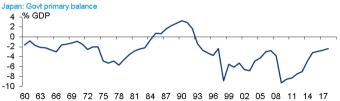
The Fiscal Theory of the Price Level with a Bubble

Markus Brunnermeier Princeton University Sebastian Merkel University of Exeter Yuliy Sannikov Stanford University


January 2022

Motivation

- Different monetary theories emphasize different roles of money and equilibrium equations
- Fiscal Theory of the Price Level (FTPL):
 - broad money (including nom. bonds) as a store of value
 - value of government debt given by discounted stream of future primary surpluses

$$\frac{\mathcal{B}_t + \mathcal{M}_t}{\mathcal{P}_t} = \mathbb{E}_t \left[\int_t^\infty \frac{\xi_s}{\xi_t} (\mathcal{T}_s - \mathcal{G}_s) \, ds \right] \quad \left[+ \quad \mathbb{E}_t \left[\int_t^\infty \frac{\xi_s}{\xi_t} \Delta i_s \frac{\mathcal{M}_s}{\mathcal{P}_s} ds \right] \right]$$

The Japan critique:

• Broader question: can a country permanently run primary deficits?

Deriving the Key Equation of the FTPL

Nominal government flow budget constraint

$$(\mu_t^{\mathcal{B}}\mathcal{B}_t + \mathcal{P}_t T_t) dt = (i_t \mathcal{B}_t + \mathcal{P}_t G_t) dt$$

• Multiply by nominal SDF ξ_t/\mathcal{P}_t , integrate from t to T, take expectations and limit $T \to \infty$

$$\frac{\mathcal{B}_{t}}{\mathcal{P}_{t}} = \underbrace{\mathbb{E}_{t} \left[\int_{t}^{\infty} \frac{\xi_{s}}{\xi_{t}} \left(T_{s} - G_{s} \right) ds \right]}_{\text{PV of primary surpluses}} + \underbrace{\lim_{T \to \infty} \mathbb{E}_{t} \left[\frac{\xi_{T}}{\xi_{t}} \frac{\mathcal{B}_{T}}{\mathcal{P}_{T}} \right]}_{\text{bubble}}$$

- Bubble term?
 - in literature: invoke private-sector transversality condition to conclude $\mathbb{E}_t \left| \frac{\xi_T}{\xi_t} \frac{\mathcal{B}_T}{\mathcal{P}_T} \right| \to 0$
 - this paper: environments in which the previous argument fails

.

When Can a Bubble Exist?

- Assume stationary debt-to-GDP ratio and no aggregate risk
 - $\frac{\mathcal{B}_T}{\mathcal{P}_T} = \frac{\mathcal{B}_t}{\mathcal{P}_t} e^{g(T-t)}$
 - $\bullet \ \frac{\xi_T}{\xi_t} \propto e^{-r^f(T-t)}$
- ullet Then $\mathbb{E}_t\left[rac{\xi_T}{\xi_t}rac{\mathcal{B}_T}{\mathcal{P}_T}
 ight] o 0\Leftrightarrow r^f>g$
 - thus: bubble can exist $\Leftrightarrow r^f \leq g$
 - more generally: $r^b \le g$ with $r^b = \text{risk-adjusted discount rate for gov. debt}$

When Can a Bubble Exist?

- Assume stationary debt-to-GDP ratio and no aggregate risk
 - $\frac{\mathcal{B}_T}{\mathcal{P}_T} = \frac{\mathcal{B}_t}{\mathcal{P}_t} e^{g(T-t)}$
 - $\frac{\xi_T}{\xi_t} \propto e^{-r^f(T-t)}$
- ullet Then $\mathbb{E}_t\left[rac{\xi_T}{\xi_t}rac{\mathcal{B}_T}{\mathcal{P}_T}
 ight] o 0\Leftrightarrow r^f>g$
 - thus: bubble can exist $\Leftrightarrow r^f \leq g$
 - more generally: $r^b \leq g$ with $r^b = \text{risk-adjusted discount rate for gov. debt}$
- For log utility and balanced growth path

$$r^f = \rho + \mu^c - (\sigma^c)^2, \qquad g = \mu^C$$

Two examples for $r^f \leq g$ with long-lived agents:

- ${\color{red} \bullet}$ perpetual youth: $\mu^{\it c} < \mu^{\it C}$ due to population growth
- 2 uninsurable idiosyncratic risk: large σ^c offsets ρ even if $\mu^c = \mu^C$

Outline

- Two Models with a Bubble
 - Baseline Example: Perpetual Youth
 - Alternative Example: Uninsurable Idiosyncratic Risk
 - Bubble Existence and Transversality
- The Bubble as a Fiscal Resource
 - "Mining the Bubble"
 - Bubble Mining and Inflation
 - Optimal Bubble Mining
- 3 Price Level Determination [in Paper]

Outline

- Two Models with a Bubble
 - Baseline Example: Perpetual Youth
 - Alternative Example: Uninsurable Idiosyncratic Risk
 - Bubble Existence and Transversality
- The Bubble as a Fiscal Resource
 - "Mining the Bubble"
 - Bubble Mining and Inflation
 - Optimal Bubble Mining
- 3 Price Level Determination [in Paper]

Perpetual Youth: Model Setup

- Continuous time, infinite horizon, one consumption good
- Growing continuum of (infinitely-lived) agents
 - endowed with human capital at birth that depreciates over time
 - can trade government bonds
- Government
 - exogenous spending
 - taxes output
 - issues (nominal) bonds
- Financial friction: no trade with yet unborn generations (alleviated by bonds)

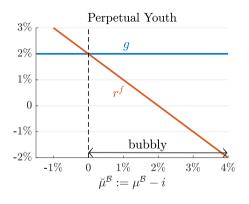
Perpetual Youth: Model Setup – Some Formal Details

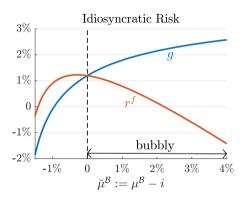
- Popuation L_t grows at fixed rate g > 0
- Preferences ($i \in [0, L_t]$ agent index):

$$\mathbb{E}\left[\int_t^\infty e^{-\rho(s-t)}\log c_s^i dt\right]$$

- ullet Each agent has human capital endowment $k_t^i \; (k_{t_0^i}^i = 1 \; {
 m at \; birth})$:
 - output flow: $ak_t^i dt$
 - output tax by government: $\tau a k_t^i dt$
 - constant depreciation: $dk_t^i = -\delta k_t^i dt$
- Real bond holdings b_t^i satisfy:

$$db_t^i = \left(r_t^f b_t^i + (1- au) \mathsf{a} k_t^i - c_t^i
ight) dt$$


- Government:
 - budget constraint


$$\widehat{i\mathcal{B}_t} = \underbrace{\mathcal{P}_t\underbrace{(\tau a - \mathfrak{g})}_{=:s} \mathcal{K}_t}_{\text{prim. surpluses}} + \underbrace{\mu^{\mathcal{B}}\mathcal{B}_t}_{\text{bond issuance}}$$

Idiosyncratic Risk: Model Setup (Changes relative to Perpetual Youth)

- Fixed continuum of agents
 - operate physical capital subject to idiosyncratic risk, AK production technology
 - can increase capital by physical reinvestment
 - can trade capital and government bonds
- Financial friction: incomplete markets:
 - agents cannot trade idiosyncratic risk
- Why is second example interesting?
 - capital asset & return on capital > growth rate g (as in Blanchard (2019), Reis (2021))
 - ullet endogeneous growth rate g affected by gov. policy
 - markets incomplete even with bubble, richer welfare implications

r^f versus g for Different Policies (Monetary Steady State)

Bubble and Transversality

In both models, long-lived agents have transversality conditions (TVCs)

$$\lim_{T o \infty} \mathbb{E}\left[\xi_T^i b_T^i\right] = 0$$

- Why do TVCs not rule out bubbles?
 - TVCs: limit of $\mathbb{E}\left[\xi_T^i b_T^i\right]$ (individual bond wealth)
 - bubble: limit of $\mathbb{E}\left[\xi_T^i\mathcal{B}_T/\mathcal{P}_T\right]$ (aggregate bond wealth)
 - ⇒ bubble consistent with TCVs if individual and aggregate bond wealth differ

Bubble and Transversality

In both models, long-lived agents have transversality conditions (TVCs)

$$\lim_{T \to \infty} \mathbb{E}\left[\xi_T^i b_T^i\right] = 0$$

- Why do TVCs not rule out bubbles?
 - TVCs: limit of $\mathbb{E}\left[\xi_T^i b_T^i\right]$ (individual bond wealth)
 - bubble: limit of $\mathbb{E}\left[\xi_T^i\mathcal{B}_T/\mathcal{P}_T\right]$ (aggregate bond wealth)
 - ⇒ bubble consistent with TCVs if individual and aggregate bond wealth differ
- Properties of b_T^i and $\mathcal{B}_T^i/\mathcal{P}_T$ differ when there are beneficial equilibrium trades
 - perpetual youth: bonds allow intergenerational resource transfers
 - individuals pass bonds on to newborn generations
 - \rightarrow b_T^i grows at lower rate than aggregate bond wealth
 - idiosyncratic risk: bonds are safe assets, allow for self-insurance
 - individuals trade bonds to rebalance portfolios in response to idiosyncratic shocks
 - ightarrow b_T^i is stochastic, aggregate bond wealth deterministic

Digression: Dynamic Trading Perspective

- Alternative debt valuation approach (from our paper "Debt as Safe Asset"):
 - price actual cash flows from individual portfolios, including trading cash flows
 - then aggregate over all agents to obtain total value of debt
 - because individual TVCs hold, this yields "bubble-free" valuation formula

Digression: Dynamic Trading Perspective

- Alternative debt valuation approach (from our paper "Debt as Safe Asset"):
 - price actual cash flows from individual portfolios, including trading cash flows
 - then aggregate over all agents to obtain total value of debt
 - because individual TVCs hold, this yields "bubble-free" valuation formula
- Resulting valuation formulas with "service flow terms"
 - perpetual youth:

$$\frac{\mathcal{B}_0}{\mathcal{P}_0} = \mathbb{E}\bigg[\int_0^\infty \underbrace{\left(\int_0^{L_0} \xi_t^i \beta_t^i di\right)}_{=\xi_t^{**}} s \mathcal{K}_t dt\bigg] + \mathbb{E}\bigg[\int_0^\infty \underbrace{\left(\int_0^{L_0} \xi_t^i \beta_t^i di\right)}_{=\xi_t^{**}} \frac{C_t^0 - \left(S_t^0 + (1-\tau)a\mathcal{K}_t^0\right)}{\mathcal{B}_t^0/\mathcal{P}_t} \frac{\mathcal{B}_t}{\mathcal{P}_t} dt\bigg]$$

• idiosyncratic risk:

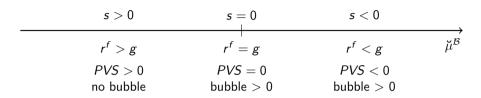
$$\frac{\mathcal{B}_{0}}{\mathcal{P}_{0}} = \mathbb{E}\bigg[\int_{0}^{\infty} \underbrace{\left(\int \xi_{t}^{i} \beta_{t}^{i} di\right)}_{=\mathcal{E}^{**}} s \mathcal{K}_{t} dt\bigg] + \mathbb{E}\bigg[\int_{0}^{\infty} \underbrace{\left(\int \xi_{t}^{i} \beta_{t}^{i} di\right)}_{=\mathcal{E}^{**}} (\tilde{\sigma}^{c})^{2} \frac{\mathcal{B}_{t}}{\mathcal{P}_{t}} dt\bigg]$$

• Note: discount rate implied by ξ^{**} different from m (Reis, 2021)

Outline

- Two Models with a Bubble
 - Baseline Example: Perpetual Youth
 - Alternative Example: Uninsurable Idiosyncratic Risk
 - Bubble Existence and Transversality
- The Bubble as a Fiscal Resource
 - "Mining the Bubble"
 - Bubble Mining and Inflation
 - Optimal Bubble Mining
- 3 Price Level Determination [in Paper]

Debt Valuation with a Bubble

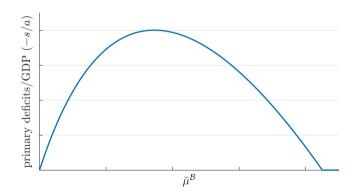

- Primary surplus $sK_t = (\tau a \mathfrak{g})K_t$
- Debt valuation equation $(K_0 \equiv 1)$:

$$\frac{\mathcal{B}_0}{\mathcal{P}_0} = \lim_{T \to \infty} \left(\underbrace{\int_0^T e^{-(r^f - g)t} s dt}_{=:PVS_{0,T}} + e^{-(r^f - g)T} \frac{\mathcal{B}_0}{\mathcal{P}_0} \right)$$

• risk-free rate $r^f = g - \breve{\mu}^{\mathcal{B}}$

$$s>0$$
 $s=0$ $s<0$ $+$ $r^f>g$ $r^f=g$ $r^f< g$ μ^E $PVS>0$ $PVS=0$ $PVS<0$ $PVS=0$ $PVS<0$ $PVS=0$ $PVS>0$ $PVS=0$ $PVS>0$ $PVS>0$ $PVS=0$ $PVS>0$ $PVS=0$ $PVS>0$ $PVS=0$ $PVS>0$ $PVS=0$ $PVS>0$ $PVS=0$ $PVS=0$

"Mining the Fiscal Bubble"



In all three cases, the bubble – or its mere possibility – grants government some leeway:

- s < 0: perpetual deficits are funded out of the bubble, never have to raise taxes ("bubble mining")
- s = 0: government debt enjoys positive value despite zero surpluses (debt "backed" by the bubble)
- s > 0: no equilibrium bubble, yet possibility of bubble makes debt more sustainable unexpected (persistent) drop in surpluses below zero
 - ⇒ bubble emerges instead of collapse of the value of debt

Bubble Mining Laffer Curve

- Primary deficit = $\breve{\mu}^{\mathcal{B}}\mathcal{B}_t/\mathcal{P}_t$
- ullet Increasing $reve{\mu}^{\mathcal{B}}$ dilutes bondholder claims and reduces "tax base" $\mathcal{B}_t/\mathcal{P}_t$

Is Bubble Mining Inflationary?

Inflation

$$\pi = \mu^{\mathcal{B}} - g = \breve{\mu}^{\mathcal{B}} + i - g$$

- ullet For given i and g: larger bubble mining $reve{\mu}^{\mathcal{B}}$ is inflationary
- But:
 - ullet If nom. interest rate i is unconstrained: can also raise $reve{\mu}^{\mathcal{B}}$ through lower i
 - If growth g is endogeneous (idiosyncratic risk example):
 - ullet bubble mining makes bonds less attractive o portfolio reallocation to capital
 - ullet larger physical investment raises g and lowers inflation
- \Rightarrow Inflation-neutral increase in $\breve{\mu}^{\mathcal{B}}$ possible using combination of higher debt growth and lower interest rates

Socially Optimal Bubble Mining

- **①** When would a (Ramsey-)planner controlling $(au, reve{\mu}^{\mathcal{B}})$ choose bubble mining $reve{\mu}^{\mathcal{B}} > 0$?
 - perpetual youth: never
 - ullet allocation with stationary equilibrium bubble and $r^f=g$ is Pareto-optimal
 - "taxing" the only store of value by bubble mining is always Pareto-inferior
 - ullet idiosyncratic risk: if idiosyncratic capital risk $ilde{\sigma}$ is large
 - bubble improves idios. risk sharing, but crowds out growth-enhancing capital investments
 - bubble only partially completes markets, thus equilibrium may be constrained inefficient
 - ullet for large $ilde{\sigma}$, equilibrium bubble is "too large" relative to constrained efficient level

Socially Optimal Bubble Mining

- When would a (Ramsey-)planner controlling $(\tau, \breve{\mu}^{\mathcal{B}})$ choose bubble mining $\breve{\mu}^{\mathcal{B}} > 0$?
 - perpetual youth: never
 - allocation with stationary equilibrium bubble and $r^f = g$ is Pareto-optimal
 - "taxing" the only store of value by bubble mining is always Pareto-inferior
 - ullet idiosyncratic risk: if idiosyncratic capital risk $ilde{\sigma}$ is large
 - bubble improves idios. risk sharing, but crowds out growth-enhancing capital investments
 - bubble only partially completes markets, thus equilibrium may be constrained inefficient
 - ullet for large $ilde{\sigma}$, equilibrium bubble is "too large" relative to constrained efficient level
- $oldsymbol{@}$ Optimal bubble mining $reve{\mu}^{\mathcal{B}}$ is independent of the need for government expenditures $\mathfrak{g}K_t$
 - Reason:
 - ullet $\mathfrak{g}\uparrow\Rightarrow$ gov. must claim higher fraction of current output
 - \bullet taxing output (τ) is the most direct way to do so
 - bubble mining also distorts intergenerational resource transfer / capital-bond portfolio choice
 - ⇒ should rely on taxes, not bubble mining, as the marginal funding source for public expenditures

Outline

- Two Models with a Bubble
 - Baseline Example: Perpetual Youth
 - Alternative Example: Uninsurable Idiosyncratic Risk
 - Bubble Existence and Transversality
- The Bubble as a Fiscal Resource
 - "Mining the Bubble"
 - Bubble Mining and Inflation
 - Optimal Bubble Mining
- 3 Price Level Determination [in Paper]

Conclusion

- Integrate the "missing" bubble term into the FTPL
- ullet Two models with $r^f \leq g$ and bubbles
 - perpetual youth: bubble facilitates inter-generational trade
 - idiosyncratic risk: bubble facilitates risk sharing
- Transversality conditions do not rule out bubbles
 - because they apply to individual bond portfolios
 - while bubble is about aggregate bond wealth
- Government can mine the bubble for revenue (a form of seigniorage)
 - may not be (that) inflationary if growth-enhancing
 - but may also not be socially optimal
 - mining for the sole purpose of raising revenue never optimal
- Price level determination [in paper]
 - goods market clearing condition (through bubble wealth effect)
 - uniqueness: off-equilibrium tax backing

Determination of Price Level

Two questions:

- What economic mechanism determines the price level?
 - FTPL intution still works with a bubble: wealth effect on gov. debt determines price level in the goods market
 - Once price level is determined, debt valuation equation determines the size of the bubble
- ② Can fiscal policy resolve equilibrium multiplicity (FTPL as a selection device)?
 - two sources of multiplicity: (1) bubble multiplicity; (2) nominal indeterminacy
 - FTPL arguments can resolve both
 - off-equilibrium fiscal backing is sufficient
 - but requires credibility and fiscal capacity to promise off-equilibrium surpluses (otherwise: vulnerability to bubble crashes)

FTPL: Resolving Equilibrium Multiplicity

- If $\tau > 0$ along equilibrium path:
 - standard FTPL argument applies: unique \mathcal{P}_t consistent with equilibrium, if surpluses (τ_s) do not react (too strongly) to the price level
 - but then $r^f > g$ and there is no bubble in equilibrium
- Resolving multiplicity with an equilibrium bubble:
 - more challenging: continuum of bubble values consistent with the same surplus path
 exogenous surplus sequence insufficient for uniqueness
 - contingent policy can select the bubble equilibrium
 - primary deficits on the equilibrium path (bubble mining)
 - switch to $\tau > 0$ if inflation breaks out

