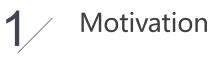


Reward, Punishment and Children's Cooperation Preference

Yexin Zhou^a, Siwei Chen^b, Jubo Yan^{c*}

a, Beijing Normal University


b, Peking University

b, Nanyang Technological University

AEA Poster Session Jan 7-9, 2022

CONTENTS

Experimental Design

/ Results

2

3

1. Motivation

Cooperation

- A central problem for biology and social science (Darwin, 1871; Fehr & Fischbacher, 2004; Imhof et al., 2005; Williams, 1966)
- Prisoner's Dilemma or Public Goods Games
- People cooperate much more than predicted by classic economic theory, but their contributions decline with repetition (Ledyard, 1995)
- Conditional Cooperation, Free rider (Fischbacher et al., 2001)

Q: How to restrain free-riding behavior through some institution?

• Punishment and reward (Balliet et al., 2011; Chaudhuri, 2011)

Punishment

- Ostrom (1992) "Covenants with and without a Sword: Self-Governance is Possible" pioneering work
- Fehr and Gachter (2000): "without punishment-with punishment (costly)" and "partner-stranger", 2*2 PGG

Reward

- Vyrastekova and van Soest (2007): <u>Pure transfer vs. "net positive"</u> rewards, Common Pool Resource (CPR) game
- Yang et al. (2018a): <u>Endogenous reward</u> that taxes the gross income

Both reward and punishment have positive effects on cooperation (Balliet et al., 2011).

Q: Which has the better effect? – Depends on specific experimental design

- The combination of reward and punishment works best (Andreoni et al., 2003; Sefton et al., 2007)
- Changed group member: Punishment is more effective than reward (Choi and Ahn, 2013)
- Fixed group member: Punishment is more effective than reward (Balliet et al., 2011); There is little difference between punishment and reward (Choi and Ahn, 2013)

Exogenous institution vs. Endogenous institution

- Difference: whether there is a voting system
- Endogenous premium (Dal Bó et al., 2010)
- Population heterogeneity: endogenous premium exists in undergraduates but not in workers (Vollan et al., 2017)
- **Q:** Is there an endogenous premium in children?

Punishments/Rewards with Uncertainty

- Walker (2004) : reward/punishment are implemented with 50% probability in PPG
- Dai et al. (2015) : investigate the impact of various audit schemes on PPG
- Yang et al. (2018b) : introduce lottery mechanism in PPG for the first time
- Jiao et al. (2020) : introduce the probabilistic reward and punishment mechanism in PPG

Reward, punishment and children's cooperation

NORMAL UP

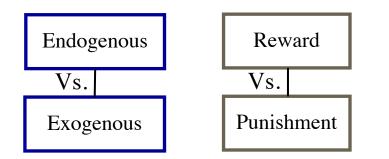
Children's cooperation preference

- Harbaugh and Krause (2000) : An early experiment using PPG to study children's cooperation.
 - Like adults, children contribute a certain amount to PPG, and older children are more generous in the first round.
- Other factors that influence cooperation in children
 - Moral education (Fan, 2000), group size (Alencar et al., 2008), level of parental cooperation (Cipriani et al., 2013), gender (Cardenas et al., 2014) and group differences (Angerer et al., 2016).
- Sutter et al. (2019) : Literature review
 - "Economic behavior of children and adolescents A first survey of experimental economics results"

Only a few studies introduce reward or punishment mechanisms to children's cooperation experiment

- Lergetporer et al. (2014): Prisoner's Dilemma, third-party punishment
- Gummerum and Chu (2014): Ultimatum Game, second- or third-party punishment
- Bernhard et al. (2020): Ultimatum Game, second- or third-party punishment
- Lee and Warneken (2020): Ultimatum Game, third-party punishment or help

Why should we study children's preference?


List et al. (2021)

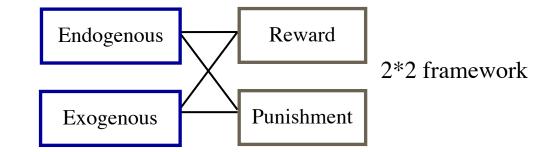
- Understand children themselves for immediate purposes
 - Understand models of human capital formation and early childhood education
 - Understand how best to invest in child development and skill formation
- Provide a unique glimpse into understanding adults

Further work should explore specific <u>cultural beliefs and institutions</u> that influence cooperative behavior and how their acquisition and application shapes children's behavior across development.

—— House et al. (2013)

Previous literature

Undergraduates with lab experiment


Ultimatum game or prisoner's dilemma game

Without uncertainty, 100%

Descriptive analysis

Small-scale sample, <200

Our contribution

Students in middle and primary school with field experiment

Public goods games

With uncertainty, 50%

Beliefs and mechanism analysis

Large-scale sample, >1600

Research question

(1) What's the effects? Is there an endogenous premium in children?

(2) What's the institutional preference of children?

(3) How to save cost?

(4) Why do they change their cooperation?

Research hypothesis

H1. The effect of exogenous institution is greater than that of endogenous institution, and there is no endogenous premium in children.

H2. Rewards are more popular.

H3. The probability implementation of reward or punishment can also improve the level of cooperation, and the greater the probability, the better the effect.

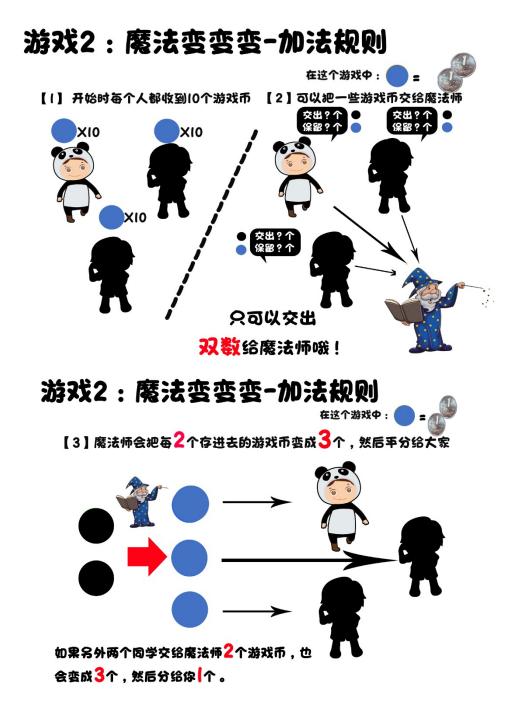
H4. There was a significant positive correlation between beliefs in others and the level of public goods supply.


2. Experimental Design

2.1 Experimental Design

VCM

$$\pi_i = 10 - g_i + 0.5 \sum_{j=1}^3 g_j$$




Reward

$$\begin{cases} \pi_i = 12 - g_i + 0.5 \sum_{j=1}^3 g_j \text{ , } g_i = 10 \\ \pi_i = 10 - g_i + 0.5 \sum_{j=1}^3 g_j \text{ , } g_i < 10 \end{cases}$$

Punishment

$$\begin{cases} \pi_i = 10 - g_i + 0.5 \sum_{j=1}^3 g_j , g_i = 10 \\ \pi_i = 8 - g_i + 0.5 \sum_{j=1}^3 g_j , g_i < 10 \end{cases}$$

Table1 Group division								
Group	Group1	Group2	Group3	Group4	Total			
Institution	EndoReward	EndoPunish	ExoReward	ExoPunish				
Rules	Addition Rule Voting Rule	Deduction Rule Voting Rule	Addition Rule	Deduction Rule	1602			
Observation	367	430	357	448				

One example: Endogenous Reward

Voting rule: Now you and your team members need to vote to decide whether to adopt the addition rule in this game. The addition rule will be applied if a majority of voters (2 or 3 voters) approves of it. The addition rule will not be applied if a minority (0 or 1 voter) approves.

Addition rule: If anyone gives the magician less than 10 tokens, then at the end of this game, the magician will give extra 2 tokens to him/her.

What they need to answer:

1. Do you agree to use the *addition rule*? Please tick $\sqrt{}$ in your choice of \square .

□Agree □ Disagree

2. If your group decides to use the *addition rule*, how many tokens will you give to the magician?

```
\Box 0 \quad \Box 2 \quad \Box 4 \quad \Box 6 \quad \Box 8 \quad \Box 10
```

3. If your group decides not to use the *addition rule*, how many tokens will you give to the magician?

 $\Box 0 \quad \Box 2 \quad \Box 4 \quad \Box 6 \quad \Box 8 \quad \Box 10$

What they need to answer:

	1.1	Assu	ming	g tha	at the	addi	tion r	ule is bo	ound	to take	effect, how	w many to	kens will y	ou give to t	he magicia	in?
		0		2		4		6 [8		10					
Containty		1.2 I	n thi	s ca	se, ho	w m	any to	okens do	o you	think t	he other tw	o students	s in your gr	oup will give	ve?	
Certainty		\Box 0			2		4	6		8	□ 10	□ 1 2	□ 14	□ 16	□ 18	□ 20
		1.3 H	Iow	mar	ny tok	ens	do you	ı think t	he thr	ee stu	dents of and	other grou	p will give	?		
		\Box 0)		2		4	6		8	□ 10	☐ 12	□ 14			
		□ 1	6		18		20	□ 22] 24	□ 26	□ 28	□ 30			
	2.1	Assu	ming	g tha	at the	addi	tion r	ule has	a half	chan	ce to take e	ffect, how	many toke	ens will you	give to the	e magician?
		0		2		4		6 [8		10					
		2.2 I	n thi	s ca	se, ho	w m	any to	okens do	you '	think t	he other tw	o students	s in your gr	oup will gi	ve?	
Uncertaint	Y	0			2		4	6		8	□ 10	□ 1 2	□ 14	□ 16	□ 18	□ 20
	2.3 How many tokens do you think the three students of another group will give?															
		\Box 0			2		4	6		8	□ 10	□ 12	□ 14			

2.2 Experimental Process

- Time & Place
 - > April and May 2019
 - Santai, Beichuan, Dujiangyan in Sichuan Province
- Sampling method
 - Schools were selected according to the distance to the county
 - \blacktriangleright Grade 2, 4, 6 and 9 in 11 schools
 - One class is selected from each of the four grades
 - ▶ 1602 students in primary and middle school, 38 classes
- Student Questionnaire
 - After the experiment
 - Demographic characteristics of the child
- Payment
 - Tokens exchanged to the subjects
 - The average returns of experimental group 1 to group 4 are 15.10, 16.55, 14.77 and 13.14 tokens, respectively

- Parent Questionnaire:
 - ➢ Family meeting
 - Basic family information including financial status, the education level of parents and the situation of migrant workers, children's nursing information, etc

 Table 2 Conversion ratio

Token	Candy	Pen	Notebook	Exchange
Grade 2	3:2	4:1	6:1	1:0.2
Grade4	3:2	4:1	6:1	1:0.2
Grade 6	1:1	3:1	4:1	1:0.3
Grade 9	3:4	2:1	3:1	1:0.4

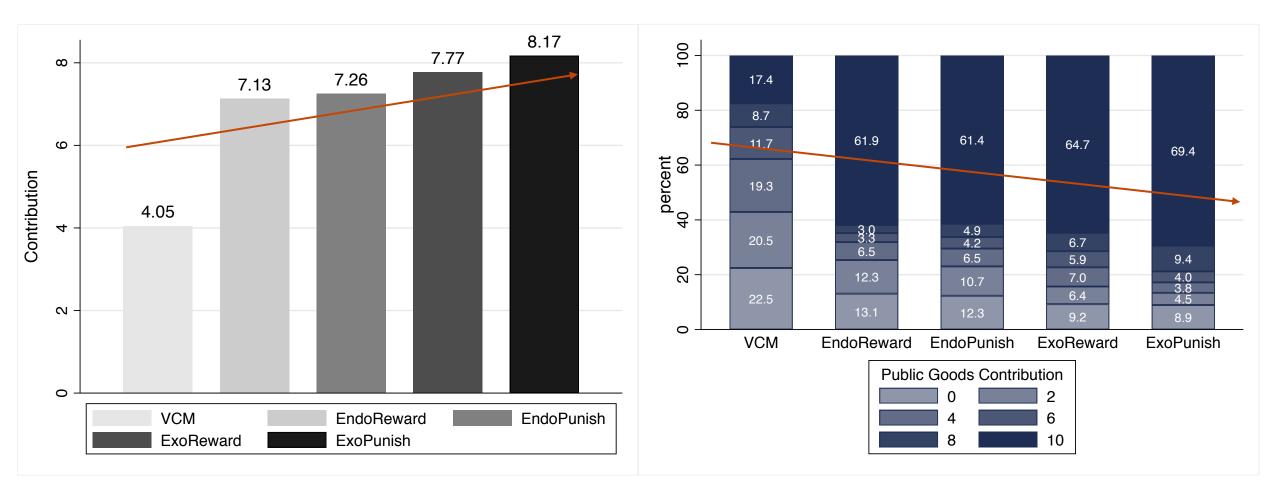
Year: 2018, 2019 (partial Panel data)

1632 students & 1632 caregivers

4 grades38 classes11 schools3 counties

Santai County Beichuan County Dujiangyan

Sichuan Province


Paper and pen experiment # A stapled booklet.

3. Results

3.1 Comparison of the effects of the mechanisms

Fig. 1 Mean contribution under different mechanisms

Fig. 2 Distribution of contribution under various mechanisms

Exogenous punishment (8.17) > exogenous reward (7.77) > endogenous punishment (7.26) > endogenous reward (7.13)

Comparation with adults

	This name	Vollan et. al (2017)				
	This paper	Full sample	Undergraduates	workers		
VCM contribution	43%	47%	29%	64%		
EndoPunish contribution	73%	50%	37%	63%		
EndoPunish contribution	82%	60%	45%	74%		
Vote for punishment	36%	42%	52%	32%		
VCM free-riders	23%	22%	25%	6%		
EndoPunish free-riders	12%	25%	37%	13%		
ExoPunish free-riders	9%	26%	40%	13%		
VCM full-contributor	17%	21%	7%	27%		
EndoPunish full-contributor	61%	47%	40%	55%		
ExoPunish full-contributor	69%	48%	38%	64%		

Regression

 $Contri_{i} = \beta Treat_{i} + \gamma X_{i} + \varepsilon_{i}$ $Contri_{i} = \beta Treat_{i} + \delta_{1} VCM_{i} + \gamma X_{i} + \varepsilon_{i}$

	Full s	Excluding Grade 2	
	(1)	(2)	(3)
EndoPunish	0.128	0.193	0.499
	(0.278)	(0.291)	(0.362)
ExoReward	0.642**	0.650**	0.603
	(0.277)	(0.288)	(0.373)
ExoPunish	1.046***	1.137***	1.334***
	(0.259)	(0.281)	(0.365)
Controls	NO	YES	YES
Observation	1602	1531	1102
Adjusted-R ²	0.012	0.017	0.012
F-value	7.528	3.265	2.075

Table 4 Influence of different mechanisms on children's cooperation level (OLS)

Note :(1) In parentheses are robust standard errors, * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$; (2) Regression controls variables
such as gender, dummy variable of grade, only child, currently living in school, left-behind child and distance of school,
etc. (3) The reference group was endogenous reward.

Results 1: The effects of exogenous institutions on the improvement of children's cooperation level are better than that of endogenous institutions, that is, children do not have endogenous premium. In exogenous mechanisms, the effect of punishment is greater than that of reward, while in endogenous mechanisms, the effect of reward and punishment is not significantly different.

٠

3.2 Which institution is more popular, reward or punishment?

	Ende	oReward (87.74	% supp	orters)	EndoPunish (35.58% suppoters)			
	Total	Total supporters opponents Mean diff				Total	supporters	opponents	Mean diff
VCM	3.78	4.02		2.09	1.93***	4.78	5.99	4.11	1.88***
EndoReward_100%	7.13	7.45	>	4.8	2.65***				
EndoReward_0%	3.77	4.02		1.95	2.07***			>	
EndoPunish_100%)			7.26	7.69	7.02	0.67*
EndoPunish_0%						4.54	5.14	4.22	0.92**

Table 5. Contribution difference between supporters and opponents

Note: T-test is used for the mean difference between supporters and opponents under various institutions. *, ** and *** represent the significance level of 10%, 5% and 1%, respectively.

Table 6 Cooperation of supporters

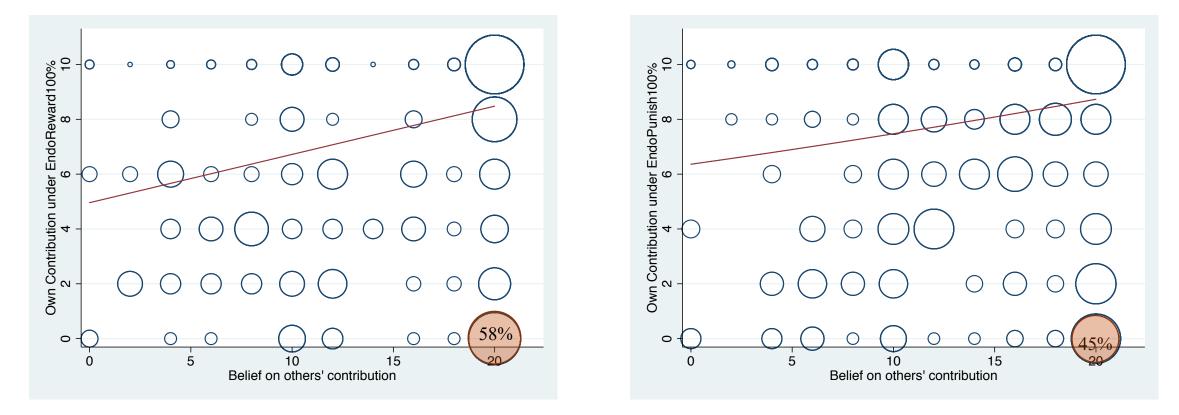
Variable	EndoRe	eward	EndoPunish			
	(1)	(2)	(3)	(4)		
	With reward	Without reward	With punishment	Without punishment		
Vote for reward	2.761***	1.525***				
	(0.700)	(0.438)				
Vote for			0.811**	0.674		
punishment			(0.403)	(0.416)		
Observations	348	348	408	408		
Adjusted-R ²	0.086	0.131	0.045	0.027		
F-value	3.811	7.186	3.546	2.324		

Note :(1) In parentheses are robust standard errors, * p < 0.1, ** p < 0.05, *** p < 0.01; (2) Regression controls variables such as gender, dummy variable of grade, only child, current residence, distance of school, and fixed effect of county.

Result 2: Rewards are more popular than punishments; People with high levels of cooperation are more likely to be supporters of institutions. No matter whether a certain reward or punishment measure is implemented, the cooperation level of the supporters is higher than that of the opponents, and the difference is more significant in the reward situation.

4. Discussion

4.1 How to reduce the cost of institution implementation?


Result 3

- The uncertainty of the implementation probability of reward or punishment could also improve children's cooperation level, but the effect was not as good as that of the inevitable implementation of reward and punishment mechanism.
- Under the condition of 50% probability, punishment also improved children's cooperation level more than reward.

4.2 Belief and children's cooperation		Exogenou	us Reward	Exogenous	Exogenous Punishment		
•		(1)	(2)	(3)	(4)		
		Contribution	Contribution	Contribution	Contribution		
		100%	50%	100%	50%		
	ExoReward	0.183***					
	100%_belief	(0.034)					
High level of VCM cooperation	 1	(0.00 !)	0.245***				
	ExoReward						
Being supporters of the reward/punishment More contributions then opponents	50%_belief		(0.030)				
	ExoPunish			0.176***			
More contributions than opponents \downarrow	100%_belief			(0.033)			
Higher belief in the other members of the group	ExoPunish				0.201***		
	100%_belief				(0.031)		
	Obseravtion	344	344	431	431		
	Adjusted-R ²	0.126	0.217	0.079	0.089		
	F-value	5.830	12.901	4.651	6.655		

 Table 7 The influence of beliefs of others' contribution on children's cooperation

Note :(1) In parentheses are robust standard errors, * p < 0.1, ** p < 0.05, *** p < 0.01; (2) Regression controls variables such as gender, dummy variable of grade, only child, current residence, distance of school, and fixed effect of county. 24

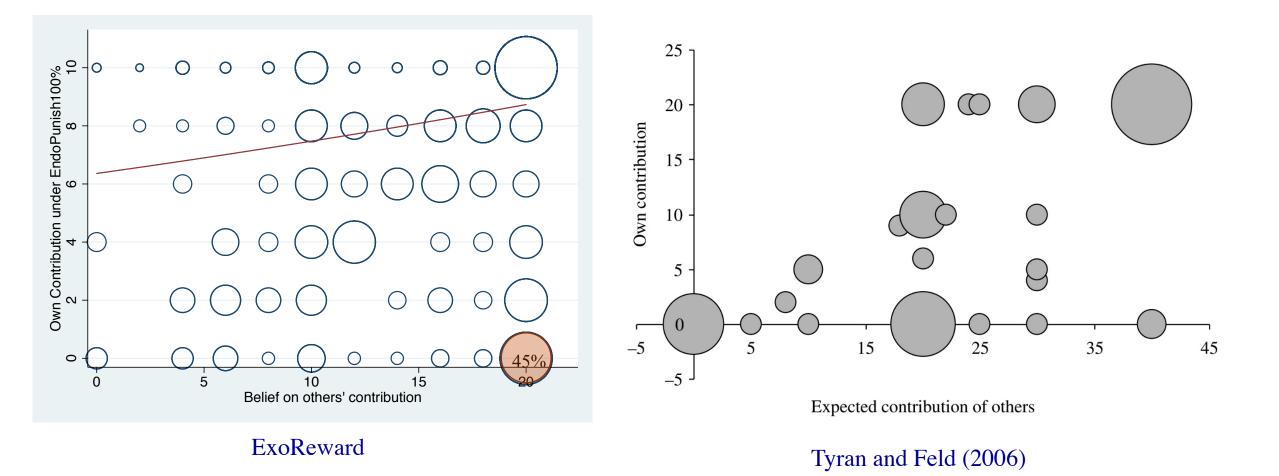

One question: For free-riders, do they also expect the rest of the group to contribute 0?

Fig.7 Belief and contribution in ExoReward_100%

Fig.8 Belief and contribution in ExoPunish_100%

Children are already able to take strategic actions that fit the predictions of neoclassical economics!

Children seem to be more strategic than adult!

5. Conclusion

(1) All the mechanisms could significantly promote children's cooperation level, but the effects are different.

Exogenous mechanisms are more effective than endogenous mechanisms, and punishment is more effective than reward.

(2) Reward is more popular. More cooperative individuals are more likely to be supporters of incentive policies.

(3) Mechanisms with 50% probability of enactment could also improve children's cooperation significantly, but the effects are inferior to certain ones.

(4) We found a significant positive correlation between students' supply level and their belief in the contribution of other members. Free-riders made the dominant strategy choice precisely by taking advantage of the deterrence/attraction of punishment/reward on team cooperation improvement.

Reference

- Alencar, A., Deoliveirasiqueira, J., Yamamoto, M., 2008. Does group size matter? Cheating and cooperation in Brazilian school children☆. Evolution and Human Behavior, 29(1), 42-48.
- Anderson, C.M., Putterman, L., 2006. Do non-strategic sanctions obey the law of demand? The demand for punishment in the voluntary contribution mechanism. Games and Economic Behavior, 54(1), 1-24.
- Andreoni, J., Harbaugh, W., Vesterlund, L., 2003. The Carrot or the Stick: Rewards, Punishments, and Cooperation. American Economic Review, 93(3), 893-902.
- Angerer, S., Glätzle-Rützler, D., Lergetporer, P., Sutter, M., 2016. Cooperation and discrimination within and across language borders: Evidence from children in a bilingual city. European Economic Review, 90, 254-264.
- Balliet, D., Mulder, L.B., Van Lange, P.A., 2011. Reward, punishment, and cooperation: a meta-analysis. Psychol Bull, 137(4), 594-615.
- Bernhard, R.M., Martin, J.W., Warneken, F., 2020. Why do children punish? Fair outcomes matter more than intent in children's second- and third-party punishment. J Exp Child Psychol, 200, 104909.
- Cardenas, J.C., Dreber, A., von Essen, E., Ranehill, E., 2014. Gender and cooperation in children: experiments in Colombia and Sweden. PLoS One, 9(3), e90923.
- Carpenter, J.P., 2007. The demand for punishment. Journal of Economic Behavior & Organization, 62(4), 522-542.
- Chaudhuri, A., 2011. Sustaining cooperation in laboratory public goods experiments: a selective survey of the literature. Experimental Economics, 14(1), 47-83.
- Choi, J.-K., Ahn, T.K., 2013. Strategic reward and altruistic punishment support cooperation in a public goods game experiment. Journal of Economic Psychology, 35, 17-30.
- Cipriani, M., Giuliano, P., Jeanne, O., 2013. Like mother like son? Experimental evidence on the transmission of values from parents to children. Journal of Economic Behavior & Organization, 90, 100-111.
- Dai, Z., Hogarth, R.M., Villeval, M.C., 2015. Ambiguity on audits and cooperation in a public goods game. European Economic Review, 74, 146-162.

- Dal Bó, P., Foster, A., Putterman, L., 2010. Institutions and Behavior: Experimental Evidence on the Effects of Democracy. American Economic Review, 100(5), 2205-2229.
- Dannenberg, A., Gallier, C., 2019. The choice of institutions to solve cooperation problems: a survey of experimental research. Experimental Economics.
- Dannenberg, A., Haita-Falah, C., Zitzelsberger, S., 2019. Voting on the threat of exclusion in a public goods experiment. Experimental Economics, 23(1), 84-109.
- Fan, C.-P., 2000. Teaching children cooperation An application of experimental game theory. Journal of Economic Behavior & Organization, 41(3), 191-209.
- Fehr, E., Gachter, S., 2000. Cooperation and Punishment in Public Goods Experiments. American Economic Review, 90(4), 980-994.

Fehr, E., Gachter, S., 2002. Altruistic punishment in humans. Nature, 415(6868), 137-140.

- Fischbacher, U., Gächter, S., Fehr, E., 2001. Are people conditionally cooperative? Evidence from a public goods experiment. Economics Letters, 71, 397–404.
- Gummerum, M., Chu, M.T., 2014. Outcomes and intentions in children's, adolescents', and adults' second- and third-party punishment behavior. Cognition, 133(1), 97-103.
- Gürerk, Ö., Lauer, T., Scheuermann, M., 2018. Leadership with individual rewards and punishments. Journal of Behavioral and Experimental Economics, 74, 57-69.
- Harbaugh, W.T., Krause, K., 2000. Children's altruism in public good and dictator experiments. Economic Inquiry, 38(1), 95-109.
- Heckman, James J., Stixrud, J., Urzua, S., 2006. The Effects of Cognitive and Noncognitive Abilities on Labor Market Outcomes and Social Behavior. Journal of Labor Economics, 24(3), 411-482.
- Jiao, Y., Chen, T., Chen, Q., 2020. Probabilistic punishment and reward under rule of trust-based decision-making in continuous public goods game. Journal of Theoretical Biology, 486, 110103.
- Kocher, M.G., Matzat, D., 2016. Preferences over Punishment and Reward Mechanisms in Social Dilemmas. Journal of Institutional and Theoretical Economics, 172(1).
- Ledyard, J.O., 1995. Public Goods: A Survey of Experimental Research. Handbook of Experimental Economics, Princeton: Princeton University Press.

- Lee, Y.E., Warneken, F., 2020. Children's evaluations of third-party responses to unfairness: Children prefer helping over punishment. Cognition, 104374.
- Lergetporer, P., Angerer, S., Glatzle-Rutzler, D., Sutter, M., 2014. Third-party punishment increases cooperation in children through (misaligned) expectations and conditional cooperation. PNAS, 111(19), 6916-6921.
- Nikiforakis, N., Normann, H.-T., 2008. A comparative statics analysis of punishment in public-good experiments. Experimental Economics, 11(4), 358-369.
- Noussair, C.N., van Soest, D., Stoop, J., 2014. Punishment, reward, and cooperation in a framed field experiment. Social Choice and Welfare, 45(3), 537-559.
- Ostrom, E., Walker, J., & Gardner, R., 1992. Covenants with and without a Sword: Self-Governance Is Possible. American Political Science Review, 86(2), 404-417.
- Rand, D.G., Dreber, A., Ellingsen, T., Fudenberg, D., Nowak, M.A., 2009. Positive Interactions Promote Public Cooperation. Science, 325(5945), 1272-1275.
- Sefton, M., Shupp, R., Walker, J.M., 2007. The effect of rewards and sanctions in provision of public goods. Economic Inquiry, 45(4), 671-690.
- Sutter, M., Zoller, C., Glätzle-Rützler, D., 2019. Economic behavior of children and adolescents A first survey of experimental economics results. European Economic Review, 111, 98-121.
- Vollan, B., Landmann, A., Zhou, Y., Hu, B., Herrmann-Pillath, C., 2017. Cooperation and authoritarian values: An experimental study in China. European Economic Review, 93, 90-105.
- Vyrastekova, J., van Soest, D., 2007. On the (in)effectiveness of rewards in sustaining cooperation. Experimental Economics, 11(1), 53-65.
- Walker, J.M., Halloran, M.A., 2004. Rewards and sanctions and the provision of public goods in one-shot settings. Experimental Economics, 7, 235–247.
- Wang, S., Liu, L., Chen, X., 2020. Tax-based pure punishment and reward in the public goods game. Physics Letters A.
- Yang, C.L., Zhang, B., Charness, G., Li, C., Lien, J.W., 2018a. Endogenous rewards promote cooperation. Proc Natl Acad Sci U S A, 115(40), 9968-9973.
- Yang, R., Chen, T., Chen, Q., 2018b. The impact of lotteries on cooperation in the public goods game. Physica A: Statistical Mechanics and its Applications, 512, 925-934.

THANKS! \succ

chensiwei96@163.com Moocy_Chen_