QUANTILE APPROACH TO ASSET PRICING MODELS

Tjeerd de Vries UC San Diego

Motivation

- Misspecification of asset pricing models typically confined to mean-variance analysis.
- Example: Any proposed SDF (M) needs to overcome the Hansen-Jagannathan (HJ) bound

$$\sigma(M) \ge \frac{\mathbb{E}[R] - R_f}{R_f \cdot \sigma(R)}$$

- Consider the consumption based SDF $M = \beta g_c^{-\gamma}$, where g_c and γ denote consumption growth and risk-aversion respectively.
- This model is misspecified since $\sigma(g_c)$ is low in the data.

A new bound

- Let $F(x) = \mathbb{P}(R \le x)$ denote the CDF of the return DGP.
- Similarly, $\widetilde{F}(x) = \widetilde{\mathbb{P}}(R \leq x)$, is the CDF of the risk-neutral distribution. Define Q_{τ} as the risk-neutral quantile function $F(Q_{\tau}) = \tau, \ \forall \tau \in (0, 1).$
- Consider the ordinal dominance curve $\phi(\tau) \coloneqq F(\widetilde{Q}_{\tau})$. • We then obtain a new bound on the SDF volatility for all $\tau \in (0, 1)$:

Theorem 0.1 (Quantile bound).

$$\sigma(M) \ge \frac{\tau - \phi(\tau)}{P + \sqrt{\phi(\tau) - (1 - \phi(\tau))}}.$$

Disaster and long-run risk model

- The quantile bound (1) is quite different depending on the asset pricing model. We consider two models: (i) Disaster risk model (Backus et al., 2011): $M = \beta g_c^{-\gamma}$, where $\log g_c = \varepsilon + \eta$
 - and $\varepsilon \sim N(\mu, \sigma^2), \eta | (J = j) \sim N(j\theta, j\nu^2), J \sim$ **Poisson**(κ).

(ii) Long-run risk (LRR) model (Bansal et al., 2012): $\log M_{t+1} = \text{Constant} - \frac{\theta}{\psi} \log g_{c,t+1} + (\theta - 1) \log R_{c,t+1}$

- Thus we need counterfactually high levels of γ to overcome the HJ bound.
- Question: Can we use other statistics than mean and variance that gives more insight into determinants of misspecification?

Bound comparison for different asset pricing models

 $R_f \sqrt{\phi(\tau)} \cdot (1 - \phi(\tau))$

(1)

Conditional quantile premium

- We also consider the conditional difference $Q_{t,\tau} \underbrace{\widetilde{Q}_{t,\tau}}_{\text{observed}}$.
- Von-Mises approximation yields $Q_{t,\tau} \approx \widetilde{Q}_{t,\tau} + \frac{\tau F_t(\widetilde{Q}_{t,\tau})}{\widetilde{f}_t(\widetilde{Q}_{t,\tau})}$
- Building on Chabi-Yo and Loudis (2020), we bound τ $F_t(Q_{t,\tau}) \geq LRB_t(\tau)$, where $LRB_t(\tau)$ is inferred at time t from option data.
- In spirit of Martin (2017), we test tightness of the bound, using quantile regression $Q_{t,\tau} = \beta_0(\tau) + \beta_1(\tau)$. $\left(\widetilde{Q}_{t,\tau} + \frac{LRB_t(\tau)}{\widetilde{f}_t(\widetilde{Q}_{t,\tau})}\right)$

Maturity:	30 days					
$\tau = 0.01$	$\widehat{eta}_{0}(au) \ 0.06 \ _{(0.3132)}$	$\widehat{eta}_{1}(au) \ 0.97 \ _{(0.3506)}$	Wald test 0.97	$R^{1}(au)[\%]$ 21.08	$R_{oos}^{1}(\tau)[\%]$ 17.26	
$\tau=0.05$	0.20 (0.2944)	0.80 (0.3130)	0.41	9.27	9.21	
$\tau = 0.1$	$\underset{(0.2661)}{0.17}$	$\underset{(0.2766)}{0.83}$	0.46	5.67	6.14	

- Here, $R_{c,t+1}$ is the return on the consumption asset. Both $g_{c,t+1}$, $R_{c,t+1}$ are conditionally lognormal.
- We compare the quantile bound and HJ bound using the model calibration from Backus et al. (2011) and Bansal et al. (2012).
- The figure shows that the quantile bound can be stronger than the HJ bound in disaster risk model, but not in LRR model.

 $\widehat{Q}_{t,\tau}$ and $\widehat{Q}_{t,\tau} - \widetilde{Q}_{t,\tau}$

- Left panels show $\hat{Q}_{t,\tau}$ over time. Evidence for time varying disaster risk.
- Right panels show $\widehat{Q}_{t,\tau} \widetilde{Q}_{t,\tau}$. Spikes occur amidst height of financial crisis.
- Since $\widehat{Q}_{t,\tau}$ goes down during crisis (left panels), but $\hat{Q}_{t,\tau} - \hat{Q}_{t,\tau}$ goes up (right panels), we conclude that $Q_{t,\tau}$ changes more than $Q_{t,\tau}$.
- $Q_{t,\tau}$ captures insurance effect, whereas $\hat{Q}_{t,\tau}$ captures forward looking loss of a crash.

$\tau = 0.2$ 0.210.790.541.73.78(0.3881)(0.3808)

• Conclusion: $\widehat{Q}_{t,\tau} \coloneqq \widetilde{Q}_{t,\tau} + \frac{LRB_t(\tau)}{\widetilde{f}_t(\widetilde{Q}_{t,\tau})}$ is a good approximation of latent $Q_{t,\tau}$.

$$\widehat{Q}_{t,\tau}$$
 and $\widehat{Q}_{t,\tau} - \widetilde{Q}_{t,\tau}$ for $\tau = 0.05$

Bounds for S&P500 data

• Data show that insurance effect is more dominant.

- As byproduct, we have shown how to recover part of the left tail distribution. Using quantile regression, we also verify that we can recover the right tail of the distribution.
- Using quantile regression, we estimate the equation $Q_{t,\tau} = \beta_0(\tau) + \beta_1(\tau) \cdot Q_{t,\tau}$, for $\tau \geq 0.5$ and find $\beta_0(\tau) \approx 0, \, \beta_1(\tau) \approx 1.$
- This means that almost all risk-adjustment comes from the left tail. This complements the theoretical recovery theorem from Ross (2015).

$Q_{t,\tau} = \beta_0(\tau) + \beta_1(\tau)\tilde{Q}_{t,\tau}$

Horizon		$30 \mathrm{~days}$	
	$\widehat{eta}_0(au)$	$\widehat{eta}_1(au)$	Wald test
$\tau = 0.05$	$\underset{(0.2510)}{0.31}$	$\underset{(0.2680)}{0.69}$	0.06
$\tau = 0.1$	0.32 (0.2273)	$\underset{(0.2372)}{0.67}$	0.02
$\tau = 0.2$	0.38 (0.3211)	0.62 (0.3278)	0.07
$\tau = 0.5$	0.06	0.94	0.88
$\tau = 0.8$	-0.04	1.04	0.92
$\tau = 0.9$	0.04	0.96	0.88
$\tau = 0.95$	0.00	1.00	1

- Shape of quantile bound roughly similar to disaster risk model.
- More formal testing shows that quantile bound is significantly stronger than HJ bound.
- The LRR model can only reconcile this for very high levels of risk-aversion ($\gamma \geq 90$).
- Intuition: disaster risk induces a peak in quantile bound for small τ . For conditional lognormal models, the quantile bound is essentially symmetric.

References

- Backus, D., Chernov, M., and Martin, I. (2011). Disasters implied by equity index options. The Journal of Finance, 66(6):1969–2012.
- Bansal, R., Kiku, D., and Yaron, A. (2012). An empirical evaluation of the long-run risks model for asset prices. Critical Finance Review, (1):183–221.
- Chabi-Yo, F. and Loudis, J. (2020). The conditional expected market return. Journal of Financial Economics.
- Martin, I. (2017). What is the expected return on the market? The Quarterly Journal of Economics, 132(1):367-433.
- Ross, S. A. (2015). The recovery theorem. The Journal of Finance, 70(2):615–648.

