed mutual funds in real time?

Why mutual fund performance matters?

- Mutual funds are widely used
 - Actively managed funds hold 60% U.S. total net assets in equity
 - ▶ \approx 50% U.S. households own mutual funds
- Hard to gauge their value added to investors
- Question:

Can investors gain from using predictors to select actively managed mutual funds in real time?

• Short answer: Yes!

• Using two adaptive approaches to evaluating predictors in real time

- $\blacktriangleright\,$ Regression-based machine learning: $1.3\sim 1.7\%$ p.a. real-time alphas
 - * Li and Rossi (2020): ML based on stock holdings and stock characteristics.
 - * DeMiguel et al. (2021): ML based on fund characteristics and performance.
 - * My paper: fund characteristics, performance, and holding-based activeness.
- ▶ Rule-based portfolio sorts: 2.5% p.a. real-time market-adjusted alpha
- Do investors react to predictive information? Yes!
 - Investor flow chases for predictive information
 - Reaction is generally stronger among more growth-oriented funds

• Short answer: Yes!

• Using two adaptive approaches to evaluating predictors in real time

- $\blacktriangleright\,$ Regression-based machine learning: $1.3\sim 1.7\%$ p.a. real-time alphas
 - * Li and Rossi (2020): ML based on stock holdings and stock characteristics.
 - * DeMiguel et al. (2021): ML based on fund characteristics and performance.
 - \star My paper: fund characteristics, performance, and holding-based activeness.
- ▶ Rule-based portfolio sorts: 2.5% p.a. real-time market-adjusted alpha
- Do investors react to predictive information? Yes!
 - Investor flow chases for predictive information
 - Reaction is generally stronger among more growth-oriented funds

- Short answer: Yes!
- Using two adaptive approaches to evaluating predictors in real time
 - \blacktriangleright Regression-based machine learning: $1.3 \sim 1.7\%$ p.a. real-time alphas
 - * Li and Rossi (2020): ML based on stock holdings and stock characteristics.
 - * DeMiguel et al. (2021): ML based on fund characteristics and performance.
 - * My paper: fund characteristics, performance, and holding-based activeness.
 - ▶ Rule-based portfolio sorts: 2.5% p.a. real-time market-adjusted alpha
- Do investors react to predictive information? Yes!
 - Investor flow chases for predictive information
 - Reaction is generally stronger among more growth-oriented funds

- Short answer: Yes!
- Using two adaptive approaches to evaluating predictors in real time
 - ▶ Regression-based machine learning: $1.3 \sim 1.7\%$ p.a. real-time alphas
 - * Li and Rossi (2020): ML based on stock holdings and stock characteristics.
 - * DeMiguel et al. (2021): ML based on fund characteristics and performance.
 - ★ My paper: fund characteristics, performance, and holding-based activeness.
 - ▶ Rule-based portfolio sorts: 2.5% p.a. real-time market-adjusted alpha
- Do investors react to predictive information? Yes!
 - Investor flow chases for predictive information
 - Reaction is generally stronger among more growth-oriented funds

- Short answer: Yes!
- Using two adaptive approaches to evaluating predictors in real time
 - $\blacktriangleright\,$ Regression-based machine learning: $1.3\sim 1.7\%$ p.a. real-time alphas
 - * Li and Rossi (2020): ML based on stock holdings and stock characteristics.
 - * DeMiguel et al. (2021): ML based on fund characteristics and performance.
 - ★ My paper: fund characteristics, performance, and holding-based activeness.
 - ▶ Rule-based portfolio sorts: 2.5% p.a. real-time market-adjusted alpha
- Do investors react to predictive information? Yes!
 - Investor flow chases for predictive information
 - Reaction is generally stronger among more growth-oriented funds

- Short answer: Yes!
- Using two adaptive approaches to evaluating predictors in real time
 - $\blacktriangleright\,$ Regression-based machine learning: $1.3\sim1.7\%$ p.a. real-time alphas
 - * Li and Rossi (2020): ML based on stock holdings and stock characteristics.
 - * DeMiguel et al. (2021): ML based on fund characteristics and performance.
 - * My paper: fund characteristics, performance, and holding-based activeness.
 - ▶ Rule-based portfolio sorts: 2.5% p.a. real-time market-adjusted alpha
- Do investors react to predictive information? Yes!
 - Investor flow chases for predictive information
 - Reaction is generally stronger among more growth-oriented funds

List of fund performance predictors

Category	Predictor	Study
Characteristics-Based	Expense Ratio (ER) Fund Flow (Flow) Fund Size (Size)	Elton et al. (1993) Zheng (1999) Chen et al. (2004)
Performance-Based	One-Year Return (Ret1y) Carhart Alpha (Car1y) One-Month Return (Ret1m) Return Gap (RG)	Hendricks et al. (1993) Carhart (1997) Bollen & Busse (2004) Kacperczyk et al. (2006)
Activeness	Turnover (TR) Active Share (AS) R-Squared (R ²) Active Weight (AW) Fund Duration (Dur)	Elton et al. (1993) Cremers & Petajisto (2009) Amihud & Goyenko (2013) Doshi et al. (2015) Cremers & Petajisto (2016)

• Non-ML benchmark: OLS with objective function

• ML: Balance between fit & robustness; allow real-time selection

• Shrinkage/sparsity/both: Ridge, LASSO, elastic net, sparse group LASSO

$$\min_{\theta} \mathcal{L}(\theta; \cdot) = \mathcal{L}(\theta) + \phi(\theta; \cdot)$$

- Dimension reduction: PCR, PLS
 - OLS after transforming & reducing predictor space to principal components

• Non-ML benchmark: OLS with objective function

- ML: Balance between fit & robustness; allow real-time selection
- Shrinkage/sparsity/both: Ridge, LASSO, elastic net, sparse group LASSO

$$\min_{\theta} \mathcal{L}(\theta; \cdot) = \mathcal{L}(\theta) + \phi(\theta; \cdot)$$

- Dimension reduction: PCR, PLS
 - OLS after transforming & reducing predictor space to principal components

• Non-ML benchmark: OLS with objective function

- ML: Balance between fit & robustness; allow real-time selection
- Shrinkage/sparsity/both: Ridge, LASSO, elastic net, sparse group LASSO

$$\min_{\theta} \mathcal{L}(\theta; \cdot) = \mathcal{L}(\theta) + \phi(\theta; \cdot)$$

- Dimension reduction: PCR, PLS
 - OLS after transforming & reducing predictor space to principal components

• Non-ML benchmark: OLS with objective function

- ML: Balance between fit & robustness; allow real-time selection
- Shrinkage/sparsity/both: Ridge, LASSO, elastic net, sparse group LASSO

$$\min_{\theta} \mathcal{L}(\theta; \cdot) = \mathcal{L}(\theta) + \phi(\theta; \cdot)$$

- Dimension reduction: PCR, PLS
 - > OLS after transforming & reducing predictor space to principal components

• Fund selection rule

- ▶ Quintile of one predictor (single sort, "*Car*1*y*, 5"), or
- Quintile of two predictors (dependent double sort, " R^2 , 1 & Car1y, 5")
- Potential gains:

Nonlinearity, interaction, few parametric restrictions (+ pros of other ML such as trees, neural networks)

+

Easy to understand (- cons of other opaque ML)

• Fund selection rule

- ▶ Quintile of one predictor (single sort, "*Car*1*y*, 5"), or
- Quintile of two predictors (dependent double sort, " R^2 , 1 & Car1y, 5")

• Potential gains:

Nonlinearity, interaction, few parametric restrictions (+ pros of other ML such as trees, neural networks)

+

Easy to understand (– cons of other opaque ML)

- Fund selection rule
 - ▶ Quintile of one predictor (single sort, "*Car*1*y*, 5"), or
 - Quintile of two predictors (dependent double sort, " R^2 , 1 & Car1y, 5")
- Potential gains:

Nonlinearity, interaction, few parametric restrictions (+ pros of other ML such as trees, neural networks)

+ Easy to understand (– cons of other opaque ML)

- Fund selection rule
 - ▶ Quintile of one predictor (single sort, "*Car*1*y*, 5"), or
 - Quintile of two predictors (dependent double sort, " R^2 , 1 & Car1y, 5")
- Potential gains:

Nonlinearity, interaction, few parametric restrictions (+ pros of other ML such as trees, neural networks)

 $^{+}$

Easy to understand (- cons of other opaque ML)

• Expanding window starts with 7 years

Methods	Training	Validation	Real-Time	Tuning Parameter
ML	5 (yrs) ↑	1	1	$\phi(heta;\cdot)$ or # PCs
Rule-Based	6 ↑	0	1	None
	5 ↑	1	1	# Top Rules

Validation for tuning parameters

• ML

- Training: Estimate parameters
- ▶ Real-time: Pick funds w/ highest predicted net-of-fee return

• Rule-based

- Training: Determine top rules
- Real-time: Pick funds using top rules

• Expanding window starts with 7 years

Methods	Training	Validation	Real-Time	Tuning Parameter
ML	5 (yrs) ↑	1	1	$\phi(\theta;\cdot)$ or # PCs
Rule-Based	6 ↑	0	1	None
	5 ↑	1	1	# Top Rules

Validation for tuning parameters

• ML

- Training: Estimate parameters
- Real-time: Pick funds w/ highest predicted net-of-fee return

• Rule-based

- Training: Determine top rules
- Real-time: Pick funds using top rules

• Expanding window starts with 7 years

Methods	Training	Validation	Real-Time	Tuning Parameter
ML	5 (yrs) ↑	1	1	$\phi(\theta; \cdot)$ or # PCs
Rule-Based	6 ↑	0	1	None
	5 ↑	1	1	# Top Rules

Validation for tuning parameters

• ML

- Training: Estimate parameters
- Real-time: Pick funds w/ highest predicted net-of-fee return

• Rule-based

- Training: Determine top rules
- Real-time: Pick funds using top rules

• Expanding window starts with 7 years

Methods	Training	Validation	Real-Time	Tuning Parameter
ML	5 (yrs) ↑	1	1	$\phi(\theta;\cdot)$ or # PCs
Rule-Based	6 ↑	0	1	None
	5 ↑	1	1	# Top Rules

Validation for tuning parameters

• ML

- Training: Estimate parameters
- Real-time: Pick funds w/ highest predicted net-of-fee return
- Rule-based
 - Training: Determine top rules
 - Real-time: Pick funds using top rules

- Fund returns & characteristics from CRSP
- Fund stock holdings from Thomson Reuters to construct predictors
- Mutual fund sample: 1994 2016
 - Complete fund characteristics data from 1994 in CRSP
 - Active share and fund duration up to 2015

- Fund returns & characteristics from CRSP
- Fund stock holdings from Thomson Reuters to construct predictors
- Mutual fund sample: 1994 2016
 - Complete fund characteristics data from 1994 in CRSP
 - Active share and fund duration up to 2015

Summary statistics

Predictor	Obs.	Mean	SD	AR(1)
ER (%)	900	1.17	0.36	0.95
Flow (\$M)	900	-1.20	108.04	0.78
Size (\$M)	900	6.12	1.67	0.97
Ret1y (%)	900	10.81	12.41	0.92
Car1y (%)	900	-0.05	0.90	0.84
Ret1m (%)	900	0.87	2.38	0.10
RG (%)	900	-0.01	1.26	0.13
TR (%)	900	75.74	61.18	0.93
AS	900	0.81	0.15	0.96
R ²	900	0.91	0.07	0.94
AW	900	0.79	0.21	0.93
Dur (yrs)	900	5.64	3.49	0.96

Main results: Real-time performance

	Avg. Return	CAPM α	FF3 α	C4 α						
		Panel A: Benchmark								
OLS	0.56	-0.07	-0.14	-0.12						
		Panel B: Mach	nine Learning							
Ridge	0.58	-0.04	-0.11	-0.11						
LASSO	0.74**	0.14**	0.11**	0.11**						
EN	0.74**	0.14**	0.11**	0.11**						
PCR	0.61	0.00	-0.08	-0.09						
PLS	0.55	-0.07	-0.14	-0.12						
SGL	0.68*	0.07	0.03	0.03						
Validation		Panel C: Rule-Based								
No	0.79**	0.21*	0.11	0.08						
Yes	0.70*	0.11	0.02	-0.01						

• Monthly net-of-fee returns in percentage

Does macro information explain performance?

• Empirical specification (Ferson and Schadt, 1996):

$$R_{t} - R_{f,t} = \alpha + (\beta + B'z_{t-1})(R_{M,t} - R_{f,t}) + sR_{SMB,t} + hR_{HML,t} + mR_{MOM,t} + \epsilon_{t},$$

 z_{t-1} : lagged macroeconomic variables.

	α	β	B (MKT × TB)	B (MKT × DY)	B (MKT × TS)	B (MKT × DS)	S	h	m
				Panel	A: Benchmark				
OLS	-0.05	1.01***	0.58**	-0.08	0.05**	0.07	0.30***	0.03	-0.02
				Panel B:	Machine Learnir	Ig			
Ridge	-0.04	0.99***	0.45**	-0.08	0.05**	0.08	0.30***	0.04	-0.01
EN	0.12**	1.00***	0.07	0.00	0.01	0.03	0.13***	-0.02	0.00
PCR	-0.10	1.00***	0.37**	0.13**	0.02	-0.05	0.31***	0.04	0.04
PLS	-0.05	1.00***	0.57**	-0.08	0.04**	0.06	0.29***	0.04	-0.02
SGL	0.05	1.00***	0.34***	0.06	0.04***	-0.02	0.18***	0.01	0.00
Validation				Panel	C: Rule-Based				
No	0.10	0.96***	0.35	0.04	0.02	0.01	0.39***	0.05	0.11**
Yes	0.00	0.98***	0.19	0.05	0.03	-0.01	0.36***	0.03	0.10**

Time variations in performance

Rule-based portfolio (market-adjusted, no validation) Return (%) -0.5

ML (EN) portfolio (market-adjusted)

Investment value

Which predictor matters? - ML

• Key predictor: one-month return (Ret1m)

Yu Xia

Which predictor matters? - Rule-based

Ranking	2001	2002	 2011	 2015	2016
1	TR, 5 &	Car1y, 5 &	 Ret1m, 5 &	 Ret1m, 5 &	Ret1m, 5 &
	Ret1m, 5	Ret1m, 5	Ret1y, 5	Ret1y, 5	Ret1y, 5
2	Car1y, 5 &	TR, 5 &	 AW, 2 &	 Car1y, 5 &	Car1y, 5 &
	Ret1m, 5	Ret1m, 5	R2, 1	Ret1m, 5	Ret1m, 5
3	Ret1m, 5 &	Ret1m, 5 &	 Car1y, 5 &	 AW, 2 &	AW, 2 &
	Ret1y, 5	Ret1y, 5	Ret1m, 5	R2, 1	R2, 1

- One-year return: 24/48 rules (in total)
- One-month return: 17/48 rules
- *R*²: 7/48 rules

Which predictor matters? - Rule-based

Ranking	2001	2002	 2011	 2015	2016
1	TR, 5 &	Car1y, 5 &	 Ret1m, 5 &	 Ret1m, 5 &	Ret1m, 5 &
	Ret1m, 5	Ret1m, 5	Ret1y, 5	Ret1y, 5	Ret1y, 5
2	Car1y, 5 &	TR, 5 &	 AW, 2 &	 Car1y, 5 &	Car1y, 5 &
	Ret1m, 5	Ret1m, 5	R2, 1	Ret1m, 5	Ret1m, 5
3	Ret1m, 5 &	Ret1m, 5 &	 Car1y, 5 &	 AW, 2 &	AW, 2 &
	Ret1y, 5	Ret1y, 5	Ret1m, 5	R2, 1	R2, 1

- One-year return: 24/48 rules (in total)
- One-month return: 17/48 rules
- R²: 7/48 rules

• Direct investor reaction measure: Monthly fund flow

$$F_{i,t+1} = \frac{TNA_{i,t+1}}{TNA_{i,t}} - (1 + R_{i,t+1})$$

• Key independent variable: Predictor-implied performance (PIP)

Capture predictive information embedded in each predictor

Construction

• Main specification:

$$\begin{split} F_{i,t+1} &= b_0 + b_\alpha PureAlpha_{i,t} + b_P PIP_{i,t}^P + \sum_j b_j FACTOR_{i,j,t} \\ &+ \theta' \underbrace{X_{i,t}}_{\text{incl. predictor itself}} + \eta_{t+1} + \epsilon_{i,t+1} \end{split}$$

• Direct investor reaction measure: Monthly fund flow

$$F_{i,t+1} = \frac{TNA_{i,t+1}}{TNA_{i,t}} - (1 + R_{i,t+1})$$

• Key independent variable: Predictor-implied performance (PIP)

► Capture predictive information embedded in each predictor

Construction

• Main specification:

$$\begin{aligned} F_{i,t+1} &= b_0 + b_\alpha PureAlpha_{i,t} + b_P PIP_{i,t}^P + \sum_j b_j FACTOR_{i,j,t} \\ &+ \theta' \underbrace{X_{i,t}}_{\text{incl. predictor itself}} + \eta_{t+1} + \epsilon_{i,t+1} \end{aligned}$$

• Direct investor reaction measure: Monthly fund flow

$$F_{i,t+1} = \frac{TNA_{i,t+1}}{TNA_{i,t}} - (1 + R_{i,t+1})$$

• Key independent variable: Predictor-implied performance (PIP)

► Capture predictive information embedded in each predictor

Construction

• Main specification:

$$\begin{split} F_{i,t+1} &= b_0 + b_\alpha PureAlpha_{i,t} + b_P PIP_{i,t}^P + \sum_j b_j FACTOR_{i,j,t} \\ &+ \theta' \underbrace{X_{i,t}}_{\text{incl. predictor itself}} + \eta_{t+1} + \epsilon_{i,t+1} \end{split}$$

• Direct investor reaction measure: Monthly fund flow

$$F_{i,t+1} = \frac{TNA_{i,t+1}}{TNA_{i,t}} - (1 + R_{i,t+1})$$

• Key independent variable: Predictor-implied performance (PIP)

Capture predictive information embedded in each predictor

Construction

Main specification:

$$F_{i,t+1} = b_0 + b_\alpha PureAlpha_{i,t} + \frac{b_P}{P}PIP_{i,t}^P + \sum_j b_j FACTOR_{i,j,t} + \theta' \underbrace{X_{i,t}}_{\text{incl. predictor itself}} + \eta_{t+1} + \epsilon_{i,t+1}$$

• Barber et al. (2016): Investors most likley use CAPM

	Asset Pricing Model: CAPM							
Monthly Flow			Predi	ctor P				
	Size	RG	AS	R ²	AW	Dur		
Pure Alpha	0.632***	0.625***	0.647***	0.651***	0.625***	0.633***		
PIP ^P	0.520***	0.506	0.301	0.153	0.776***	0.466***		
Size	-0.166***	-0.166***	-0.176***	-0.172***	-0.165***	-0.168***		
RG		21.591**						
AS			-0.692***					
R ²				1.347***				
AW					0.035			
Dur						0.007		
Controls	Yes	Yes	Yes	Yes	Yes	Yes		
Month FE	Yes	Yes	Yes	Yes	Yes	Yes		
Obs.	152,756	152,756	152,756	152,756	152,756	152,756		
Adj. R-Squared	0.026	0.026	0.026	0.026	0.026	0.026		

	Asset Pricing Model: CAPM								
Monthly Flow			Pred	ictor P					
	Size RG AS R ² AW Dur								
		Panel A: A	ggressive Gr	owth					
Pure Alpha	0.654***	0.654***	0.656***	0.662***	0.648***	0.655***			
PIP [₽]	0.701***	0.899***	0.807***	0.643***	0.055	0.731***			
Obs.	16,530	16,530	16,530	16,530	16,530	16,530			
		Pane	el B: Growth						
Pure Alpha	0.750***	0.737***	0.760***	0.759***	0.737***	0.741***			
PIP ^P	0.355	0.364	0.422*	0.373	0.678***	0.361			
Obs.	80,637	80,637	80,637	80,637	80,637	80,637			
Panel C: Growth and Income									
Pure Alpha	0.855***	0.847***	0.874***	0.872***	0.858***	0.851***			
PIP [₽]	0.824	1.078	-0.805	-0.248	0.206	0.569			
Obs.	36,859	36,859	36,859	36,859	36,859	36,859			

- ▶ Yes! Regression-based ML (only with sparsity) gives $1.3 \sim 1.7\%$ p.a. alphas
- Short-term one-month return matters the most
- Do investors react to predictive information?
 - > Yes! Great variations in using predictive information
 - Investor reaction is stronger for more growth-oriented funds
- Why does real-time predictability exist?
 - Not due to lack of investor attention
 - ▶ But compensation for intensive search algorithms to find skilled managers.
 - Empirical support for Garleanu & Pedersen (2018)

- ▶ Yes! Regression-based ML (only with sparsity) gives $1.3 \sim 1.7\%$ p.a. alphas
- Short-term one-month return matters the most
- Do investors react to predictive information?
 - Yes! Great variations in using predictive information
 - Investor reaction is stronger for more growth-oriented funds
- Why does real-time predictability exist?
 - Not due to lack of investor attention
 - ▶ But compensation for intensive search algorithms to find skilled managers.
 - Empirical support for Garleanu & Pedersen (2018)

- ▶ Yes! Regression-based ML (only with sparsity) gives $1.3 \sim 1.7\%$ p.a. alphas
- Short-term one-month return matters the most
- Do investors react to predictive information?
 - Yes! Great variations in using predictive information
 - Investor reaction is stronger for more growth-oriented funds
- Why does real-time predictability exist?
 - Not due to lack of investor attention
 - ▶ But compensation for intensive search algorithms to find skilled managers.
 - Empirical support for Garleanu & Pedersen (2018)

- > Yes! Regression-based ML (only with sparsity) gives $1.3 \sim 1.7\%$ p.a. alphas
- Short-term one-month return matters the most
- Do investors react to predictive information?
 - Yes! Great variations in using predictive information
 - Investor reaction is stronger for more growth-oriented funds
- Why does real-time predictability exist?
 - Not due to lack of investor attention
 - ▶ But compensation for intensive search algorithms to find skilled managers.
 - Empirical support for Garleanu & Pedersen (2018)

- ▶ Yes! Regression-based ML (only with sparsity) gives $1.3 \sim 1.7\%$ p.a. alphas
- Short-term one-month return matters the most
- Do investors react to predictive information?
 - Yes! Great variations in using predictive information
 - Investor reaction is stronger for more growth-oriented funds
- Why does real-time predictability exist?
 - Not due to lack of investor attention
 - But compensation for intensive search algorithms to find skilled managers.
 - Empirical support for Garleanu & Pedersen (2018)

- Economic gains for long-term investors
- Who incorporate predictive information?
 - ▶ Investor heterogeneity: sophisticated v.s. unsophisticated
- When do investors acquire information?
 - Uncertainty may affect investors' attention or willingness

• Economic gains for long-term investors

- Who incorporate predictive information?
 - ▶ Investor heterogeneity: sophisticated v.s. unsophisticated
- When do investors acquire information?
 - Uncertainty may affect investors' attention or willingness

- Economic gains for long-term investors
- Who incorporate predictive information?
 - ▶ Investor heterogeneity: sophisticated v.s. unsophisticated
- When do investors acquire information?
 - Uncertainty may affect investors' attention or willingness

- Economic gains for long-term investors
- Who incorporate predictive information?
 - Investor heterogeneity: sophisticated v.s. unsophisticated
- When do investors acquire information?
 - Uncertainty may affect investors' attention or willingness

- Economic gains for long-term investors
- Who incorporate predictive information?
 - Investor heterogeneity: sophisticated v.s. unsophisticated
- When do investors acquire information?
 - Uncertainty may affect investors' attention or willingness

- Economic gains for long-term investors
- Who incorporate predictive information?
 - Investor heterogeneity: sophisticated v.s. unsophisticated
- When do investors acquire information?
 - Uncertainty may affect investors' attention or willingness

PIP construction - Part I

• Why PIP?

Predictors for managerial skills or behavioral biases? Not clear

Solution:

Step 1. Capture skill by similarity in return pattern with a portfolio of funds sorted on predictor (extend Cohen et al., 2005)

Portfolio: Funds with high predictor value – funds with low predictor value

Step 2. Use fitted performance as skill component captured by predictor (PIP)

PIP construction - Part I

- Why PIP?
 - Predictors for managerial skills or behavioral biases? Not clear
 - Solution:

Step 1. Capture skill by similarity in return pattern with a portfolio of funds sorted on predictor (extend Cohen et al., 2005)

Portfolio: Funds with high predictor value - funds with low predictor value

Step 2. Use fitted performance as skill component captured by predictor (PIP)

PIP construction - Part I

- Why PIP?
 - Predictors for managerial skills or behavioral biases? Not clear
 - Solution:

Step 1. Capture skill by similarity in return pattern with a portfolio of funds sorted on predictor (extend Cohen et al., 2005)

Portfolio: Funds with high predictor value - funds with low predictor value

Step 2. Use fitted performance as skill component captured by predictor (PIP)

PIP construction - Part II

1. Estimate performance similarity & risk exposure:

$$R_{i,\tau} - R_{f,\tau} = \alpha_{i,t} + \gamma_{i,t}^{P} R_{\tau}^{P} + \sum_{j} \beta_{i,j,t} f_{j,\tau} + \epsilon_{i,\tau}, \ \tau \in \{t - 1, \dots, t - 60\}.$$

Illustration

2. Decompose returns into three performance components:

$$R_{i,t} - R_{f,t} = \underbrace{\widehat{\alpha}_{i,t}}_{\text{pure alpha}} + \underbrace{\widehat{\gamma}_{i,t}^{P} R_{t}^{P}}_{\text{predictor } P\text{-implied performance (PIP)}} + \underbrace{\sum_{j} \widehat{\beta}_{i,j,t} f_{j,t}}_{\text{risk premia}}.$$

Back

PIP construction - Part II

1. Estimate performance similarity & risk exposure:

$$R_{i,\tau} - R_{f,\tau} = \alpha_{i,t} + \gamma_{i,t}^{P} R_{\tau}^{P} + \sum_{j} \beta_{i,j,t} f_{j,\tau} + \epsilon_{i,\tau}, \ \tau \in \{t - 1, \dots, t - 60\}.$$

Illustration

2. Decompose returns into three performance components:

Back

Portfolio of funds sorted on predictor P = Size

Predictor	Value	Group of MFs
Size	Low	MF1
	÷	:
	High	MF5

•
$$R_t^{Size}(\text{i.e., } R_t^P) = Ret_t^{MF5} - Ret_t^{MF1}$$