Hacking Gender Stereotypes

Michela Carlana (Harvard Kennedy School)
Margherita Fort (University of Bologna)

ASSA 2022 Virtual Annual Meeting January 8th, 2022

Motivation

- Employment opportunities and wage growth are rising more rapidly among occupations that require high level of both social and math skills (Deming, 2017; Fayer et al., 2017)
- The supply of those skills is insufficient also due to the limited participating of women in STEM and coding (Kahn and Ginther, 2017; Adams and Kirchmaier, 2016)
- Several initiatives around the word are trying to promote STEM education among female students or adult women \rightarrow limited evidence on the self-selecting and impact of these interventions

Research questions

1. Who are the girls that self-select into coding clubs?
2. Which is the impact of coding clubs on girls?
3. Which is the impact of coding clubs on the formation of stereotypes in schools?

In this presentation, I will show evidence on the first question and some preliminary results on the second from the pilot data.

Outline

Data and Experimental Design

Program Sign-Up

Preliminary Results (from pilot)

Conclusions

Girls Code It Better

- The idea: from a private employment agency in Italy \rightarrow firms wants to hire more women in STEM and coding
- Participation in the coding clubs:
- 20 middle-school girls (11-14 years old), 1 trained teacher, 1 coach maker
- voluntary, free of charge for girls
- at school in the afternoon, 45 hours per school year
- Project-based methodology:
- Coding and new technologies (automation, web and app design, 3D printing)
- Team work and communication

Girls Code It Better

Data Collection

- Survey Data from Students. We collect survey data at the end of the school year from all students in the schools included in the randomization
- Response rate and matching: 85%
- Administrative Data and Standardized Test Score: track choice, teachers' track recommendation, grades (to be obtained soon)

Experimental Design

Randomization: individual level randomization within each school, conditional on receiving more than 20 application.

- 16 schools with rationing

	(1) Control	(2) Treated	(3) Diff	(4) Norm. Diff.
Immigrant	0.061	0.165	$0.099^{* *}$	0.237
	(0.240)	(0.372)	(0.035)	
Mum less than high-school	0.545	0.523	-0.075	-0.032
	(0.500)	(0.500)	(0.069)	
Mum has a university degree	0.455	0.477	0.075	0.032
	(0.500)	(0.500)	(0.069)	
Mum works in STEM	0.148	0.183	0.044	0.066
	(0.357)	(0.387)	(0.055)	
Mum has a high wage	0.717	0.665	-0.016	-0.079
	(0.453)	(0.473)	(0.054)	
Dad less than high-school	0.626	0.605	-0.051	-0.030
	(0.486)	(0.490)	(0.064)	0.030
Dad has a university degree	0.374	0.395	0.051	0.0
	(0.486)	(0.490)	(0.064)	
Dad works in STEM	0.337	0.303	-0.002	-0.051
	(0.475)	(0.461)	(0.054)	
Dad has a high wage	0.576	0.583	0.018	0.010
	(0.497)	(0.494)	(0.061)	
Observations	99	266	365	

Gender Gaps

Variable	Boys	Girls	P-value
Panel A: Academic Interests			
Plans: University	0.543	0.700	0.000
	(0.498)	(0.458)	
Like Math	0.479	0.384	0.000
	(0.500)	(0.486)	
Like Italian	0.302	0.440	0.000
	(0.459)	(0.496)	
STEM High-School	0.415	0.372	0.004
	(0.493)	(0.484)	
Classic High-School	0.494	0.707	0.000
	(0.500)	(0.455)	
STEM Occupations	0.547	0.334	0.000
	(0.498)	(0.472)	
Non-STEM Occupations	0.436	0.460	0.091
	(0.496)	(0.499)	
Panel B: Barriers to achieve Educational Goals			
Barrier: Gender Unfit	0.410	0.535	0.000
	(0.492)	(0.499)	
Barrier: Ability Math	0.349	0.437	0.000
	(0.477)	(0.496)	
Observations	2244	2250	

Outline

Data and Experimental Design

Program Sign-Up

Preliminary Results (from pilot)

Conclusions

How do Girls Self-Select into Coding Clubs?

We may expect that girls who self-select into coding clubs are (Ert| et al., 2017):

- less prone to stereotypic influences;
- have stronger STEM interest;
- highly educated parents working in STEM (especially mothers).

Investigating the characteristics associated with take-up of these types of programs is of crucial importance for designing effective policies to address gender gaps in STEM.

How do Girls Self-Select into Coding Clubs?

Variable	Not Apply	Apply	P-value
Panel A: Family Background			
Immigrant	0.190	0.061	0.006
	(0.392)	(0.240)	
Mum less than high-school	0.582	0.545	0.396
	(0.403)	(0.500)	
Mum has a university degree	0.418	0.455	0.391
	(0.493)	(0.500)	
	0.133	0.148	0.756
Mum works in STEM	(0.340)	(0.357)	
Mum has a medium-high wage	0.648	0.717	0.143
	(0.478)	(0.453)	
Dad less than high-school	0.614	0.626	0.913
	(0.487)	(0.486)	
Dad has a university degree	0.386	0.374	0.919
	(0.487)	(0.486)	
Dad works in STEM	0.282	0.337	0.246
	(0.450)	(0.475)	
Dad has a medium-high wage	0.582	0.576	0.945
	(0.493)	(0.497)	

How do Girls Self-Select into Coding Clubs?

Variable	Not Apply	Apply	P -value
Panel B: Academic Interests			
Plans: University	$\begin{gathered} 0.691 \\ (0.462) \end{gathered}$	$\begin{gathered} 0.707 \\ (0.457) \end{gathered}$	0.454
Like Math	$\begin{gathered} 0.365 \\ (0.482) \end{gathered}$	$\begin{gathered} 0.434 \\ (0.498) \end{gathered}$	0.128
Like Italian	$\begin{gathered} 0.439 \\ (0.496) \end{gathered}$	$\begin{gathered} 0.404 \\ (0.493) \end{gathered}$	0.293
STEM High-School	$\begin{gathered} 0.354 \\ (0.478) \end{gathered}$	$\begin{gathered} 0.444 \\ (0.499) \end{gathered}$	0.042
Classic High-School	$\begin{gathered} 0.708 \\ (0.455) \end{gathered}$	$\begin{gathered} 0.758 \\ (0.131) \end{gathered}$	0.366
STEM Occupations	$\begin{gathered} 0.308 \\ (0.462) \end{gathered}$	$\begin{gathered} 0.374 \\ (0.486) \end{gathered}$	0.079
Non-STEM Occupations	$\begin{array}{r} 0.468 \\ (0.499) \\ \hline \end{array}$	$\begin{gathered} 0.404 \\ (0.493) \\ \hline \end{gathered}$	0.261
Pane! C: Rarriers to achiove Educationa! Goals			
Barrier: Gender Unfit	$\begin{gathered} 0.533 \\ (0.499) \end{gathered}$	$\begin{gathered} 0.657 \\ (0.477) \end{gathered}$	0.018
Barrier: Ability Math	$\begin{gathered} 0.444 \\ (0.497) \end{gathered}$	$\begin{gathered} 0.434 \\ (0.498) \end{gathered}$	0.687
Explicit gender stereotypes	$\begin{gathered} 0.351 \\ (0.477) \\ \hline \end{gathered}$	$\begin{gathered} 0.354 \\ (0.480) \\ \hline \end{gathered}$	0.725
Observations	1885	99	

Outline

Data and Experimental Design

Program Sign-Up

Preliminary Results (from pilot)

Conclusions

The Impact of Coding Clubs Share of students interested in STEM Occupations

STEM Occupations

The Impact of Coding Clubs Placebo

Mechanisms:

Barrier to Achieve Educational Goals

Outline

Data and Experimental Design
 Program Sign-Up
 Preliminary Results (from pilot)

Conclusions

Summary and Conclusions

- We show that girls who self-select to participate in coding clubs have:
- slightly more educated mothers (but not statistically significant);
- high interest in STEM occupations;
- BUT they perceive their gender unfit to achieve her goals.
- Participation in coding clubs is a promising venue to increase interest in STEM occupations for women and mitigate the perception that own gender is unfit to achieve their goal

THANK YOU!
michela_carlana@hks.harvard.edu

