A Free and Fair Economy: A Game of Justice and Inclusion

Ghislain-Herman Demeze-Jouatsa^{*} Roland Pongou[†] Jean-Baptiste Tondji^{©‡}

*Bielefeld University, [†]University of Ottawa, [‡]The University of Texas Rio Grande Valley, UTRGV, [@]jeanbaptiste.tondji@utrgv.edu

Introduction

How do basic principles of distributive justice affect equilibrium existence and efficiency in a non-cooperative economy? Consider an economy where agents freely and noncooperatively choose their actions, and the surplus resulting from these action choices is shared following four principles (ALUM):

of actions $(x'_{-i}, x_i) \in X$ is the outcome in which agent i chooses x_i , and every other agent j chooses x'_j .

Proposition 1. There exists a unique scheme, denoted Sh, that satisfies ALUM. For any $(f, x) \in P(X) \times X$, and $i \in N$:

$$\boldsymbol{Sh}_{i}(f,x) = \sum_{x' \in \Delta_{o}^{i}(x)} \frac{(|x'|)!(|x| - |x'| - 1)!}{(|x|)!} \left[f(x'_{-i}, x_{i}) - f(x') \right].$$

- 1. **Anonymity**: Your pay should not depend on your *name*.
- 2. **Local efficiency**: No portion of the surplus generated at any profile of action choices should be wasted.
- 3. Unproductivity: An unproductive agent should earn nothing.

4. Marginality: A more productive agent should not earn less. It is generally agreed that **ALUM** form the core principles of *mar*ket justice. However, a number of empirical observations have suggested that discrimination based on name, race, gender, culture, religion, and academic affiliation is prevalent in several contexts. We study how **ALUM** guarantee equilibrium existence (or stability) and efficiency through the lens of a model of a free and fair economy.

A Free and Fair Economy

A free economy is a list $\mathcal{E} = (N, X, o, f, \phi, u)$:

Equilibrium and Efficiency

A free economy $\mathcal{E} = (N, X, o, f, \phi, u)$ generates a strategic form game $G^{\mathcal{E}} = (N, X, u^{\mathcal{E}})$, where for each $x \in X$ and each $i \in N$, $u_i^{\mathcal{E}}(x) = u_i(f, x) = \phi_i(f, x)$.

Definition 2. Let $\mathcal{E} = (N, X, o, f, \phi, u)$ be a free economy.

- 1. $x^* \in X$ is an equilibrium if and only if x^* is a pure strategy Nash equilibrium in $G^{\mathcal{E}}$.
- 2. \mathcal{E} is weakly (resp. strictly) monotonic if f is weakly (resp. strictly) monotonic.

Theorem 1. Any free and fair economy admits an equilibrium. **Theorem 2.** A weakly monotonic free and fair economy \mathcal{E} admits an equilibrium that is Pareto-efficient. If \mathcal{E} is strictly monotonic, then, the equilibrium is unique and Pareto-efficient.

Social Justice and Inclusion

- N: nonempty and finite set of agents, n = |N|;
- $X = \prod X_j$: X_i is agent *i*'s action set, $|X_i| < \infty$;
- $o = (o_i)_{i \in N}$: $o_i \in X_i$ is agent i's initial point (e.g., unproduced endowments of goods);
- $f : X \to \mathbb{R}$ is a technology or production function, with f(o) = 0; f(x) is the surplus at $x \in X$; $P(X) = \{f : X \rightarrow X\}$ \mathbb{R} , with f(o) = 0;
- $\phi : P(X) \times X \to \mathbb{R}^n$, distribution or pay scheme, with $\sum \phi_i(f, x) \leq f(x), \ \forall (f, x) \in P(X) \times X;$
- $u = (u_i)_{i \in N}$: $u_i : X \to \mathbb{R}$ is agent *i*'s utility function; $u_i(x) = \phi_i(f, x)$, for $f \in P(X)$ and $x \in X$.

Definition 1. A free economy $\mathcal{E} = (N, X, o, f, \phi, u)$ is fair if ϕ satisfies **ALUM**.

Let $x \in X$. An outcome $x' \in \Delta(x) \subseteq X$ is a *sub-profile* of $x \text{ if } x' = x \text{ or } [x'_i \neq x_i \Longrightarrow x'_i = o_i], \text{ for } i \in N.$

Definition 3. Let $\mathcal{E} = (N, X, o, f, \phi, u)$ be a free economy.

1. ϕ is an egalitarian Shapley value if there exists $\alpha \in [0, 1]$ such that for all $(f, x) \in P(X) \times X$, and $i \in N$,

$$\boldsymbol{\phi}_i(f, x) = \boldsymbol{E}\boldsymbol{S}^{\alpha}(f, x) = \alpha \cdot \boldsymbol{S}\boldsymbol{h}_i(f, x) + (1 - \alpha) \cdot \frac{f(x)}{n}.$$

2. \mathcal{E} is a **free economy with social justice** if there exists $\alpha \in [0,1]$ such that $\phi = ES^{\alpha}$.

Under ES^{α} , at each $x \in X$, a fraction $1 - \alpha$ of f(x) is shared equally among agents. $oldsymbol{E}oldsymbol{S}^lpha$ satisfies anonymity and local efficiency, but it violates unproductivity and marginality for $\alpha \in [0, 1)$. **Theorems 1 and 2** remain valid under any free economy with social justice $\mathcal{E}^{\alpha} = (N, X, o, f, \mathbf{ES}^{\alpha}, u), \ \alpha \in [0, 1].$

Conclusion

Basic principles of market justice guarantee equilibrium existence and efficiency in a free economy. We generalize our findings to economies with social justice and inclusion, implemented in progressive taxation and redistribution, and guaranteeing a basic income to unproductive agents. Our analysis uncovers a new class of strategic form games by incorporating normative principles into non-cooperative game theory.

Let $i \in N$. We define the relation Δ_o^i on X:

 $[x' \Delta_o^i x] \Leftrightarrow [x' \in \Delta(x) \text{ and } x'_i = o_i].$

Denote $\Delta_{o}^{i}(x) = \{x' \in X : x' \Delta_{o}^{i} x\}, N^{x} = \{i \in N : x_{i} \neq o_{i}\},\$ and $|x| = |N^x|$ the cardinality of N^x . For $x, x' \in X$, the profile

Scan for the full paper

The University of Texas Rio Grande Valley