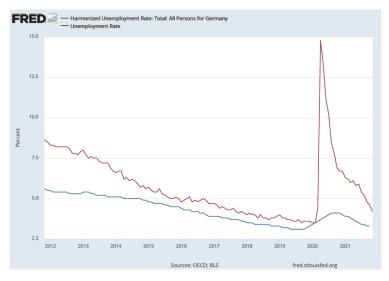
U.S. versus Europe: How Differential COVID-19 Policies Affect Inequality

Yuriy Gorodnichenko,¹ Lilia Maliar,² Serguei Maliar,³ & Christopher Naubert⁴

¹University of California at Berkeley and NBER; ²CUNY Graduate Center and CEPR; ³Santa Clara University;


⁴CUNY Graduate Center

January 8, 2022

Motivation

- COVID-19 = a large negative (supply and/or demand) shock
 - restrictions on labor supply (Kocherlakota, 2020)
 - temporary decline in productivity (Gregory et al. 2020)
 - infection shock (Kapicka and Rupert, 2020)
 - skill loss shock hitting unemployed (Jackson and Ortego-Marti, 2020)
 - job loss (Bernstein et al. 2020)
 - preference shock (Ravenna and Walsh, 2021)
- Differential government fiscal policies across countries
 - U.S.:
 - mostly transfers via the unemployment insurance system
 - Europe:
 - mostly transfers to firms to support employers-employees

Stylized Fact

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Previous COVID-19 Heterogeneous-Agent Literature

- Previous COVID-19 literature with heterogeneous agents (HA)
 - Bayer, Born, Luetticke and Müller (2020): HANK
 - Gregory, Menzio and Wiczer (2020): HA + search
 - Ravenna and Walsh (2021): HANK + search
 - Guerrieri et al. (2020): HANK + multi-sector
 - steady state; all shocks are MIT; no calibrated exercise

This paper: quantifies the effects of COVID-19 policies in a calibrated, *multi-sector*, large-scale *HANK* model with *search*

HANK Model with Directed Search

• Households

• Two types of consumption goods (imperfect substitutes)

- Two types of assets: liquid (bonds) and illiquid assets
- Two borrowing constraints, one for each asset
- Idiosyncratic shocks to productivity level
- Directed job search
- Submarkets indexed by workers' characteristics

• Two production sectors

- Fixed shares of population in each sector
- Downward-sloping demand
- Sticky prices a la Rotemberg
- TFP levels subject to sector-specific shocks
- CRS with capital and labor
- One sector is COVID vulnerable

Labor firm

- Posts a job in the chosen submarket
- Exogenous separation
- Free entry for firms

HANK Model with Directed Search (Cont.)

Mutual fund

- One asset: capital
- Subdivision of capital between two sectors
- Owns final good producers and job posting firms

Fiscal policy

Balanced budget

Automatic stabilizers

- Unemployment benefits
- Progressive income tax
- Food stamps

Discretionary policy

- Government transfers to households (U.S.)
- Government transfers to labor firms (Europe)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Monetary policy
 - Taylor rule with ZLB

Previous COVID-19 HA Literature versus Present Paper

• Previous literature:

- On-the-job search without capital
- No aggregate risk
- Low-order perturbation
- State space includes a small number of distributional moments

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- **Present paper:** addresses the above limitations by using deep learning
 - On-the-job search with two assets capital and bonds
 - Aggregate risk shocks in the solution procedure
 - COVID-19 a sector-specific TFP shock
 - (discretionary fiscal policy as MIT shocks)
 - Global nonlinear solutions
 - State space includes variables of <u>all</u> agents

Deep Learning Analysis of Maliar, Maliar, Winant (2019) 1. HANK model: $\begin{cases} E_{\epsilon} [f_1 (X(s), \epsilon)] = 0 \\ \dots \\ F_{\epsilon} [f_{\epsilon} (X(s), \epsilon)] = 0 \end{cases}$

$$E_{\epsilon}\left[f_{n}\left(X\left(s\right),\epsilon\right)\right]=0$$

s =state, X(s) =decision function, $\epsilon =$ innovations.

- 2. Parameterize $X(s) \simeq \varphi(s; \theta)$ with a **deep neural network**.
- 3. Construct objective function for DL training

$$\min_{\theta} \left(E_{\epsilon} \left[f_{1} \left(\varphi \left(s; \theta \right), \epsilon \right) \right] \right)^{2} + \ldots + \left(E_{\epsilon} \left[f_{n} \left(\varphi \left(s; \theta \right), \epsilon \right) \right] \right)^{2} \to 0$$

4. All-in-one expectation operator is a critical novelty:

$$\left(E_{\epsilon}\left[f_{j}\left(\varphi\left(s;\theta\right),\epsilon\right)\right]\right)^{2}=E_{\left(\epsilon_{1},\epsilon_{2}\right)}\left[f_{j}\left(\varphi\left(s;\theta\right),\epsilon_{1}\right)\cdot f_{j}\left(\varphi\left(s;\theta\right),\epsilon_{2}\right)\right]$$

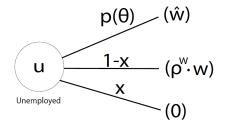
with $\epsilon_1, \epsilon_2 = two$ independent draws.

- 5. **Stochastic gradient descent** for training (random grids)
- 6. Google **TensorFlow** platform software that leads to ground breaking applications (image, speech recognition, etc). ▲□ ▶ ▲目 ▶ ▲目 ▶ ● ● ●

Household Consumption-Saving Problem

Stage 1. Given \overline{C}_t , choose a vector (c_t^X, c_t^Z) maximizing total consumption

$$\max_{\left\{c_t^X, c_t^Z\right\}} \left[(1-\varepsilon)^{\frac{1}{\eta}} \left(c_t^X\right)^{1-\frac{1}{\eta}} + \varepsilon^{\frac{1}{\eta}} \left(c_t^Z\right)^{1-\frac{1}{\eta}} \right]^{\frac{\eta}{1-\eta}}$$
s.t. $P_t^X c_t^X + P_t^X c_t^X \le \overline{C}_t,$


Stage 2. Given optimal (c_t^X, c_t^Z) , choose a utility-maximizing combination of consumption and assets subject to

(1)
$$a' = (1 + r^m) a + i$$

(2) $\frac{b'}{R} = b + y_{min} + (1 + r^m) a + \varpi - c + \Psi(i, a)$
(3) $a' \ge 0, \quad b' \ge -\overline{b}$

∞ = *W^ν* × exp (η_ℓ − *η*_ℓ) × *w* if employed where *ν* = sector, *W* = efficiency wage, *w* = wage share and *∞*_t = *b*_t^{ump} if unemployed
 α = *ν* ≤ *ν* ≤

Unemployed Search Decision

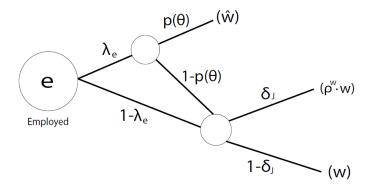
Agent *j* searches in a submarket $(a'(j), b'(j), \hat{w}, \eta_{\ell}(j), \nu(j), \Sigma)$

 θ : market tightness; $p(\theta)$: job finding rate; χ : probability of unemployment insurance expiring

Unemployed Search Decision

Bellman equation:

$$Q(w(j), \epsilon(j) = u, ...) = \max_{\hat{w}} \{ p(\theta) EV(\hat{w}, \epsilon'(j) = e, ...) + \{(1 - \chi) EV(\rho^{w}w(j), \epsilon'(j) = u, ...) + \chi EV(0, \epsilon'(j) = u, ...)\} \times (1 - p(\theta)) \}$$


subject to

$$q(\theta)\beta E[J(\hat{w},...)] = k$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\theta(a'(j), b'(j), \hat{w}, \eta_{\ell}(j), \nu(j), \Sigma)$
- $q(\theta)$: job filling rate
- k: flow cost of posting a vacancy

Employed Search Decision

 λ_e : probability of being chosen to look for a better job; δ_J : probability of being hit by an exogenous separation shock and becomes unemployed

Employed Search Decision

• Bellman equation:

$$Q(w(j), \epsilon(j) = e, ...) = \max_{\hat{w}} \{\lambda_e p(\theta) EV(\hat{w}, \epsilon'(j) = e, ...) + \{(1 - \delta_J) EV(w(j), \epsilon'(j) = e, ...) + \delta_J EV(\rho^w w(j), \epsilon'(j) = u, ...)\} \times (1 - \lambda_e p(\theta))\}$$

subject to

$$q(\theta)\beta E[J(\hat{w},...)]=k$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two Production Sectors

• Technology of a firm in sector ν

$$Y_t^{\mathsf{v}} = \exp\left(\eta_{\theta,t}^{\mathsf{v}} - \overline{\eta}_{\theta}^{\mathsf{v}}\right) \left(\mathsf{K}_{t-1}^{\mathsf{v}}\right)^{\alpha} \left(\mathsf{H}_t^{\mathsf{v}}\right)^{1-\alpha}$$

 $H^{
m v}_t$: efficiency labor; ${\cal K}^{
m v}_{t-1}$: capital; exp $\left(\eta^{
u}_{ heta,t}
ight)$: TFP level

AR(1) process for TFP

$$\eta_{\theta,t}^{\nu} = \rho^{\theta,\nu} \eta_{\theta,t-1}^{\nu} + \sigma_{\theta}^{\nu} \varepsilon_{\theta,t}^{\nu}, \qquad \varepsilon_{\theta,t}^{\nu} \sim \mathcal{N}\left(0,1\right)$$

Downward sloping demand

$$Y_t^{\nu} = \varepsilon \left(\frac{P_t^{\nu}}{P_t}\right)^{-\eta} Y_t$$

Profit

$$(1 - \tau_t) \frac{P_t^{\nu}}{P_t} Y_t^{\nu} - mc_t^{\nu} Y_t^{\nu}$$

Job Posting Firm

Profit

$$D_t^{J,
u} = \mathcal{W}_t^
u \exp\left(\eta_{\ell,t} - \overline{\eta_\ell}
ight)\left(1 - w_t
ight) + au_t^J$$

The value of a firm

$$J(\mathbf{a}, \mathbf{b}, \mathbf{w}, \eta_{\ell}, \nu, \Sigma) = D^{J,\nu} + (1 - \delta_J) (1 - \lambda_e p(\theta)) \beta E J(\mathbf{a}', \mathbf{b}', \mathbf{w}, \eta_{\ell}', \nu, \Sigma')$$

• In equilibrium,

$$q(\theta) \beta EJ(a, b, w, \eta_{\ell}, \nu, \Sigma) = k$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Government

• A balanced government budget in each period

$$\int \mathcal{W}_{t}^{\nu(j)} \exp\left(\eta_{\ell,t}\left(j\right)\right) \rho^{w} w_{t}\left(j\right) \mathcal{I}_{\left\{\epsilon(j)=u\right\}} dj + y_{\min}$$
$$+ \int \tau^{J}\left(j\right) \mathcal{I}_{\left\{\epsilon(j)=u\right\}} dj = \int_{h} \tau_{t} Y_{t}^{X}\left(h\right) dh + \int_{h} \tau_{t} Y_{t}^{Z}\left(h\right) dh$$

- y_{\min} : transfers to households; τ^{J} : transfers to firms
- We plan to extend to unbalanced budget

Impulse Response Functions

- Koop's et al. (1996) methodology
- In the figures,
 - "Relative":

$$\frac{X^{innovation} - X^{no_innovation}}{X^{no_innovation}} \times 100$$

"Absolute":

$$\frac{X^{innovation} - X^{no_{-}innovation}}{number of simulations} \times 100$$

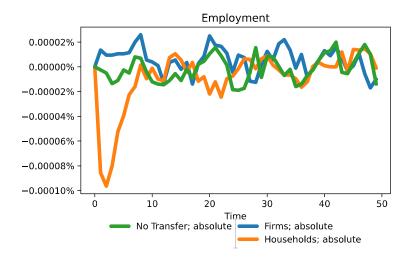
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Impulse Response Functions (IRF)

• No-innovation series:

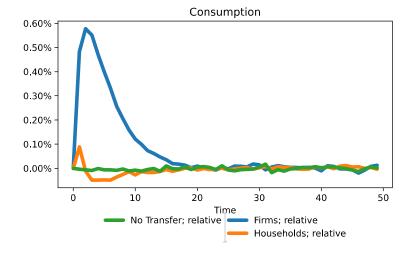
"No TFP shock in COVID-vulnerable sector" plus "No Transfers"

• 3 innovation series, each of which has

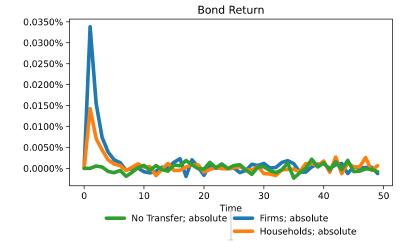

"A TFP shock in the COVID vulnerable sector" plus

- 1. "No Transfer": no additional transfers to households or firms
- 2. "Households": transfers to households
- 3. "Firms": transfers to firms

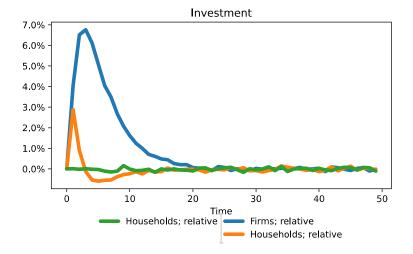
Model's Solution and IRF


- Model's period: 1 month
- 200 agents (100 in each sector)
- "TFP shock in the COVID vulnerable sector":
 - a 1 standard deviation negative shock
- " Households" :
 - *y_{min}* increases by a factor of 5 in the first period and then decays by a factor of .5 each period
- " Firms" :
 - τ^{J} increases from 0 to $4y_{min}$ in the first period and then decays by a factor of .5 each period

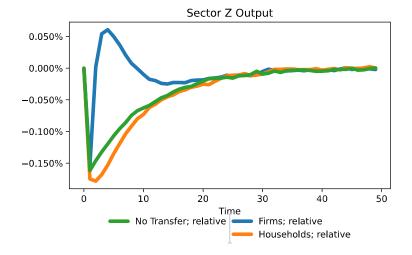
Employment


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Consumption

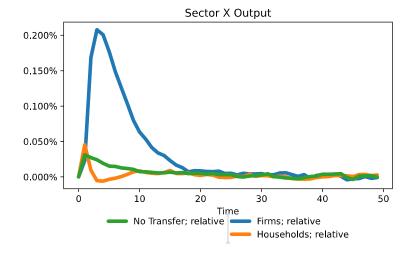

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Bond Return

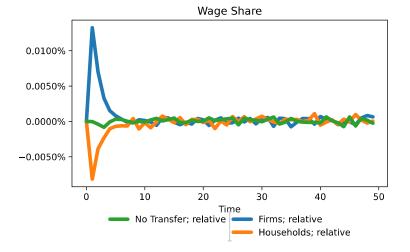


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

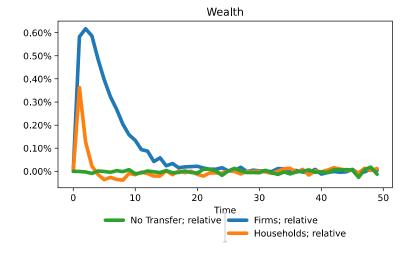
Investment



Output in the COVID Vulnerable Sector



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?


Output in the COVID Robust Sector

Wage Share

Wealth

Conclusion

- The type of transfers used is important for how output responds to TFP shock in one sector:
 - with the firm transfers, output in the COVID-vulnerable sector starts increasing almost immediately, after the initial drop

- The responses of employment and wage share differ between firm and household transfers
- All effects are significantly larger for firm transfers than for household transfers
- Preliminary results for the real economy are promising
- Need to solve the full new Keynesian model

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Krusell and Smith (1998) versus the Present Paper

- Krusell and Smith (1998) use a reduced state space:
 X_i (variables of agent i, aggregate moments)
 ⇒ few state variables
- The present paper uses the full state space:
 X_i (variables of all agents, distributions)
 ⇒ hundreds of state variables

How do we deal with such a large state space?

- Neural network automatically performs the model reduction

 it learns to summarize information from many inputs into a smaller set of hidden layers.
- 2. Neural network deals with ill conditioning
 - it learns to ignore collinear and redundant variables.