Firm Heterogeneity and the Capital Market

Tobias König

HUB, DIW, UP

Brown Bag Seminar

December 1, 2021
Research Question

Question:
What is the role of financial constraints for the transmission of both an external equity financing shock and a monetary policy shock on firm investment rates?

What is an aggregate external equity financing shock here?
An idiosyncratic change in the demand for shares of large firms with positive general equilibrium spill-over effects on both aggregate outstanding shares and share prices of SMEs.

E.g. Investor-side shock on the demand for Google shares.
Motivation

Investment explain large share of business cycle fluctuations.

Role of financial constraints for the most important sources of firms funding:

- external equity and corporate loans

Analyze role of financial constraints by looking at transmission of monetary policy shocks and external equity financing shocks.
Share issuance and share buybacks in the US

Figure: Fraction of firms that either issue equity or reduce the amount of outstanding shares. Own calculations based on Compustat sample.
This paper

1. Constructing an instrument for external equity financing shocks by using firm-level data
 - by using a novel method
 - Granular Instrumental Variables, Gabaix and Koijen (2020, NBER)

2. I investigate: role of up to six financial constraints firms face when (i) capital market funding improves, (ii) lending rates are cut via monetary policy.

3. I demonstrate: it is highly relevant to distinguish between different types of constraints to explain heterogeneity in firms’ investment rates.
 - relevant both for including financial constraints in theoretical models and for empirical research

Literature
Literature

External equity financing shock:

- Belo et al. (2019, RFS), Eisfeldt and Muir (2016, JME)

Financial constraints and heterogeneous firm investment responses:

1. Firm size and monetary policy:
 - Gertler and Gilchrist (1994, QJE), Ferrando et al. (2019, EIB Working Paper)

2. Leverage and monetary policy:
 - Lakdawala and Moreland (2019, REStat), Ottonello and Winberry (2020, Econometrica)

3. Age, dividends and monetary policy:
 - Cloyne et al. (2020, NBER Working Paper)

4. Liquid assets and monetary policy:

5. Earning-based constraints and monetary policy:
 - Lian and Ma (2021, QJE)
Results in a nutshell

1. **Equity shock:**
 constrained firms w/ high expected profits (Tobin’s Q)

2. **Monetary policy shock:**
 constrained firms w/ high debt burden

<table>
<thead>
<tr>
<th></th>
<th>Equity shock</th>
<th>Monetary policy shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobin’s Q</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>EBC</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>ABC</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table: Sensitivity of firm investment rates relative to the average economy-wide response

EBC: earning-based constraint
ABC: asset-based constraint
Data set

Data set used:

- Compustat: data set with publicly-listed firms
- Country: United States, 1982Q1 - 2020Q3 (quarterly)
- Net issued equity $\Delta E_{i,t}$: Δ shareholder equity $E_{i,t}^{Sh}$ - Δ retained earnings $RE_{i,t}$, (Covas and den Haan 2011, AER).

- net issued equity rate: $\frac{\Delta E_{i,t}}{E_{i,t-1}} = \frac{E_{i,t}^{Sh} - RE_{i,t} - (E_{i,t-1}^{Sh} - RE_{i,t-1})}{E_{i,t-1}^{Sh} - RE_{i,t-1}}$
Granularity in the market capitalization distribution

Relative market capitalization of firms, 2019

more figures top 10 highest market cap.
Why using Granular Instrumental Variables (GIVs)?

Granular Instrumental Variable

- Relies only on (i) available firm-level data and (ii) positive spill-overs of equity issuance of large firms on share prices and share quantities of SME.
- Micro origin of aggregate shocks (Gabaix 2011, Econometrica).
Why using Granular Instrumental Variables (GIVs)?

Granular Instrumental Variable

- Relies only on (i) available firm-level data and (ii) positive spill-overs of equity issuance of large firms on share prices and share quantities of SME.
- Micro origin of aggregate shocks (Gabaix 2011, Econometrica).

Why not using sign restrictions?

- Sign restrictions rely on theoretical models.
- Implied signs of financial variables differ significantly across different financial friction models (Gambetti and Musso, 2016, JAE).
- No consensus in the literature how to infer signs for firm funding shocks.
Granular IV Methodology
Gabaix and Koijen (2020)

The GIV for the external equity financing shock is defined as:

$$u_t^{giv} = \sum_{i=1}^{N} \tilde{S}_{i,t-1} \hat{\epsilon}_{i,t} - \frac{1}{N} \sum_{i=1}^{N} \hat{\epsilon}_{i,t}$$

- $\hat{\epsilon}_{i,t}$: estimated innovation to firm’s i equity growth rate.
- $\tilde{S}_{i,t-1}$: lagged market val. of firm’s i out. shares / by aggr. market cap.

Firm equity innovations: $\epsilon_{i,t} = \lambda_{i,t} \eta_t + u_{i,t}$.

Controlling for different factor loadings: Principal component analysis (PCA) on $\hat{\epsilon}_{i,t}$ to estimate common components η_t^{PCA}.

Identification roadmap | Firm innovations | GIV Theory | more background | PCA
Firm-specific innovations to changes in issued equity

I estimate $\hat{\epsilon}_{it}$ via:

$$\frac{\Delta E_{i,t}}{E_{i,t-1}} = \alpha_i + \nu_{sc} + \sum_{k=1}^{4} \beta_{k}^f X_{i,t-k} + \sum_{k=1}^{4} \beta_{k}^m F_{t-k} + \beta_{3} t + \beta_{4} t^2 + \epsilon_{it}$$ (1)

- α_i: firm fixed effects
- ν_{sc}: sector-state fixed effects
- $X_{i,t}$: firm controls
- F_{t}: macro controls

In spirit to the literature on firm-specific lending innovations (Landier et al., 2017, JFE; Galaasen et al., 2020, Norges Bank WP; Bremus et al., 2021, DIW WP).
Instrument for the external equity shock

GIV: Aggregate external equity financing

Quarters

Percentage Points

1982q2 1989q4 1997q2 2004q4 2012q2 2019q4

GIV series NBER recessions Asian fin. crisis

size weighted equally weighted aggregate shares mk Sector GIV Relevance
Average effect of equity issuance

I follow Jorda et al. (2015, JIE) and define a 2-stage LP-IV regression:

1st stage: Mean equity issuance on GIV:

\[
\frac{\Delta (E_{t}^{aggr})}{E_{t-1}^{aggr}} = \beta^{giv,eq} u_{t}^{giv} + \sum_{k=1}^{4} \psi_{k}^{1st} F_{t-k} + \gamma^{1st} \eta_{t}^{PCA} + e_{t}^{1st}.
\]

Results 1st stage

2nd stage: Average firm level response to equity shock:

\[
\frac{\Delta y_{i,t+h}}{y_{i,t-1}} = \alpha_{i}^{h} + \nu_{s}^{h} + \beta^{h} \frac{\Delta E_{t}^{aggr}}{E_{t-1}^{aggr}} + \sum_{k=1}^{1} \Gamma_{k}^{h} Z_{i,t-k} + \sum_{k=1}^{4} \psi_{k}^{h} F_{t-k} + \gamma^{h} \eta_{t}^{PCA} + e_{i,t}^{h}.
\]

using \(u_{t}^{giv} \) as an instrument for \(\frac{\Delta E_{t}^{aggr}}{E_{t-1}^{aggr}} \).
Demand side GIV: Price and Quantities

Interpretation: Demand-side ext. equity financing shock.
Average response to Equity Shock

Equity shock - average response

- **Equity growth rate**
- **Investment rate**
- **Long-term debt growth rate**
- **Sales growth rate**

Robustness checks - factors

Robustness checks - clustering
Responses along the firm distributions

(a) Tobin’s Q (b) Book leverage (c) Debt/EBITDA

Figure: Impulse responses to a 1 standard deviation positive external equity shock along several dimensions of the firm distribution.

- large differences in inv. rates along the Tobin’s Q distribution
- We have to look at marginal responses to really determine role of financial constraints.
What causes nonlinear responses in investment?

From the literature we know nonlinear responses in firms’ investment might be linked to the degree of financial constraints:

- Tobin’s Q (finance theory)
- book leverage (Ottonello and Winberry 2020)
- debt/EBITDA (Lian and Ma 2021)

In the following I investigate the role of those three financial measures for the transmission of the equity shock.

- interacting measures with external equity shock
Correlation Financial Measures

<table>
<thead>
<tr>
<th></th>
<th>Size</th>
<th>Leverage</th>
<th>Avg. Q</th>
<th>Liq.</th>
<th>EBC</th>
<th>Div.-paying</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Corr}(\cdot, \text{size}_{i,t})$</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Corr}(\cdot, \text{Leverage}_{i,t})$</td>
<td>-0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Corr}(\cdot, \text{TobinsQ}_{i,t})$</td>
<td>-0.21</td>
<td>0.27</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Corr}(\cdot, \text{Liquidity}_{i,t})$</td>
<td>-0.14</td>
<td>-0.16</td>
<td>0.28</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Corr}(\cdot, \text{EBC}_{i,t})$</td>
<td>0.56</td>
<td>0.10</td>
<td>-0.05</td>
<td>-0.09</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>$\text{Corr}(\cdot, \text{div_dummy}_{i,t})$</td>
<td>0.05</td>
<td>0.08</td>
<td>-0.01</td>
<td>-0.07</td>
<td>0.06</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table: Correlation matrix of firms’ financial conditions

Several financial constraint measures circulating in the literature are correlated.

- control for multiple interactions to identify role of a given measure (Cao et al. 2021).
Marginal effects of firms’ financial condition

The marginal responses of firms with a one std. dev. higher financial measure $FC_{i,t-1}$ are simultaneously estimating by:

$$\frac{y_{i,t+h} - y_{i,t-1}}{y_{i,t-1}} = \alpha_i^h + \nu_{st}^h + \gamma^h [FC_{i,t-1} \times \frac{\Delta E_{t}^{aggr}}{E_{t-1}^{aggr}}] + \sum_{k=1}^{1} \Gamma_k^h X_{i,t-k} + e_{i,t}^h, \quad (2)$$

with γ^h measuring the marginal effects.

Robustness:
In addition to the mentioned interactions, I also augment the regression equation by:

- liquidity (Jeenas 2019)
- dividend-paying firms (finance theory)
- size (Gertler and Gilchrist 1994)
Marginal investment responses - Tobin’s Q

Tobin’s Q:
- more sensitive investment response
- Tobin’s Q is more sensitive to expected long-term profitability (Cao et al. 2019)
Marginal responses - Debt/EBITDA

Debt/EBITDA:
- responses not different from average response
- current cash-flow insensitive to ext. equity shock \Rightarrow fin. constraint not relaxed
Marginal investment responses - Leverage

Leverage:
- less sensitive investment response
- substitute equity for debt to appear less constrained (Hennessy and Whited, 2007)
Relaxing the fin. constraints

(a) Marginal effects of higher Tobin’s Q

(b) Marginal effects of higher debt/EBITDA

Cash-flow does not respond to favorable capital market shocks, but Tobin’s Q does.
Transmission of monetary policy shock

Mon. shock series:
High frequency identification.
Gorodnichenko and Weber (2016) and Gurkaynak et al. (2004).

The regression marginal effects regression includes the same controls as before in (2):

$$\frac{Y_{i,t+h} - Y_{i,t-1}}{Y_{i,t-1}} = \alpha_i^h + \nu_{st}^h + \gamma^h[FC_{i,t-1} \times e_{t}^{mon}] + \sum_{k=1}^{4} \Gamma_k^h X_{i,t-k} + e_{i,t}^h,$$

with γ^h measuring the marginal effects.
Marginal responses to a monetary policy shock
Summary monetary shock marginal effects

Leverage:
- less sensitive investment response (Ottonello and Winberry 2020)

Tobin’s Q:
- responses not different from average response
- monetary shock does not affect long-run expected profitability

Debt/EBITDA:
- more sensitive investment response
- monetary shock increases cash-flow of firms \(\Rightarrow\) financial constraint gets relaxed.
Conclusion

<table>
<thead>
<tr>
<th></th>
<th>Equity shock</th>
<th>Monetary policy shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobin’s Q</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>EBC</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>ABC</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table: Sensitivity of firm investment rates relative to the average economy-wide response

Modelling perspective: Distinguish between competing measures of financial constraints.

Policy maker: Take into account both monetary policy and access to capital markets to relax firms’ financial constraints.

- Relevance of improving the access to capital markets to stimulate firm investment. (e.g. ECMU)
Thank you for your time and your attention!
Sample selection

I drop the following firm-quarter observations:

1. observations with negative values in sales, capital, long-term debt, short-term debt, assets, equity
2. utilities and financial firms
3. firm-years where acquisitions > 5% of assets
4. firms with investment spells < 40 quarters
5. trim leverage between 0 and 10
6. sales growth larger/smaller 100% / -100%
7. trim top and bottom 0.5% percentile of dependent var. in LP

In addition I balance the sample by dropping any missing value in the dependent variables.
Measure for firms’ external equity financing

Internal Finance

External Finance

Debt Finance

Bank Loans

Capital Market Debt Finance

...

Equity Finance

Capital Market Equity Finance

Back
Growth rate of external equity financing over time

- **Average Equity Growth Rate**

- **Average Equity Growth Rate, bottom 75% of firms**

- **Average Equity Growth Rate, top 25% of firms**

- **Average Equity Growth Rate, top 10% of firms**
Growth rate of external equity financing over firm size

(a) Entire firm size distribution.
(b) Split by decades.
Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>S.D.</th>
<th>10th Perc.</th>
<th>90th Perc.</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity gr. rate</td>
<td>1.3639</td>
<td>-0.4408</td>
<td>10.6802</td>
<td>-1.7499</td>
<td>3.9159</td>
<td>276,481</td>
</tr>
<tr>
<td>Investment rate</td>
<td>0.3021</td>
<td>-0.5969</td>
<td>6.9422</td>
<td>-4.9364</td>
<td>6.3123</td>
<td>276,481</td>
</tr>
<tr>
<td>Sales gr. rate</td>
<td>1.2310</td>
<td>0.8205</td>
<td>18.7936</td>
<td>-19.1303</td>
<td>21.4084</td>
<td>276,481</td>
</tr>
<tr>
<td>L.t. debt gr. rate</td>
<td>-4.7690</td>
<td>-1.9577</td>
<td>26.4446</td>
<td>-25.0765</td>
<td>12.2986</td>
<td>276,481</td>
</tr>
<tr>
<td>Leverage</td>
<td>0.3177</td>
<td>0.2586</td>
<td>0.3749</td>
<td>0.0343</td>
<td>0.6039</td>
<td>276,481</td>
</tr>
<tr>
<td>Tobins' Q</td>
<td>1.9367</td>
<td>1.3942</td>
<td>2.2144</td>
<td>0.9110</td>
<td>3.1904</td>
<td>234,967</td>
</tr>
<tr>
<td>Cash/assets</td>
<td>0.1208</td>
<td>0.0568</td>
<td>0.1593</td>
<td>0.0053</td>
<td>0.3285</td>
<td>275,838</td>
</tr>
<tr>
<td>Debt/EBITDA</td>
<td>0.0087</td>
<td>0.0007</td>
<td>0.0249</td>
<td>0.0000</td>
<td>0.0207</td>
<td>244,001</td>
</tr>
<tr>
<td>Dividend-paying</td>
<td>0.1232</td>
<td>0.0000</td>
<td>0.3287</td>
<td>0.0000</td>
<td>1.0000</td>
<td>276,456</td>
</tr>
</tbody>
</table>

Table: Summary statistics of firm level variables
Financial constraints over annualized sales growth bins

Tobin's Q, full sample

Leverage, full sample

Liquidity, full sample
Financial constraints over firm size bins
Firm shares at market value to aggregate shares, in percentage points
Top-10 US firms with highest capitalization

<table>
<thead>
<tr>
<th>Name of company</th>
<th>Percentage share</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICROSOFT CORP</td>
<td>8.05 %</td>
</tr>
<tr>
<td>APPLE INC</td>
<td>7.60 %</td>
</tr>
<tr>
<td>AMAZON.COM INC</td>
<td>7.10%</td>
</tr>
<tr>
<td>ALPHABET INC</td>
<td>6.79%</td>
</tr>
<tr>
<td>BERKSHIRE HATHAWAY</td>
<td>4.23%</td>
</tr>
<tr>
<td>WALMART INC</td>
<td>2.51%</td>
</tr>
<tr>
<td>AT&T INC</td>
<td>2.02%</td>
</tr>
<tr>
<td>VERIZON COMMUNICATIONS INC</td>
<td>1.97%</td>
</tr>
<tr>
<td>DISNEY (WALT) CO</td>
<td>1.92%</td>
</tr>
<tr>
<td>INTEL CORP</td>
<td>1.83%</td>
</tr>
</tbody>
</table>

Table: Top-10 US firms with highest market capitalization in 2019. Financial firms and utilities are excluded. Facebook inv. spell < 40.
Firm-specific innovations to firms’ equity issuance
Correlation of firm-specific shocks
Scree plot - ordered eigenvalues of equity issuance PCA
Common Components - Equity Issuance
Granular Instrumental Variable - Background

Example: Demand shocks

Given a firm-specific demand disturbance $\epsilon_{i,t}$, the distortion potentially consists of (i) a common shock η_t with loading $\lambda_{i,t}$, and (ii) a firm-specific idiosyncratic demand distortion $u_{i,t}$, that is uncorrelated to η_t:

$$\epsilon_{i,t} = \lambda_{i,t} \eta_t + u_{i,t}$$

Problem

The common shock η_t might be correlated with aggregate supply side shocks \Rightarrow we can not regress e.g. output on $\epsilon_{i,t}$

The granular instrumental variable z_t solves this problem. First assume for simplicity common loadings across firms:

$$z_t = \sum_{i=1}^{N} \text{share}_{i,t} \epsilon_{i,t} - \frac{1}{N} \sum_{i=1}^{N} \epsilon_{i,t} = \sum_{i=1}^{N} \text{share}_{i,t} (\eta_t + u_{i,t}) - \frac{1}{N} \sum_{i=1}^{N} \eta_t + u_{i,t}$$

$$= \sum_{i=1}^{N} \text{share}_{i,t} u_{i,t} - \frac{1}{N} \sum_{i=1}^{N} u_{i,t}$$
Overview GIV

Firm-specific innovations of granular firms are idiosyncratic, and can be regarded as aggregate shocks if (i) uncorrelated across firms, (ii) thus not affected by common components.

But $\epsilon_{i,t}$ here potentially consists of:

$$\epsilon_{i,t} = \lambda_{i,t}\eta_t + u_{i,t}$$

Problem

$\epsilon_{i,t}$ not a valid proxy for aggregate equity shocks.

Solution

1] Construct GIV and 2] take care about factor loadings via PCA.
Equity issuance components

I run a principal component analysis (PCA) to estimate a vector of components η^{PCA}, to control for different factor loadings $\lambda_{i,t}$ on the common components η_t:

$$\tilde{e}_{i,t} = \lambda_i \eta_t^{PCA} + \tilde{u}_{i,t}. \quad (4)$$

with $\tilde{e}_{i,t} = \frac{E_{i,t} - \bar{E}}{\sigma E}$ denoting the standardized variable of equity issuance.

Number of components is based on (i) the scree plot, and further (ii) I exclude all components that explain less than 1% of the variance of the data.
Equally weighted external equity shocks
Size weighted external equity shocks
Aggregate shares at market value and shares per firm
Is the GIV relevant for aggregate equity?

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta \left(\frac{E^{aggr}t}{E^{aggr}{t-1}} \right)$</td>
<td>$\Delta \left(\frac{E^{aggr}t}{E^{aggr}{t-1}} \right)$</td>
<td>$\Delta \left(\frac{E^{aggr}t}{E^{aggr}{t-1}} \right)$</td>
<td>$\Delta \left(\frac{E^{aggr}t}{E^{aggr}{t-1}} \right)_r$</td>
<td>$\Delta \left(\frac{E^{aggr}t}{E^{aggr}{t-1}} \right)_r$</td>
</tr>
<tr>
<td>u_t^{GIV}</td>
<td>1.866***</td>
<td>2.040***</td>
<td>1.815***</td>
<td>1.153**</td>
<td>1.148**</td>
</tr>
<tr>
<td></td>
<td>(0.272)</td>
<td>(0.325)</td>
<td>(0.315)</td>
<td>(0.346)</td>
<td>(0.341)</td>
</tr>
<tr>
<td>equity components 1</td>
<td>-0.0266*</td>
<td>-0.0170</td>
<td>(0.0133)</td>
<td>(0.0153)</td>
<td></td>
</tr>
<tr>
<td>equity components 2</td>
<td>0.0546**</td>
<td>0.0480**</td>
<td>(0.0166)</td>
<td>(0.0169)</td>
<td></td>
</tr>
<tr>
<td>equity components 3</td>
<td>-0.0111</td>
<td>-0.0128</td>
<td>(0.0108)</td>
<td>(0.0108)</td>
<td></td>
</tr>
<tr>
<td>equity components 4</td>
<td>0.0119</td>
<td>0.0167</td>
<td>(0.0151)</td>
<td>(0.0162)</td>
<td></td>
</tr>
<tr>
<td>equity components 5</td>
<td>0.0490***</td>
<td>0.0372*</td>
<td>(0.0136)</td>
<td>(0.0150)</td>
<td></td>
</tr>
<tr>
<td>equity components 6</td>
<td>-0.00257</td>
<td>-0.00782</td>
<td>(0.0146)</td>
<td>(0.0150)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>154</td>
<td>154</td>
<td>154</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>R^2</td>
<td>0.237</td>
<td>0.305</td>
<td>0.415</td>
<td>0.447</td>
<td>0.516</td>
</tr>
<tr>
<td>F</td>
<td>47.12</td>
<td>9.144</td>
<td>6.536</td>
<td>8.699</td>
<td>6.697</td>
</tr>
<tr>
<td>macro controls</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>FRED-MD factors</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Correlation GIVs

Table: Correlation table

<table>
<thead>
<tr>
<th>Variables</th>
<th>u_t^{giv}</th>
<th>$u_t^{giv,manu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-digit SIC codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_t^{giv}</td>
<td>1.0000</td>
<td>-</td>
</tr>
<tr>
<td>$u_t^{giv,manu}$</td>
<td>0.8460</td>
<td>1.0000</td>
</tr>
<tr>
<td>$u_t^{giv,retail}$</td>
<td>0.6580</td>
<td>0.6327</td>
</tr>
<tr>
<td>$u_t^{giv,serv}$</td>
<td>0.6023</td>
<td>0.5126</td>
</tr>
<tr>
<td>$u_t^{giv,util}$</td>
<td>0.4414</td>
<td>0.4252</td>
</tr>
<tr>
<td>$u_t^{giv,min}$</td>
<td>0.2735</td>
<td>0.1571</td>
</tr>
<tr>
<td>$u_t^{giv,constr}$</td>
<td>0.2706</td>
<td>0.3463</td>
</tr>
<tr>
<td>$u_t^{giv,whole}$</td>
<td>0.2092</td>
<td>0.1761</td>
</tr>
<tr>
<td>$u_t^{giv,public}$</td>
<td>0.0882</td>
<td>0.2544</td>
</tr>
<tr>
<td>$u_t^{giv,agri}$</td>
<td>-0.0397</td>
<td>0.0189</td>
</tr>
<tr>
<td>3-digit SIC codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$u_t^{giv,tech}$</td>
<td>0.5245</td>
<td>0.7464</td>
</tr>
<tr>
<td>$u_t^{giv,chem}$</td>
<td>0.3539</td>
<td>0.4710</td>
</tr>
</tbody>
</table>
Robustness checks - factors

(a) Excluding equity components.

(b) Without macro. factors.
Robustness checks - clustered SE

(a) Clustered SE sector-quarter.

(b) Clustered SE sector.
Role of financial constraints - equity

Equity shock - Marginal response - Equity growth rate

- Tobin's Q
- Leverage
- Firm size
- Dividend-paying
- Liquidity
- Debt/EBITDA

All interactions vs. Single interaction
Role of financial constraints - investment

Equity shock - Marginal response - Investment rate

- Tobin's Q
- Leverage
- Firm size
- Dividend-paying
- Liquidity
- Debt/EBITDA

All interactions - Single interaction
Average response to the monetary policy shock

Monetary policy shock - average response

- Equity growth rate
- Investment rate
- Long-term debt growth rate