Motivation
- translog cost system with one input (simplified)
\[\ln C = \ln (\theta(Z)) + \beta_1 \ln W + \frac{1}{2} \beta_2 (\ln W)^2 + u_1 \]
where \(S = \beta_1 + \beta_2 \ln W + u_2 \)
- C: total cost; W: input price
- \(\theta \): efficiency parameter of environmental factors \(Z \)
- \(u_1 \): input share obtained by Shephard’s lemma
- more efficient estimating the system as a whole.

Abstract
- motivated by estimation of a translog cost system
- propose more efficient estimators for a partially linear SUR model
- combine profile least-square (Robinson, 1988) and SUR (Zellner, 1962)
- establish asymptotic normality and efficiency for both the linear and nonparametric estimators
- covariance decomposition method remains in terms of nonparametric efficiency, i.e., Cholesky decomposition
- errors across equations are correlated so that

A partially linear SUR model
Consider a system of \(m \) equations
\[y_i = \beta_0(x_{i1}, \ldots, x_{im}) + \epsilon_i \]
for \(i = 1, \ldots, n \) and \(x = 1, \ldots, m \).

Moment conditions
1. As \(\E(s_i) = 0 \) and \(\epsilon_i \) enters linearly
2. errors across equations are correlated s.t. \(\E(s_i \epsilon_j) = c_{ij} \) but not across time \(\E(s_i \epsilon_i) = 0 \)

Estimation
- by Robinson (1988), single-equation estimator for \(\beta_i \)
\[\hat{\beta}_i = \left(\sum_{j=1}^{m} y_j \gamma_{ij} \right)^{-1} \sum_{j=1}^{m} y_j \gamma_{ij} \]
- by Zellner (1962), our SUR estimator for \(\beta_i \)
\[\hat{\beta}_i = \left(\sum_{j=1}^{m} \gamma_{ij} \gamma_{ij} \right)^{-1} \sum_{j=1}^{m} \gamma_{ij} y_j \]

Asymptotic normality

Nonparametric estimator

Theorem 1. Under Assumptions A1-A4, we have
\[\sqrt{n} \left(\hat{\beta}_i - \beta_i \right) \xrightarrow{d} N(0, V) \]
where
\[V = \E \left(\E \left(\gamma_{ij} \gamma_{ij} \right)^{-1} \right) \]

Efficiency discussion
- by Robinson (1982), SUR estimator for \(\beta_i \) is efficient relative to \(\hat{\beta}_i \) as \(\E(\beta_i^2) = \E(\beta_i^2) \)
- but not across time

Simulations
Consider the following DGPs

Table 1: Finite Sample Performance with Cross-Equation Correlation (\(\rho_{xy} = 0.6 \))

References
Nankai University & Kai Sun
"Nankai University Shanghai University"