Mandatory Central Clearing and Financial Risk Exposure

Natalie Kessler

European University Institute

December, 2021
Definition and Research Agenda

OTC Derivatives:
• Bilateral contracts over transfers that are conditional on the future realized state of an underlying asset.
• Used to hedge asset risk, but exposes counterparties to default risk.

This Paper:
• Studies the effect of mandatory counterparty default insurance (central clearing) of OTC derivatives on buyers, sellers and insurers (CCPs).
• Assesses the overall impact on financial risk.

Results:
• Smaller buyers and sellers exit the market (increased market risk), while larger sellers insure more and become safer (decreased credit risk).
• Model calibration and policy evaluation show increase in market risk to dominate.
OTC Derivatives:
- Bilateral contracts over transfers that are conditional on the future realized state of an underlying asset.
- Used to hedge asset risk, but exposes counterparties to default risk.

This Paper:
- Studies the effect of mandatory counterparty default insurance (central clearing) of OTC derivatives on buyers, sellers and insurers (CCPs).
- Assesses the overall impact on financial risk.
Definition and Research Agenda

OTC Derivatives:
- Bilateral contracts over transfers that are conditional on the future realized state of an underlying asset.
- Used to hedge asset risk, but exposes counterparties to default risk.

This Paper:
- Studies the effect of mandatory counterparty default insurance (central clearing) of OTC derivatives on buyers, sellers and insurers (CCPs).
- Assesses the overall impact on financial risk.

Results:
- Smaller buyers and sellers exit the market (increased market risk), while larger sellers insure more and become safer (decreased credit risk).
- Model calibration and policy evaluation show increase in market risk to dominate.
Overview

1. Motivation
 1.1 Background
 1.2 Research Agenda & Literature Review

2. Theoretical Analysis
 2.1 Model Environment
 2.2 Equilibrium Notion
 2.3 Mandatory vs Voluntary Insurance

3. Simulation

4. Conclusion
Market Risk:

- Large firms, hedge funds, investment funds and pension funds hold risky assets.
- They buy OTC derivatives from banks or broker-dealers to hedge their asset risk.
Market Risk:
- Large firms, hedge funds, investment funds and pension funds hold risky assets.
- They buy OTC derivatives from banks or broker-dealers to hedge their asset risk.

Counterparty Default Risk:
- Dealers can (and do) default on OTC transfers, e.g. Lehman Brothers.
- Caused by losses on OTC derivatives, or more likely other business losses.
Over-The-Counter (OTC) Derivatives

Market Risk:
- Large firms, hedge funds, investment funds and pension funds hold risky assets.
- They buy OTC derivatives from banks or broker-dealers to hedge their asset risk.

Counterparty Default Risk:
- Dealers can (and do) default on OTC transfers, e.g. Lehman Brothers.
- Caused by losses on OTC derivatives, or more likely other business losses.

Counterparty Default Insurance:
- Central Counterparties (CCPs) provide counterparty default insurance.
- Ex ante, they collect collateral to lower default risk.
- Upon default they manage and ensure contracted payments.
Post Lehman default, G20 countries introduced mandatory default insurance.

- Lower credit risk exposure:
 - Significant increase in share of insured OTC derivatives.
 - Significant increase in the collateral provided by both counterparties.

- Higher market risk exposure:
 - CCPs often monopolists within an asset class and increase prices.
 - Smaller buyers and sellers reported difficulties to access the market.

Higher Market Risk Exposure \(\Rightarrow\) Lower Credit Risk Exposure
Mandatory Counterparty Default Insurance

- Post Lehman default, G20 countries introduced mandatory default insurance.
- It resulted in **lower credit risk** exposure:
 - Significant increase in share of insured OTC derivatives.
 - Significant increase in the collateral provided by both counterparties.

Higher Market Risk Exposure \iff Lower Credit Risk Exposure
Mandatory Counterparty Default Insurance

- Post Lehman default, G20 countries introduced mandatory default insurance.
- It resulted in **lower credit risk** exposure:
 - Significant increase in share of insured OTC derivatives.
 - Significant increase in the collateral provided by both counterparties.
- But also higher **market risk** exposure:
 - CCPs often monopolists within an asset class and increase prices.
 - Smaller buyers and sellers reported difficulties to access the market.
Mandatory Counterparty Default Insurance

- Post Lehman default, G20 countries introduced mandatory default insurance.
- It resulted in **lower credit risk** exposure:
 - Significant increase in share of insured OTC derivatives.
 - Significant increase in the collateral provided by both counterparties.
- But also higher **market risk** exposure:
 - CCPs often monopolists within an asset class and increase prices.
 - Smaller buyers and sellers reported difficulties to access the market.

Higher Market Risk Exposure \(\iff\) Lower Credit Risk Exposure
Research Agenda

What is the effect of the mandatory counterparty default insurance of OTC derivatives on aggregate financial risk?
What is the effect of the mandatory counterparty default insurance of OTC derivatives on aggregate financial risk?

1. Discussing competition in the markets of OTC derivatives and their insurance.

2. Analyze a monopolistic CCP’s ability to influence the market outcome under both mandatory and voluntary insurance.

3. Study the effect of a regime shift on aggregate financial risk.
Literature & Contribution

OTC Prices and Competition: search frictions (Duffie et al., 2005), random match with Nash bargaining (Koepll et al., 2012; Huang, 2019), take-it-or-leave-it offer (Biais et al., 2012), horizontal differentiation (Perez Saiz et al., 2012).

- **Heterogeneous** switching cost in the presence of trading-platforms.

Monopolistic for-profit CCPs: Optimal capital choices (Huang, 2019), maximize profit in the absence of price discrimination (Capponi and Cheng, 2018).

- The **spillover effect** of CCP choices on competition in the OTC derivatives market.

Mandatory Insurance and Financial Risk: Netting benefits of CCPs (Ghamami and Glasserman, 2017), systemic risk and for-profit CCPs (Capponi and Cheng, 2018).

- The **interaction** between market structure and micro-prudential policy.
- **Heterogeneous** impact on different buyers, sellers and the CCP.
Overview

1. Motivation
 1.1 Background
 1.2 Research Agenda & Literature Review

2. Theoretical Analysis
 2.1 Model Environment
 2.2 Equilibrium Notion
 2.3 Mandatory vs Voluntary Insurance

3. Simulation

4. Conclusion
Model Environment

Three dates:

- \(t = 0 \): Risky endowments are received and types decided.
- \(t = 1 \): All trades take place.
- \(t = 2 \): Uncertainty resolves and agents decide whether to strategically default.
Model Environment

Three dates:
- $t = 0$: Risky endowments are received and types decided.
- $t = 1$: All trades take place.
- $t = 2$: Uncertainty resolves and agents decide whether to strategically default.

Three types of agents:
- Risk-averse buyers.
- Risk-neutral sellers: Clearing members and non-clearing members.
- For-profit monopolistic CCP.
Markets and Competition

Derivatives Market (Product d):

$t = 0$: Each buyer is matched with one seller and endowed with n_b risky assets.

$t = 1$: Buyers purchase product d, paying costs C when **switching** to another seller.

→ **Sellers** compete in prices subject to switching cost frictions and discrimination.

$t = 2$: Uncertainty is realized, seller default observed and conditional transfers made.

Insurance Market (Product m):

$t = 0$: The monopolistic CCP sets a two-part tariff for insurance.

$t = 1$: Product d counterparties mutually agree whether to purchase insurance.

→ Risk-neutral sellers ask a take-it-or-leave it price for their agreement.

→ Clearing members ask for a (competitive) price to intermediate with CCP.

$t = 2$: CCP covers transfers for insured product d s with defaulting sellers.
Markets and Competition

Derivatives Market (Product d):

$t = 0$: Each buyer is matched with one seller and endowed with n_b risky assets.

$t = 1$: Buyers purchase product d, paying costs C when switching to another seller.

\rightarrow **Sellers** compete in prices subject to switching cost frictions and discrimination.

$t = 2$: Uncertainty is realized, seller default observed and conditional transfers made.

Insurance Market (Product m):

$t = 0$: The monopolistic CCP sets a two-part tariff for insurance.

$t = 1$: Product d counterparties **mutually agree** whether to purchase insurance.

\rightarrow Risk-neutral **sellers** ask a take-it-or-leave it price for their agreement.

\rightarrow **Clearing members** ask for a (competitive) price to intermediate with CCP.

$t = 2$: CCP covers transfers for insured product ds with defaulting sellers.
Sub-game perfect Nash equilibrium with incomplete information.

<table>
<thead>
<tr>
<th>Voluntary Insurance</th>
<th>Mandatory Insurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 2$</td>
<td>Transfers given buyer allocation, seller default and product choices.</td>
</tr>
<tr>
<td>Buyers decide whether to additionally purchase insurance product m.</td>
<td>Buyers decide whether to purchase the bundle of product d and m.</td>
</tr>
<tr>
<td>$t = 1$</td>
<td>Buyers choose whether and from which seller to purchase product d.</td>
</tr>
<tr>
<td>$t = 0$</td>
<td>CCP sets fees and collateral; sellers become clearing members.</td>
</tr>
</tbody>
</table>
Summary of Theory Results

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Voluntary Insurance</th>
<th>Mandatory Insurance</th>
<th>Implications</th>
</tr>
</thead>
</table>
| | • All buyers purchase product d. | • Small buyers exit the market. | • Some buyers remain unhedged.
| | • Only large buyers purchase product m. | • Medium and large buyers purchase product m. | \rightarrow **Higher market risk** |
| | | | • More buyers are insured.
| | | | \rightarrow **Lower credit risk** |
Summary of Theory Results

<table>
<thead>
<tr>
<th></th>
<th>Voluntary Insurance</th>
<th>Mandatory Insurance</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buyers</td>
<td>All buyers purchase product d.</td>
<td>Small buyers exit the market.</td>
<td>Some buyers remain unhedged. Higher market risk</td>
</tr>
<tr>
<td></td>
<td>Only large buyers purchase product m.</td>
<td>Medium and large buyers purchase product m.</td>
<td>More buyers are insured. Lower credit risk</td>
</tr>
<tr>
<td>Sellers</td>
<td>Small & medium sized sellers sell product d.</td>
<td>Small sellers exit the market.</td>
<td>Sellers have more insured and less uninsured sales.</td>
</tr>
<tr>
<td></td>
<td>Large sellers become clearing members and sell product $d & m$.</td>
<td>Medium sized & large sellers sell bundle.</td>
<td>Sellers have lower default risk. Credit risk externalities</td>
</tr>
</tbody>
</table>

Ambiguous effects on buyers’ risk exposure: financial risk trade-off. Positive effect on seller credit risk. Aggregate effect depends on model parameters and buyer size distribution.
Summary of Theory Results

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Voluntary Insurance</th>
<th>Mandatory Insurance</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>All buyers purchase product d.</td>
<td>Small buyers exit the market.</td>
<td>Some buyers remain unhedged.</td>
<td>\rightarrow Higher market risk \rightarrow</td>
</tr>
<tr>
<td>Only large buyers purchase product m.</td>
<td>Medium and large buyers purchase product m.</td>
<td>More buyers are insured.</td>
<td>Lower credit risk</td>
</tr>
<tr>
<td>Small buyers exit the market.</td>
<td>Some buyers remain unhedged.</td>
<td>Sellers have more insured and less uninsured sales.</td>
<td>Credit risk externalities.</td>
</tr>
<tr>
<td>Medium and large buyers purchase product m.</td>
<td></td>
<td>Sellers have lower default risk.</td>
<td></td>
</tr>
<tr>
<td>Some buyers remain unhedged.</td>
<td>\rightarrow Higher market risk \rightarrow Lower credit risk</td>
<td>\rightarrow Credit risk externalities.</td>
<td></td>
</tr>
<tr>
<td>Sellers</td>
<td>Small & medium sized sellers sell product d.</td>
<td>Small sellers exit the market.</td>
<td></td>
</tr>
<tr>
<td>Small & medium sized sellers sell product d.</td>
<td></td>
<td>Medium sized & large sellers sell bundle.</td>
<td></td>
</tr>
<tr>
<td>Large sellers become clearing members and sell product $d & m$.</td>
<td></td>
<td>Sellers have more insured and less uninsured sales.</td>
<td></td>
</tr>
<tr>
<td>Sellers</td>
<td>Small & medium sized sellers sell product d.</td>
<td>Small sellers exit the market.</td>
<td></td>
</tr>
<tr>
<td>Sellers</td>
<td>Small & medium sized sellers sell product d.</td>
<td>Small sellers exit the market.</td>
<td></td>
</tr>
<tr>
<td>Sellers</td>
<td>Sellers have more insured and less uninsured sales.</td>
<td>Sellers have lower default risk.</td>
<td></td>
</tr>
<tr>
<td>Sellers</td>
<td>Sellers have more insured and less uninsured sales.</td>
<td>Sellers have lower default risk.</td>
<td></td>
</tr>
</tbody>
</table>

\rightarrow Ambiguous effects on buyers’ risk exposure: **financial risk trade-off**.

\rightarrow Positive effect on seller credit risk: **credit risk externality**

\rightarrow Aggregate effect depends on model parameters and buyer size distribution.
Overview

1. Motivation
 1.1 Background
 1.2 Research Agenda & Literature Review

2. Theoretical Analysis
 2.1 Model Environment
 2.2 Equilibrium Notion
 2.3 Mandatory vs Voluntary Insurance

3. Simulation

4. Conclusion
Counterfactual Policy Evaluation

Parameterization:

- Parameterize the model for quarterly EuroDollar FX OTC derivatives.
- Here, data collection started in 2015 and to this date, insurance is still voluntary.
Counterfactual Policy Evaluation

Parameterization:

- Parameterize the model for quarterly EuroDollar FX OTC derivatives.
- Here, data collection started in 2015 and to this date, insurance is still voluntary.

Model Calibration:

- Solve the equilibrium under voluntary insurance and verify.
- Perform a counterfactual analysis introducing mandatory insurance.
Parameterization:

- Parameterize the model for quarterly EuroDollar FX OTC derivatives.
- Here, data collection started in 2015 and to this date, insurance is still voluntary.

Model Calibration:

- Solve the equilibrium under voluntary insurance and verify.
- Perform a counterfactual analysis introducing mandatory insurance.

Financial Risk Analysis:

- Compute and compare average buyer’s exposure to risk.
- Compute and compare average seller’s credit risk.
Counterfactual Policy Evaluation

(a) Buyer Utility

(b) Seller Profits

(c) Seller Default Probability

Table: The Effect on Financial Risk Exposure

<table>
<thead>
<tr>
<th></th>
<th>Credit Risk Exposure</th>
<th>Market Risk Exposure</th>
<th>Risk Exposure Change (%)</th>
<th>Credit Risk Externality</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆CR</td>
<td>−0.00324</td>
<td>∆MR</td>
<td>0.05836</td>
<td>∆R</td>
</tr>
<tr>
<td></td>
<td>∆R</td>
<td></td>
<td>1701.45%</td>
<td>∆D</td>
</tr>
<tr>
<td>∆D</td>
<td>0.00009%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Natale Kessler OTC Derivatives December, 2021
Counterfactual Policy Evaluation

Table: The Effect on Financial Risk Exposure

<table>
<thead>
<tr>
<th>Credit Risk Exposure</th>
<th>Market Risk Exposure</th>
<th>Risk Exposure Change (%)</th>
<th>Credit Risk Externality</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta CR = -0.00324$</td>
<td>$\Delta MR = 0.05836$</td>
<td>$\Delta R = 1701.45%$</td>
<td>$\Delta D = -0.00009%$</td>
</tr>
</tbody>
</table>
Theoretical Analysis:

- Mandatory insurance empowers the monopolistic *for-profit* CCP to set higher prices.
- Therefore, *smaller* buyers and sellers *exit* the market → increased market risk.
- *Larger* buyers and sellers insuring more → decreased credit risk.

⇒ Buyer size distribution determines the aggregate effect of mandatory insurance.
Conclusion

Theoretical Analysis:
- Mandatory insurance empowers the monopolistic for-profit CCP to set higher prices.
- Therefore, smaller buyers and sellers exit the market → increased market risk.
- Larger buyers and sellers insuring more → decreased credit risk.

⇒ Buyer size distribution determines the aggregate effect of mandatory insurance.

Counterfactual Policy Evaluation:
- The EuroDollar FX Market is populated by many small buyers.
- Insurance provides little additional value even to large buyers.

⇒ Mandatory insurance would result in a significant increase in financial risk exposure.
Conclusion

• Mandatory insurance empowers the monopolistic for-profit CCP to set higher prices.

• Therefore, smaller buyers and sellers exit the market.
 → Increased market risk exposure.

• Larger buyers and sellers became safer by insuring more with higher collateral.
 → Decreased credit risk exposure

• Safer sellers also benefit other financial markets.
 → Credit risk externality

⇒ Buyer size distribution determines the aggregate effect of mandatory insurance.
Thank You!

The Risk-Averse Buyers

- Finite, but large number B of buyers with mean-variance utility:

$$u(x) = E(x) - \frac{\gamma}{2} Var(x) \quad \text{where} \quad \gamma > 0$$

(1)
The Risk-Averse Buyers

Model.Env.

- Finite, but large number \(B \) of buyers with mean-variance utility:

\[
u(x) = E(x) - \frac{\gamma}{2} \text{Var}(x) \quad \text{where} \quad \gamma > 0 \tag{1}\]

- At \(t = 0 \) each buyer is endowed with \(n_b \sim U(0, n_B) \) different risky assets with i.i.d. returns \((1 + \tilde{R}) \sim N(\mu_R, \sigma^2_R)\).

Reservation Utility: \(u_R = \mu_R - \frac{\gamma}{2} \sigma^2_R \tag{2} \)
The Risk-Averse Buyers

- Finite, but large number B of buyers with mean-variance utility:
 \[u(x) = E(x) - \frac{\gamma}{2} \text{Var}(x) \text{ where } \gamma > 0 \]
 (1)

- At $t = 0$ each buyer is endowed with $n_b \sim U(0, n_B)$ different risky assets with i.i.d. returns $(1 + \tilde{R}) \sim N(\mu_R, \sigma^2_R)$.

 Reservation Utility: $u_R = \mu_R - \frac{\gamma}{2} \sigma^2_R$
 (2)

- At $t = 1$ a buyer can purchase up to n_b derivatives at price P_d, each specifying transfers: $\tau = -(1 + \tilde{R}) + \mu_R$.

The Risk-Averse Buyers

- Finite, but large number B of buyers with mean-variance utility:
 \[u(x) = E(x) - \frac{\gamma}{2} Var(x) \quad \text{where} \quad \gamma > 0 \tag{1} \]

- At $t = 0$ each buyer is endowed with $n_b \sim U(0, n_B)$ different risky assets with i.i.d. returns $(1 + \tilde{R}) \sim N(\mu_R, \sigma^2_R)$.

 Reservation Utility: \[u_R = \mu_R - \frac{\gamma}{2} \sigma^2_R \tag{2} \]

- At $t = 1$ a buyer can purchase up to n_b derivatives at price P_d, each specifying transfers: $\tau = -(1 + \tilde{R}) + \mu_R$.

- At $t = 2$ the derivative seller(s) may default on positive transfers with an expected probability \hat{D}_s:
 \[u_d = \left(1 - \hat{D}_s\right) \mu_R + \hat{D}_s u \left(1 + \tilde{R} \mid \tau > 0\right) - P_d \tag{3} \]
The Risk-Neutral Sellers

- Finite, but large number S of risk-neutral sellers.
- Sell derivatives at $t = 1$, where transfers realize at $t = 2$.

- At $t = 2$ they receive i.i.d. profits from other business lines: $L \sim N(0, \sigma^2_L)$.
- Can strategically default after observing the realization of L and their total sales:
 \[D_s = \Pr(\Pi_s^2 \leq 0) \] (4)
- Maximize total profits, taking strategic default into account:
 \[E_0 \Pi_s = \max P_d \Pi_0^s + E_0 \Pi_1^s + (1 - D_s) E_0 \left[\Pi_2^s \mid \Pi_2^s > 0 \right] + D_s^* \] (5)
• Finite, but large number S of risk-neutral sellers.

• Sell derivatives at $t = 1$, where transfers realize at $t = 2$.

• At $t = 2$ they receive i.i.d. profits from other business lines: $L \sim N(0, \sigma^2_L)$.

• Can strategically default after observing the realization of L and their total sales:

$$D_s = Pr(\Pi^2_s \leq 0)$$ \hspace{1cm} (4)
The Risk-Neutral Sellers

- Finite, but large number S of risk-neutral sellers.
- Sell derivatives at $t = 1$, where transfers realize at $t = 2$.
- At $t = 2$ they receive i.i.d. profits from other business lines: $L \sim N(0, \sigma_L^2)$.
- Can strategically default after observing the realization of L and their total sales:
 \[D_s = Pr(\Pi_s^2 \leq 0) \]

\[\mathbb{E}_0 \Pi_s = \max_{P_d} \left(\Pi_s^0 + \mathbb{E}_0 \Pi_s^1 + (1 - D_s) \mathbb{E}_0 \left[\Pi_s^2 \mid \Pi_s^2 > 0 \right] + D_s \right) \]
The CCP’s Profit Function

- Expected numbers of clearing members and membership fee: \(M \) and \(f_M \)
- Expected product \(m \) sales of a clearing member and clearing fee: \(Q_m \) and \(f \)
- Clearing members’ expected default probability given collateral: \(D_M(g_M) \)
- CCP’s expected losses from a single seller’s default: \(\Pi_{CCP}^2 \)
- CCP’s profit maximization problem:

\[
E_0 \Pi_{CCP} = \max_{\{f_m, f, g_M\}} \overline{M}f_M + \overline{M}Q_M2f + \overline{M}D_M(g_M)\Pi_{CCP}^2(g_m)
\]
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Notation</th>
<th>Value</th>
<th>Method</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buyer size</td>
<td>(a_b \sim Weibull(\lambda, k))</td>
<td>(\lambda = 0.686, \ k = 0.689)</td>
<td>SMM</td>
<td>Hau et al. (2021)</td>
</tr>
<tr>
<td>Asset Return</td>
<td>((1 + \tilde{r}) \sim N(\mu_r, \sigma^2_r))</td>
<td>(\mu_r = 1.012, \ \sigma_r = 0.095)</td>
<td>return of US corp. bonds and exchange rate volatility</td>
<td>St. Louis Fed (2021) Bundesbank (2021)</td>
</tr>
<tr>
<td>Risk Aversion</td>
<td>(\gamma)</td>
<td>(\gamma = 4.37)</td>
<td>-</td>
<td>Eisfeldt et al. (2020)</td>
</tr>
<tr>
<td>Seller profits</td>
<td>(L \sim N(\mu_L, \sigma_L))</td>
<td>(\mu_L = 199.846, \ \sigma_L = 115.169)</td>
<td>avg., std.</td>
<td>S&P Global (2021)</td>
</tr>
<tr>
<td>Collateral Cost</td>
<td>(\delta)</td>
<td>(\delta = 0.000636)</td>
<td>avg. EURIBOR</td>
<td>Bundesbank (2021)</td>
</tr>
<tr>
<td>Switching Costs</td>
<td>(C)</td>
<td>(C \in {C, \overline{C}, 2\overline{C}})</td>
<td>parameter implied</td>
<td>-</td>
</tr>
</tbody>
</table>