# Is College Worth It For Me? Beliefs, Funding, and Higher Education

Sergio Barrera University of Minnesota

### Motivation

- Gaps bachelor's attainment (BA) for high achievers (top quartile ASVAB AFQT).
  - Race: White 64%; Black 59%; Hispanic 52%.
  - HH Net Worth: Top Tercile 71%; Bottom Tercile 42%.
  - Parent Education: Bachelors 80%; High school or less 42%.

Motivation •000

### Motivation

- Gaps bachelor's attainment (BA) for high achievers (top quartile ASVAB AFQT).
  - Race: White 64%; Black 59%; Hispanic 52%.
  - HH Net Worth: Top Tercile 71%: Bottom Tercile 42%.
  - Parent Education: Bachelors 80%; High school or less 42%.
- Role of credit constraints, rising tuition, and funding well studied. (Lochner & Monge Naranio 2012, Dynarski 2003, Carneiro & Heckman 2002).
- Recent work suggests important role for information frictions.
  - (Dynarski, Michelmore, Libassi, & Owen 2021; Hoxby & Turner 2015; Stinebrickner & Stinebrickner 2012; Bettinger, Long, Oreopoulos, & Sanbonmatsu, 2012).

### Information Frictions

- This paper: Systematic differences: beliefs about own college success.
  - Performance, earnings, and utility.

#### Information Frictions

- This paper: Systematic differences: beliefs about own college success.
  - Performance, earnings, and utility.
- Why beliefs differ by demographic group?
  - -Familiarity, guidance, encouragement from college educated adults or peers.

(Hoxby and Avery 2012)

Motivation

0000

-More adverse shocks that affect performance.

(DeLuca, Papageorge, Boselovic, Gershenson, Grav, Nerenberg, Sausedo, & Young 2021; Evans, William, Kearney, Perry, & Sullivan 2020)

#### Information Frictions

- This paper: Systematic differences: beliefs about own college success.
  - Performance, earnings, and utility.
- Why beliefs differ by demographic group?
  - -Familiarity, guidance, encouragement from college educated adults or peers.

(Hoxby and Avery 2012)

-More adverse shocks that affect performance.

(DeLuca, Papageorge, Boselovic, Gershenson, Gray, Nerenberg, Sausedo, & Young 2021; Evans, William, Kearney, Perry, & Sullivan 2020)

- Why information frictions important?
  - -Generate mismatch, suggests less costly policy, effect growth.

(Hsieh, Hurst, Klenow, Jones 2019)

### Research Question

1. Do differences in beliefs about own success probabilities generate BA gaps for high ability youth?

### Research Question

1. Do differences in beliefs about own success probabilities generate BA gaps for high ability youth?

- 2. Which policy is more efficient at decreasing overall gaps in BA?
  - Targeted info and funding only to high ability low SES.
  - Free college for all.
  - Better info for everyone.

Motivation

### Research Question

1. Do differences in beliefs about own success probabilities generate BA gaps for high ability youth?

- 2. Which policy is more efficient at decreasing overall gaps in BA?
  - Targeted info and funding only to high ability low SES.
  - Free college for all.
  - Better info for everyone.

Answer: Beliefs important Hispanic, low-SES youth and Targeted policy more efficient.

**Contribution:** Document new facts and relax rational expectations prior.

### Outline

- 1. Document empirical facts NLSY97.
- 2. Describe the model.
- 3. Show results: decomposition exercise and policy experiment.

### Data Description and Patterns

- Data Sources: NLSY97: Panel data, cohorts born 1980-1984, oversamples Hispanic and Black youth.
- Use data on
  - HH net worth, parental education, race, ethnicity.
  - Cognitive and non cognitive ability measures.
  - Financial assistance, grades in college.
  - Beliefs about college outcomes.
  - Average earnings, GPA, and educational attainment.



Summary Statistics Race Summary Statistics Par Edu

# **Empirical Patterns**

- In the NI SY97
  - 1. Holding financial resources, human capital constant, more optimism correlated with more enrollment/completion. College Outcomes
  - 2. Exit lower every grade level for more optimistic youth. Non Continuation Pattern
  - 3. Holding human capital, family resources constant, optimism correlated with family and peer background.

    Belief Regression

### Model Elements

- Discrete Choice, Finite Horizon, 24 periods, period length 2 years.
- Three stages: enroll/work, continue/exit, realize post college earnings and work.
- Agents don't know  $\tau \in \{\tau_l, \tau_h\}$  that determines earnings  $w_c(\tau)$ , GPA g, and post college non pecuniary utility  $\mu(\tau)$ , or true probability,  $P_{true}$ , of  $\tau = \tau_h$ .
- Agents begin with prior P for  $\tau = \tau_h$ , update P through grades by Bayes Rule, Belief Rule
- Each period agents borrow. Student borrowing limit stricter than worker's.

• High school senior decision to go to college.

- High school senior decision to go to college.
  - Knows employment situation  $w_n$ ,  $w_s$ , financial resources and costs  $\{f_t\}_{t=1,2}$ , current shock  $\vec{\varepsilon_1}$ , distribution  $\vec{\varepsilon_2}$ .
  - Uncertain prob of success ( $P_{true}$ , grades prob  $\pi(g,\tau)$ , post college earnings  $w_c(\tau)$ , utility  $\mu(\tau)$ ), but has belief P.

- High school senior decision to go to college.
  - Knows employment situation  $w_n$ ,  $w_s$ , financial resources and costs  $\{f_t\}_{t=1,2}$ , current shock  $\vec{\varepsilon_1}$ , distribution  $\vec{\varepsilon_2}$ .
  - Uncertain prob of success ( $P_{true}$ , grades prob  $\pi(g,\tau)$ , post college earnings  $w_c(\tau)$ , utility  $\mu(\tau)$ ), but has belief P.
- Given P,  $f_t$ ,  $\vec{\varepsilon}_t$ , t=1,2 enrollment decision, borrows  $b_2$ . Enroll Stage

- High school senior decision to go to college.
  - Knows employment situation  $w_n$ ,  $w_s$ , financial resources and costs  $\{f_t\}_{t=1,2}$ , current shock  $\vec{\varepsilon_1}$ , distribution  $\vec{\varepsilon_2}$ .
  - Uncertain prob of success ( $P_{true}$ , grades prob  $\pi(g,\tau)$ , post college earnings  $w_c(\tau)$ , utility  $\mu(\tau)$ ), but has belief P.
- Given P,  $f_t$ ,  $\vec{\varepsilon_t}$ , t=1,2 enrollment decision, borrows  $b_2$ . Enroll Stage
  - After experience, gains information GPA g, updates belief to P'(g, P), realizes shocks  $\vec{\varepsilon}_2$ .

- High school senior decision to go to college.
  - Knows employment situation  $w_n$ ,  $w_s$ , financial resources and costs  $\{f_t\}_{t=1,2}$ , current shock  $\vec{\varepsilon_1}$ , distribution  $\vec{\varepsilon_2}$ .
  - Uncertain prob of success ( $P_{true}$ , grades prob  $\pi(g,\tau)$ , post college earnings  $w_c(\tau)$ , utility  $\mu(\tau)$ ), but has belief P.
- Given P,  $f_t$ ,  $\vec{\varepsilon_t}$ , t=1,2 enrollment decision, borrows  $b_2$ . Enroll Stage
  - After experience, gains information GPA g, updates belief to P'(g, P), realizes shocks  $\vec{\varepsilon}_2$ .
- Given P'(g, P),  $f_2$ ,  $\vec{\varepsilon}_2$ , continue decision, borrows  $b_3$ . Continuation Stage

- High school senior decision to go to college.
  - Knows employment situation  $w_n$ ,  $w_s$ , financial resources and costs  $\{f_t\}_{t=1,2}$ , current shock  $\vec{\varepsilon_1}$ , distribution  $\vec{\varepsilon_2}$ .
  - Uncertain prob of success ( $P_{true}$ , grades prob  $\pi(g,\tau)$ , post college earnings  $w_c(\tau)$ , utility  $\mu(\tau)$ ), but has belief P.
- Given P,  $f_t$ ,  $\vec{\varepsilon_t}$ , t=1,2 enrollment decision, borrows  $b_2$ . Enroll Stage
  - After experience, gains information GPA g, updates belief to P'(g, P), realizes shocks  $\vec{\varepsilon}_2$ .
- Given P'(g, P),  $f_2$ ,  $\vec{\varepsilon}_2$ , continue decision, borrows  $b_3$ . Continuation Stage
- After graduation, works, pays debt, with experience learns if college worth it  $\tau$ . Work Stage

#### Model Calibration and Estimation

• Preset parameters (discount rate, interest rate, student borrowing limit, CRRA).

Preset Values

#### Model Calibration and Estimation

Preset parameters (discount rate, interest rate, student borrowing limit, CRRA).

- Externally estimate,
  - 1. Financial assistance by demographic, OLS.
  - 2. Earnings  $w_n, w_s, w_c(\tau)$ , grade distribution  $\pi(g, \tau)$ , and  $P_{true}$ , FMM.



#### Model Calibration and Estimation

Preset parameters (discount rate, interest rate, student borrowing limit, CRRA).

- Externally estimate,
  - 1. Financial assistance by demographic, OLS.
  - 2. Earnings  $w_n, w_s, w_c(\tau)$ , grade distribution  $\pi(g, \tau)$ , and  $P_{true}$ . FMM.

```
External Specification | Predicted Earnings | Grades by Type
```

- Internally estimation using indirect inference:
  - 1. Tuition sticker price, unobserved utility shocks.
  - 2. Distribution of subjective beliefs, for P.
    - -identified matching exit by grade, measured beliefs on enrollment.



Targeted Moments Internal Specification Identification Strategy

#### Model Estimation Results

• Matches bachelor's attainment by demographic group, and college non continuation by GPA.







#### Model Estimation Results

 Matches bachelor's attainment by demographic group, and college non continuation by GPA.



• High ability, high SES white youth, more optimistic, financial resources.

```
Difference Causal Variables
```

#### Model Estimation Results

 Matches bachelor's attainment by demographic group, and college non continuation by GPA.

```
Model Fit Demographic BA Non Cont GPA
```

High ability, high SES white youth, more optimistic, financial resources.

```
Difference Causal Variables
```

 Average beliefs by type for all groups wrong with respect to actual type, true probability from FMM.

```
Pred vs Belief
```

## Decomposition and Policy Counterfactuals

- 1. First use the model to decompose inequality for high scorers.
  - Compare Black, Hispanic, low SES to White High SES.

Decomp Graph Difference Causal Variables

## Decomposition and Policy Counterfactuals

- 1. First use the model to decompose inequality for high scorers.
  - Compare Black, Hispanic, low SES to White High SES.

Decomp Graph Difference Causal Variables

### Decomposition and Policy Counterfactuals

- 1. First use the model to decompose inequality for high scorers.
  - Compare Black, Hispanic, low SES to White High SES.

```
Decomp Graph Difference Causal Variables
```

- 2. Then compare efficiency of targeted policy in closing overall gaps vs free college for all and better info for all.
  - Efficiency: College Mismatch proportion who change BA decision with knowledge of type.

Policy Graph

# Main Findings

- 1. Beliefs: Significant 38-49 % of bachelor's gap; Hispanic, Low SES High Scorers
  - Can't reject a belief effect of zero for Black high scorers.
  - However financial resources significant for all (45 -50%).
- 2. Targeted subsidies and info most efficient at closing overall gaps.
  - Close gaps between 25-42% depending on demographic group.
  - Decrease mismatch by decreasing underinvestment.
  - Universal policies exhibit equity/efficiency trade off.

### Conclusion

- Information frictions lead to underinvestment in higher education for high ability youth from underrepresented backgrounds.
- Focusing on info and funding promising for increasing representation.
- Still important role for human capital disparities.
- Future work examine belief formation process, interaction with human capital, policy interventions.

## Acknowledgements

- I want to acknowledge support for this project from
  - 1. The AEA Mentorship Program
  - 2. National Science Foundation
  - 3. The Tobin Project
  - 4. Beverly and Richard Fink Graduate Fellowship
  - 5. Diversity of Views and Experiences Graduate Fellowship

## Patterns in the Data: Full Sample

Table: Summary Statistics by Parent Education

|                               | (1)    | (2)    | (3)    | (4)    | (5)    |
|-------------------------------|--------|--------|--------|--------|--------|
| VARIABLES                     | All    | Lt 12  | 12     | 13-15  | 16 +   |
| Enrolled in College           | 0.717  | 0.447  | 0.614  | 0.814  | 0.944  |
| Bachelors or More             | 0.301  | 0.0787 | 0.208  | 0.359  | 0.544  |
| Hispanic                      | 0.116  | 0.285  | 0.092  | 0.062  | 0.056  |
|                               |        |        |        |        |        |
| Black                         | 0.146  | 0.191  | 0.212  | 0.114  | 0.082  |
| Avg Parent Edu                | 13.02  | 10.10  | 12.00  | 13.77  | 16.00  |
| HH Net Worth (\$1000s)        | 185.8  | 53.53  | 123.8  | 201.7  | 375.8  |
| Pct Peers ColPlan             | 66.5   | 58.2   | 62.3   | 69.7   | 75.2   |
|                               |        |        |        |        |        |
| Prob Enroll                   | 0.751  | 0.572  | 0.713  | 0.812  | 0.882  |
| Prob Degree                   | 0.777  | 0.633  | 0.691  | 0.840  | 0.917  |
| College GPA                   | 2.65   | 2.21   | 2.62   | 2.68   | 2.98   |
| Total Govt/Inst Aid (\$1000s) | 2.3    | 2.40   | 1.68   | 1.93   | 2.29   |
| Total Fam Aid (\$1000s)       | 1.64   | 0.42   | 0.85   | 1.64   | 3.01   |
|                               |        |        |        |        |        |
| ASVAB AFQT                    | 54.73  | 32.47  | 49.53  | 60.13  | 75.08  |
| Ever Stole                    | 0.0671 | 0.0928 | 0.0492 | 0.0750 | 0.0422 |
| Ever Violence                 | 0.161  | 0.233  | 0.176  | 0.147  | 0.0903 |
| Ever_Sex before 15            | 0.182  | 0.295  | 0.210  | 0.152  | 0.084  |
| Sample Size                   | 2133   | 586    | 493    | 736    | 318    |



## Patterns in the Data: Full Sample

#### Table: Summary Statistics by Race Ethnicity

|                               | (1)    | (2)    | (3)      | (4)    |
|-------------------------------|--------|--------|----------|--------|
| VARIABLES                     | ÀΪ     | White  | Hispanic | Black  |
| Enrolled in College           | 0.717  | 0.740  | 0.626    | 0.670  |
| Bachelors or More             | 0.717  | 0.740  | 0.020    | 0.070  |
| Dachelors of More             | 0.301  | 0.550  | 0.171    | 0.222  |
| Parent Edu Lt 12              | 0.220  | 0.158  | 0.541    | 0.288  |
| Parent Edu 12                 | 0.216  | 0.202  | 0.176    | 0.313  |
| Parent Edu 13-15              | 0.388  | 0.434  | 0.200    | 0.302  |
| Parent Edu 16+                | 0.176  | 0.205  | 0.083    | 0.098  |
| Avg Parent Edu                | 13.02  | 13.43  | 11.15    | 12.37  |
| HH Net Worth (\$1000s)        | 185.8  | 226.4  | 80.68    | 56.04  |
| Pct Peers ColPlan             | 66.5   | 68.7   | 60.8     | 68.5   |
| Prob Enroll                   | 0.751  | 0.758  | 0.734    | 0.732  |
| Prob Degree                   | 0.777  | 0.793  | 0.679    | 0.767  |
| College GPA                   | 2.65   | 2.79   | 2.41     | 2.14   |
| Total Govt/Inst Aid (\$1000s) | 2.3    | 1.96   | 1.65     | 2.71   |
| Total Fam Aid (\$1000s)       | 1.64   | 1.92   | 0.96     | 0.60   |
|                               |        |        |          |        |
| ASVAB AFQT                    | 54.73  | 61.20  | 40.32    | 32.15  |
| Ever Stole                    | 0.0671 | 0.0608 | 0.0943   | 0.0779 |
| Ever Violence                 | 0.161  | 0.141  | 0.165    | 0.265  |
| Ever Sex before 15            | 0.182  | 0.145  | 0.186    | 0.375  |
| Sample Size                   | 2133   | 1188   | 404      | 541    |



### Patterns in the Data: Beliefs

#### Table: Measured Beliefs

|                                 | (1)                  | (2)         |
|---------------------------------|----------------------|-------------|
| VARIABLES                       | Pct Chance Deg by 30 | Prob Enroll |
|                                 |                      |             |
| Parent Education                | 0.0267***            | 0.0282***   |
|                                 | (0.0046)             | (0.0058)    |
| HH Net Worth (\$1000s)          | 0.0001***            | 0.0001**    |
|                                 | (0.0000)             | (0.0000)    |
| ASVAB AFQT                      | 0.0022***            | 0.0022***   |
|                                 | (0.0004)             | (0.0004)    |
| Peers Coll Plan About 25%       | 0.0812               | 0.1289*     |
|                                 | (0.0709)             | (0.0766)    |
| Peers Coll Plan About 50%       | 0.1110*              | 0.1314*     |
|                                 | (0.0671)             | (0.0692)    |
| Peers Coll Plan About 75%       | 0.1662**             | 0.1562**    |
|                                 | (0.0670)             | (0.0695)    |
| Peers Coll Plan more than 90%   | 0.2117***            | 0.1954***   |
|                                 | (0.0675)             | (0.0691)    |
| Hispanic                        | 0.0435               | 0.1174**    |
| •••                             | (0.0268)             | (0.0323)    |
| Black                           | 0.0978***            | 0.1071***   |
|                                 | (0.0246)             | (0.0312)    |
| 6                               | Yes                  | Yes         |
| Geography & Birth Year Controls | Yes<br>Yes           | Yes         |
| Non Cognitive Controls          |                      |             |
| Observations                    | 1,143                | 1,139       |
| R-squared                       | 0.2614               | 0.2304      |

\*\*\* p<0.01. \*\* p<0.05. \* p<0.1

#### Patterns in the Data: Financial Assistance

Table: Financial Assistance

|                                 | (1)            | (2)           | (3)               | (4)                 |
|---------------------------------|----------------|---------------|-------------------|---------------------|
| VARIABLES                       | Any Family Aid | Total Fam Aid | Any Govt/Inst Aid | Total Govt/Inst Aid |
| Parent Edu                      | 0.0346***      | 0.1854***     | -0.0006           | -0.0793             |
|                                 | (0.0072)       | (0.0607)      | (0.0078)          | (0.0751)            |
| HH Net Worth                    | 0.0003***      | 0.0050***     | -0.0002***        | 0.0001              |
|                                 | (0.0001)       | (0.0009)      | (0.0001)          | (0.0007)            |
| ASVAB AFQT                      | 0.0030***      | 0.0114**      | 0.0022***         | 0.0216***           |
|                                 | (0.0006)       | (0.0045)      | (0.0006)          | (0.0067)            |
| Female                          | 0.0322         | -0.0604       | 0.0574**          | 0.2054              |
|                                 | (0.0249)       | (0.2464)      | (0.0276)          | (0.3452)            |
| Hispanic                        | 0.0198         | 0.5455*       | 0.0995**          | -0.5875             |
| ·                               | (0.0403)       | (0.3057)      | (0.0441)          | (0.5116)            |
| Black                           | -0.0134        | 0.0212        | 0.1932***         | 0.9796**            |
|                                 | (0.0393)       | (0.2425)      | (0.0386)          | (0.4450)            |
| Geography & Birth Year Controls | Yes            | Yes           | Yes               | Yes                 |
| Non Cognitive Controls          | Yes            | Yes           | Yes               | Yes                 |
| Observations                    | 1,467          | 929           | 1,467             | 940                 |
| R-squared                       | 0.1478         | 0.2416        | 0.0503            | 0.0379              |

Robust standard errors in parentheses
\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

p(0.01, -- p(0.05, -- p(0

Belief Regression

# Patterns in the Data: Higher Education Outcomes

#### Table: College Outcomes

| (1)           | (2)                                                                                                                        | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ever Enrolled | Bachelors Attained                                                                                                         | Complete College                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                                                                                                                            | 0.0427***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |                                                                                                                            | (0.0070)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                            | 0.0001*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |                                                                                                                            | (0.0001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0055***     | 0.0057***                                                                                                                  | 0.0035***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (0.0004)      | (0.0004)                                                                                                                   | (0.0006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.3226***     | 0.2151***                                                                                                                  | 0.2164***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (0.0280)      | (0.0283)                                                                                                                   | (0.0491)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0812***     | 0.0535*                                                                                                                    | 0.0525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (0.0286)      | (0.0286)                                                                                                                   | (0.0381)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.1700***     | 0.1487***                                                                                                                  | 0.1732***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (0.0261)      |                                                                                                                            | (0.0350)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ()            | ()                                                                                                                         | 0.1803***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |                                                                                                                            | (0.0152)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                            | 0.0058**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                            | (0.0027)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                            | 0.0075**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                            | (0.0035)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Yes           | Yes                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                            | 1.467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               |                                                                                                                            | 0.3240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | Ever Enrolled  0.0292*** (0.0048) 0.0001* (0.0000) 0.0055** (0.0004) 0.3226** (0.0280) 0.0812** (0.0286) 0.1700** (0.0261) | Ves   Ves |

Standard errors in parentheses

\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

# Patterns in the Data: Earnings

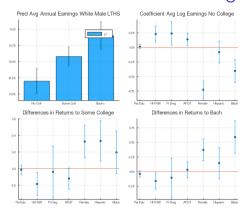



Figure: Earnings by EDU and Differences in Log Returns to School



# Patterns in the Data: Exit by Par Edu & Belief

| VARIABLES                            | Non        | Interaction | Interaction |
|--------------------------------------|------------|-------------|-------------|
|                                      | Interacted | GPA 2.0-3.0 | GPA > 3.0   |
| College Belief                       | 0.0775     | -0.2604**   | -0.2249**   |
| College Deller                       | (0.0543)   | (0.1021)    | (0.1092)    |
| GPA 2.0-3.0                          | -0.1513*   | (0.1021)    | (0.1092)    |
| GI A 2.0-3.0                         | (0.0859)   |             |             |
| GPA > 3.0                            | -0.3431*** |             |             |
| GFA > 3.0                            | (0.0929)   |             |             |
| Hispanic                             | -0.0673    |             |             |
| Hispanic                             | (0.0492)   |             |             |
| Black                                | -0.0539    |             |             |
| Black                                | (0.0413)   |             |             |
| Parent Education                     | -0.0179**  |             |             |
| Parent Education                     | (0.0089)   |             |             |
| Haveshald Net Westh (\$1000s)        | -0.00003   |             |             |
| Household Net Worth (\$1000s)        | (0.00003   |             |             |
| T-1-1 ( /1 A:1 (\$1000-)             | -0.0179*** |             |             |
| Total Govt/Inst Aid (\$1000s)        |            |             |             |
| T-1-1 F A:1 (\$1000-)                | (0.0042)   |             |             |
| Total Fam Aid (\$1000s)              | -0.0118    |             |             |
| T . 15. 11 (*******)                 | (0.0072)   |             |             |
| Total Stud Loan (\$1000s)            | -0.0057    |             |             |
|                                      | (0.0049)   |             |             |
| Geography, Birth Year, Gender        | Yes        |             |             |
| Cognitive and Non cognitive Controls | Yes        |             |             |
| Observations                         | 1.028      |             |             |
| R-squared                            | 0.2576     |             |             |

Robust standard errors in parentheses
\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

### Model Predictions

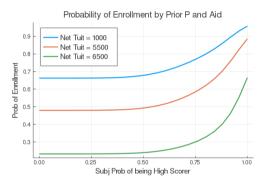



Figure: Model predicted probability of college enrollment by Net Tuition and Prior Belief of being "High Achiever"



### Model Predictions

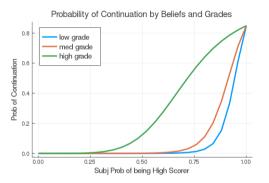



Figure: Model predicted probability of college continuation by average GPA



### Model Predictions

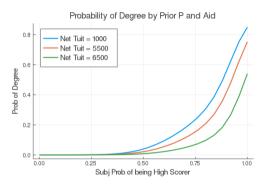



Figure: Model predicted probability of bachelor's attainment, enrollment and completion, by Net Tuition and Prior Belief of being "High Achiever"



## Motivation Continued

- Literature has focused on financial explanations or early childhood human capital.
  - 1. Rising Tuition (Turner 2004)
  - 2. Financial Assistance (Dynarski 2001)
  - 3. Credit Constraints (Lochner & Monge Naranjo 2011)
  - 4. Parental Investments in Human Capital (Cunha & Heckman 2007)



- Gaps by parental income exists among high ability youth with access to funding (Hoxby & Avery 2012). Evidence suggests this is partly due to differences in subjective beliefs.
  - Enrollment: Acceptance Probability (Dynarski, Michelmore, Libassi, & Owens, 2020; Hoxby & Turner 2012).
  - Enrollment: Net Cost (Bettinger, Long, Oreopoulis, & Sanbonmatsu 2012)
  - Dropout: Ability and earnings (Stinebrickner & Stinebrickner 2012; Wiswall & Zafar 2015)

Motivation

# Results: Average Earnings

Table: External Estimation Results: Average Earnings

| Parameter Estimated Annual Value |                   | Description                |
|----------------------------------|-------------------|----------------------------|
|                                  | ¢20 E94           | Non College Formings       |
| $w_n$                            | \$29, 584         | Non College Earnings       |
| $W_S$                            | \$45,026          | Some College Earnings      |
| $w_s(	au_I)$                     | <b>\$</b> 51, 277 | Low type college earnings  |
| $w_s(	au_h)$                     | \$65,841          | High type college earnings |

Table 5: Expected value of earnings from Finite Mixture Model by education realization.

#### **Estimation Results**

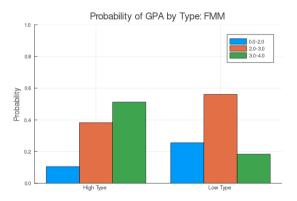



Figure: Predicted College GPA category by latent "Scorer" type.



#### Estimation Results: Beliefs vs True

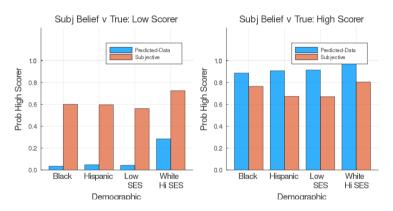



Figure: Difference in FMM estimate Prob High vs Subj Belief by Scorer type.



# **Efficiency Policy**

#### Table: Policy Effect on Overall Inequality

| rgeted                                  |
|-----------------------------------------|
|                                         |
| ?6.5*<br>3.18)                          |
| .2 % *<br>8.65)                         |
|                                         |
| 9.02*<br>3.33)                          |
| 3.26%*<br>7.96)                         |
|                                         |
| 23.9*<br>3.08)                          |
| 1.8%*<br>7.27)                          |
|                                         |
| 9.0<br>3.3<br>3.2<br>7.9<br>23.9<br>3.0 |

## Patterns in the Data: Full Sample

Table: Summary Statistics by Parent Education

|                               | (1)    | (2)    | (3)    | (4)    | (5)    |
|-------------------------------|--------|--------|--------|--------|--------|
| VARIABLES                     | All    | Lt 12  | 12     | 13-15  | 16 +   |
| Enrolled in College           | 0.717  | 0.447  | 0.614  | 0.814  | 0.944  |
| Bachelors or More             | 0.301  | 0.0787 | 0.208  | 0.359  | 0.544  |
| Hispanic                      | 0.116  | 0.285  | 0.092  | 0.062  | 0.056  |
|                               |        |        |        |        |        |
| Black                         | 0.146  | 0.191  | 0.212  | 0.114  | 0.082  |
| Avg Parent Edu                | 13.02  | 10.10  | 12.00  | 13.77  | 16.00  |
| HH Net Worth (\$1000s)        | 185.8  | 53.53  | 123.8  | 201.7  | 375.8  |
| Pct Peers ColPlan             | 66.5   | 58.2   | 62.3   | 69.7   | 75.2   |
|                               |        |        |        |        |        |
| Prob Enroll                   | 0.751  | 0.572  | 0.713  | 0.812  | 0.882  |
| Prob Degree                   | 0.777  | 0.633  | 0.691  | 0.840  | 0.917  |
| College GPA                   | 2.65   | 2.21   | 2.62   | 2.68   | 2.98   |
| Total Govt/Inst Aid (\$1000s) | 2.3    | 2.40   | 1.68   | 1.93   | 2.29   |
| Total Fam Aid (\$1000s)       | 1.64   | 0.42   | 0.85   | 1.64   | 3.01   |
| (4)                           |        |        |        |        | 0.02   |
| ASVAB AFQT                    | 54.73  | 32.47  | 49.53  | 60.13  | 75.08  |
| Ever Stole                    | 0.0671 | 0.0928 | 0.0492 | 0.0750 | 0.0422 |
| Ever Violence                 | 0.161  | 0.233  | 0.176  | 0.147  | 0.0903 |
| Ever_Sex before 15            | 0.182  | 0.295  | 0.210  | 0.152  | 0.084  |
| Sample Size                   | 2133   | 586    | 493    | 736    | 318    |



## Patterns in the Data: Full Sample

#### Table: Summary Statistics by Race Ethnicity

|                               | (1)    | (2)    | (3)      | (4)    |
|-------------------------------|--------|--------|----------|--------|
| VARIABLES                     | All    | White  | Hispanic | Black  |
| Enrolled in College           | 0.717  | 0.740  | 0.626    | 0.670  |
| Bachelors or More             | 0.717  | 0.740  | 0.020    | 0.070  |
| bachelors or More             | 0.301  | 0.330  | 0.171    | 0.222  |
| Parent Edu Lt 12              | 0.220  | 0.158  | 0.541    | 0.288  |
| Parent Edu 12                 | 0.216  | 0.202  | 0.176    | 0.313  |
| Parent Edu 13-15              | 0.388  | 0.434  | 0.200    | 0.302  |
| Parent Edu 16+                | 0.176  | 0.205  | 0.083    | 0.098  |
| Avg Parent Edu                | 13.02  | 13.43  | 11.15    | 12.37  |
| HH Net Worth (\$1000s)        | 185.8  | 226.4  | 80.68    | 56.04  |
| Pct Peers ColPlan             | 66.5   | 68.7   | 60.8     | 68.5   |
| Prob Enroll                   | 0.751  | 0.758  | 0.734    | 0.732  |
| Prob Degree                   | 0.777  | 0.793  | 0.679    | 0.767  |
| College GPA                   | 2.65   | 2.79   | 2.41     | 2.14   |
| Total Govt/Inst Aid (\$1000s) | 2.3    | 1.96   | 1.65     | 2.71   |
| Total Fam Aid (\$1000s)       | 1.64   | 1.92   | 0.96     | 0.60   |
|                               |        |        |          |        |
| ASVAB AFQT                    | 54.73  | 61.20  | 40.32    | 32.15  |
| Ever Stole                    | 0.0671 | 0.0608 | 0.0943   | 0.0779 |
| Ever Violence                 | 0.161  | 0.141  | 0.165    | 0.265  |
| Ever Sex before 15            | 0.182  | 0.145  | 0.186    | 0.375  |
| Sample Size                   | 2133   | 1188   | 404      | 541    |



# Patterns in the Data: Earnings

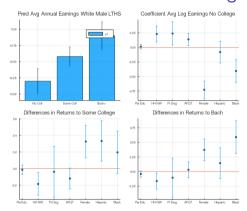



Figure: Earnings by EDU and Differences in Log Returns to School



# Targeted Moments: Indirect Inference Targets

| Table 22: Indirect Inference OLS Targets |               |              |               |              |
|------------------------------------------|---------------|--------------|---------------|--------------|
|                                          | (1)           | (2)          | (3)           | (4)          |
| VARIABLES                                | Enrolled Data | Enrolled Sim | Continue Data | Continue Sim |
|                                          |               |              |               |              |
| Intercept                                | 0.376         | 0.287        | -0.068        | -0.012       |
|                                          | (0.033)       | (0.065)      | (0.0502)      | (0.032)      |
| High Belief                              | 0.215         | 0.201        |               |              |
|                                          | (0.019)       | (0.027)      |               |              |
| Fin Assist T2                            | 0.150         | 0.154        | 0.072         | 0.075        |
|                                          | (0.024)       | (0.027)      | (0.034)       | (0.009)      |
| Fin Assist T3                            | 0.297         | 0.301        | 0.095         | 0.135        |
|                                          | (0.026)       | (0.035)      | (0.0403)      | (0.014)      |
| First Gen                                | -0.129        | -0.034       | ` '           | , ,          |
|                                          | (0.021)       | (0.017)      |               |              |
| Parent HSD                               | ( , ,         | ( /          | 0.077         | 0.061        |
|                                          |               |              | (0.0390)      | (0.021)      |
| Parent SCOL                              |               |              | 0.128         | 0.150        |
|                                          |               |              | (0.0379)      | (0.028)      |
| Parent Bach                              |               |              | 0.216         | 0.235        |
|                                          | (0.031)       | (0.015)      | (0.0478)      | (0.029)      |
| White                                    | 0.116         | 0.067        | 0.015         | 0.034        |
|                                          | (0.026)       | (0.038)      | (0.036)       | (0.018)      |
| Hispanic                                 | 0.107         | 0.036        | -0.016        | 0.018        |
| .,                                       | (0.031)       | (0.045)      | (0.044)       | (0.021)      |
| GPA Med                                  | (- //         | (. , )       | 0.214         | 0.159        |
|                                          |               |              | (0.0348)      | (0.015)      |
| GPA High                                 |               |              | 0.3724        | 0.424        |
|                                          |               |              | (0.0371)      | (0.025)      |

## Results

#### Table: Key Internal Parameter Results

|                   | Table 23: Key Internal Parameter Results |              |
|-------------------|------------------------------------------|--------------|
| Parameter         | Description                              | Estimate     |
| $\gamma_{p,0}$    | Belief Constant                          | 0.0057       |
|                   |                                          | (0.0133)     |
| $\gamma_{p,b}$    | Belief: Meas Belief                      | 0.88***      |
|                   |                                          | (0.0103)     |
| $\gamma_{\rho,h}$ | Belief: P-Edu HSD                        | 0.026**      |
|                   |                                          | (0.0116)     |
| $\gamma_{\rho,s}$ | Belief: P-Edu SCOL                       | 0.028***     |
|                   |                                          | (0.0103)     |
| $\gamma_{\rho,c}$ | Belief: P-Edu Bach                       | 0.055***     |
|                   |                                          | (0.0102)     |
| $\sigma_{\rho}$   | Belief: Var Error                        | 0.00018***   |
|                   |                                          | (0.000043)   |
| $\mu_{d,0}$       | Non Pecun Util: Black 1st Gen Col Stud   | -0.000056    |
|                   |                                          | (0.000044)   |
| $\mu_{d,C}$       | Non Pecun Util: Col Edu Parents          | 0.00004      |
|                   |                                          | (0.000037)   |
| $\mu_{d,W}$       | Non Pecun Util: White                    | 0.000017     |
|                   |                                          | (0.000028)   |
| $\mu_{d,H}$       | Non Pecun Util: Hispanic                 | 0.000023     |
|                   |                                          | (0.000034)   |
| $\sigma_{d,1}$    | Non Pecun Util Scale pd 1                | 0.000043     |
|                   | Non-Power Hell Code and C                | (0.000066)   |
| $\sigma_{d,2}$    | Non Pecun Util Scale pd 2                | 0.000027     |
| (-)               | Non Pecun Util high                      | (0.000066)   |
| $\mu_c(\tau_h)$   | Non Pecun Util high                      | (0.00065)    |
| $\mu_c(\tau_l)$   | Non Pecun Util high                      | -0.0028***   |
| $\mu_c(\tau_l)$   | Non Fecun Oth nigh                       | (0.00031)    |
| tuit <sub>1</sub> | Tuition Pd 1                             | \$7583.61*** |
| runt1             | ranson Fu I                              | (120.5)      |
| tuit <sub>2</sub> | Tuiton Pd 2                              | \$6972.45*** |
| 2                 |                                          | (16.05)      |

Robust standard errors in parentheses \*\*\* p<0.01. \*\* p<0.05. \* p<0.1

## **Externally Estimated Parameters**

• Financial assist,  $j = Gov, Coll, f_{i,j}, \vec{X}_i$  includes parent edu, wealth, and demographics. Estimation Strategy

(9) 
$$ln(f_{i,k}) = X_i \beta_{f,k} + \beta_{f,y} birthyear + \epsilon_{f,k,i}$$

• FMM with two latent types externally estimate.

$$(10) \qquad P(\tau_h; \vec{X_i}) = Prob(\tau = \tau_h | \vec{X_i}) = \frac{exp(\vec{X_i} \vec{\beta}_p)}{1 + exp(\vec{X_i} \vec{\beta}_p)}$$

(11) 
$$\ln w_{i,s}^* = \mu_{w,0} + \mu_{w,1} 1(s \in (12,16)) + 1(s \ge 16)(\mu_{w,2} + \mu_{w,h} 1(\tau_i = \tau_h)) + \varepsilon_{w,s}$$

(12) 
$$\pi(g,\tau) = \frac{\exp(\gamma_{g,0} + \gamma_{g,\tau} 1(\tau_i = \tau_h))}{\sum_{k=l,m,h} \exp(\gamma_{k,0} + \gamma_{k,\tau} 1(\tau_i = \tau_h))}$$

## **Externally Estimation Continued**

 Measurement equations: ASVAB Arithmetic Reason, Paragraph Comp, Word Knowledge, Math Knowledge, violence, theft, sex at young ages.

(13) 
$$Z_{i,j}^* = \alpha_{z,j} \mathbf{1}(\tau_i = \tau_h) + \eta_{z,j} X_i + \varepsilon_{z,j} \quad j \in \{1, \dots, J_c\}$$
$$Z_{i,j} = \begin{cases} Z_{i,j}^* & \text{if } Z_{i,j}^* \text{ is continuous} \\ \mathbf{1}(Z_{i,j}^*) & \text{if } Z_{i,j}^*, \text{ is binary} \end{cases}$$

Max simulated likelihood

(14) 
$$\max \sum_{i} \ln[P(\tau_h; \vec{X}_i) f(\vec{Z}_i, w_i, g_i; \tau_h, X_i, s) + (1 - P(\tau_h; \vec{X}_i)) f(\vec{Z}_i, w_i, g_i; \tau_h, X_i, s)]$$

FMM estimated true probability of high type

$$(15) \qquad P_{\mathsf{true},i} = Prob(\tau_i = \tau_h | \vec{X}_i, \vec{Z}_i, w_i, g_i, s_i) \propto P(\tau_h; \vec{X}_i) \times f(\vec{Z}_i, w_i, g_i; \tau_h, X_i, s)$$

Estimation Strategy

# Internally Estimated Moments

- Internally estimated parameters
  - 1. distribution of initial subjective beliefs of being type  $\tau_h$

$$P=\gamma_{
m p,0}+\gamma_{
m p,b}$$
Meas Beliefs  $+\gamma_{
m p,h}$ Par HSD  $+\gamma_{
m p,s}$ Par SCOL  $+\gamma_{
m p,s}$ Par Bach  $+\sigma_{
m p}\eta_{
m p}$ 

- 2. Constant and scale of Weibull shocks  $(\mu_e, \sigma_{e,t})$ .
- 3. non pecuniary utility by  $\tau$ ,  $\mu_c(\tau)$ .
- 4. and the price of tuition each period,  $tuit_1$ ,  $tuit_2$ .
- Indirect Inference: Estimate 16 parameters by matching 17 OLS coefficients.
  - 1. enrollment by measured belief, financial aid, parental education.
  - 2. continuation by average gpa, financial aid, and parental education



## Identification

Table 5: Key Internal Parameter Results

| Parameter         | Parameter Description                | Target                                    | Target Description                                  |
|-------------------|--------------------------------------|-------------------------------------------|-----------------------------------------------------|
| $\gamma_{\rho,0}$ | Belief Constant                      | $\beta_{C,0},\beta_{C,G_m},\beta_{C,G_h}$ | Constant, Coefficient med, high GPA on continuation |
| $\mu_c(\tau)$     | Type dependent non pecuniary utility | $\beta_{C,0},\beta_{C,G_m},\beta_{C,G_k}$ | Constant, Coefficient med, high GPA on continuation |
| $\gamma_{\rho,b}$ | Belief: Meas Belief                  | $\beta_{E,B}$                             | Coefficient Meas Belief<br>on enrollment            |
| $\gamma_{\rho,h}$ | Belief: Parent Education HSD         | $\beta_{C,PH}$                            | Coefficient Pedu <sub>hsg</sub><br>on continuation  |
| $\gamma_{\rho,s}$ | Belief: Parent Education SCOL        | $\beta_{C,PS}$                            | Coefficient Pedu <sub>scol</sub><br>on continuation |
| $\gamma_{p,c}$    | Belief: Parent Education Bach        | $\beta_{C,PB}$                            | Coefficient Pedu <sub>bach</sub><br>on continuation |
| $\mu_{d,0}$       | Non-Pec Util: Black 1st Gen Col Stud | $\beta_{E,0}+\beta_{E,1G}$                | Constant and FirstGen Coefficient on enrollment     |
| $\mu_{d,C}$       | Non-Pec Util: Col Educated Parents   | $\beta_{E,0}$                             | Constant Coefficient on enrollment                  |
| $\mu_{d,W}$       | Non Pecun Util: White                | $\beta_{E,W}, \beta_{C,W}$                | White Coefficient on enrollment,continuation        |
| $\mu_{d,H}$       | Non Pecun Util: Hispanic             | $\beta_{E,H}, \beta_{C,H}$                | Hisp Coefficient on enrollment,continuation         |
| $tuit_1$          | Tuition Pd 1                         | $\beta_{E,F_2},\beta_{E,F_3}$             | T2(Finaid), T3(Finaid) Coefficient on enrollment    |
| tuit <sub>2</sub> | Tuiton Pd 2                          | $\beta_{C,F_2},\beta_{C,F_3}$             | T2(Finaid), T3(Finaid) Coefficient on continuation  |

# Results: Average Earnings

Table: External Estimation Results: Average Earnings

| Parameter Estimated Annual Value |                   | Description                |
|----------------------------------|-------------------|----------------------------|
|                                  | ¢20 E94           | Non College Formings       |
| $w_n$                            | \$29, 584         | Non College Earnings       |
| $W_S$                            | \$45,026          | Some College Earnings      |
| $w_s(	au_I)$                     | <b>\$</b> 51, 277 | Low type college earnings  |
| $w_s(	au_h)$                     | \$65,841          | High type college earnings |

Table 5: Expected value of earnings from Finite Mixture Model by education realization.

#### **Estimation Results**

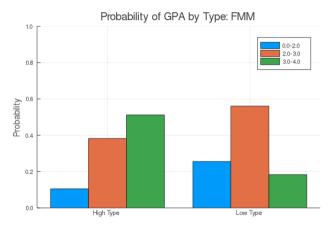
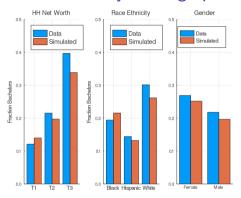
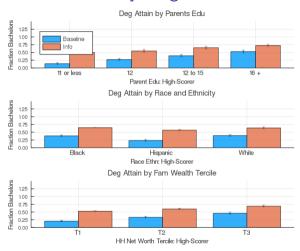


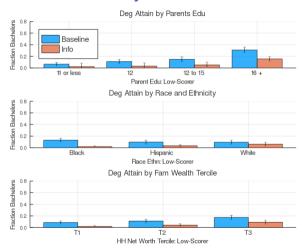

Figure: Predicted College GPA category by latent "Scorer" type.

# Degree Attainment by Demographic Group

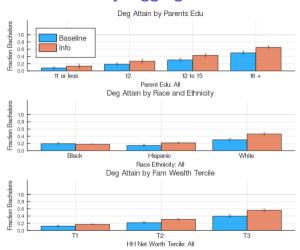




Figure: Fit of the Estimated Model: BA attainment by demographics, where Blue comes from the NLSY97 and Orange is simulated from the estimated quantitative model.

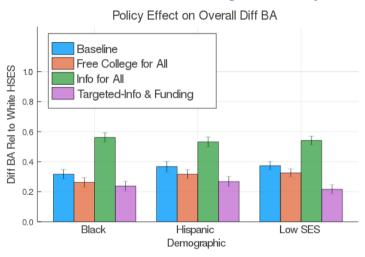
## **Decomposition Continued**


Table 8: Mechanism Decomposition: High Scorers Demographic Baseline Beliefs Equal Fin Assist Faual Black Difference 15.8\*\*\* 10.4 2.6\*\* (4.24)(3.19)(3.32)% Explained 33 % 50%\*\*\* (20.4)(11.22)Hispanic Difference 33\*\*\* 16.9\*\*\* 2.2\*\*\* (4.39)(4.29)(3.85)% Explained 49 %\*\*\* 45%\*\*\* (13.67) (6.34)Low SES Difference 32.8\*\*\* 20.5\*\*\* 5 7\*\*\* (3.39)(3.13)(2.96)38%\*\*\* 45%\*\*\* % Explained (10.97)(6.17)White High SES 56 Bachelor's attain Boot strapped standard errors in parentheses

\*\*\* p<0.01. \*\* p<0.05. \* p<0.1


# Inefficiency: High Scorers




## Inefficiency: Low Scorers



# Inefficiency Aggregate Results



# Free Coll For All vs Targeted Policy



# Model Fit: Degree Attainment, Enrollment

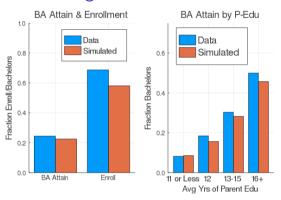



Figure: Fit of the Estimated Model: Enrollment, BA attainment, where Blue comes from the NLSY97 and Orange is simulated from the estimated quantitative model.

#### Model Calibration and Estimation

Table: Preset Parameters

| Parameter           | Set Value    | Description                   |
|---------------------|--------------|-------------------------------|
| β                   | 0.94         | Discount rate                 |
| $\sigma$            | 2.0          | Coeff. of Rel Risk Aversion   |
| (1+r)               | $\beta^{-1}$ | Int rate                      |
| T                   | 24           | Number of periods of 2 years  |
| $B_{c,1}$           | \$16,600     | College Borrowing limits pd 1 |
| $B_{c,1}$ $B_{c,2}$ | \$35,600     | College Borrowing limits pd 2 |
| b <sub>0</sub>      | \$0.00       | Starting Assets               |

Estimation Strategy

# Model Fit: Degree Attainment by Demographic Group

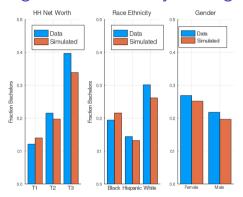



Figure: Fit of the Estimated Model: BA attainment by demographics, where Blue comes from the NLSY97 and Orange is simulated from the estimated quantitative model.

## Model Fit: Non Continuation by Grade

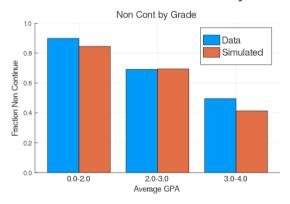



Figure: Fit of the Estimated Model: Non Continuation by GPA level, where Blue comes from the NLSY97 and Orange is simulated from the estimated quantitative model.



# Predicted Type Data vs Estimated Belief

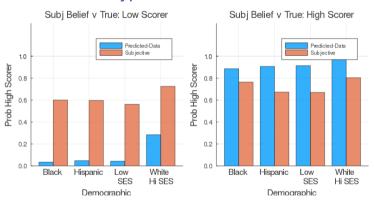



Figure: Compares the mean FMM estimate of prob high-scorer vs the mean subjective belief of being a high-scorer by scorer type.

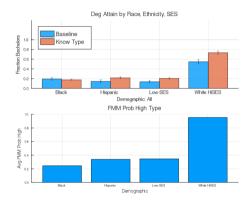

# Mismatch by scorer type



Figure: Shows difference in bachelor's attainment under baseline model and under scenario where youth know their true type with certainty.



# Mismatch Aggregate



Policy Effect

#### Difference in Causal Variables

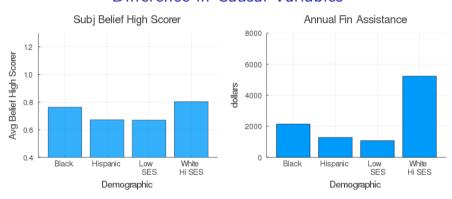



Figure: Estimated variables relating to causal mechanism by demographic group. Total financial assistance is the sum of family assistance and govt/college aid.

# Policy Effect on Inequality

Table 9: Policy Effect on Overall Inequality

| Demographic                         | Baseline | Free College For All<br>for All | Info to All<br>to All | Targeted: Info & Free<br>Info & Free |
|-------------------------------------|----------|---------------------------------|-----------------------|--------------------------------------|
| Black                               |          |                                 |                       |                                      |
| Difference                          | 35.4***  | 28.95**                         | 60.22***              | 26.5***                              |
|                                     | (3.11)   | (3.16)                          | (3.10)                | (3.18)                               |
| % Change in Gap                     |          | -18.3** %                       | 70%***                | -25.2 % ***                          |
| Relative to Baseline                |          | (8.59)                          | (8.43)                | (8.65)                               |
| Hispanic                            |          |                                 |                       |                                      |
| Difference                          | 40.5***  | 33.6**                          | 57.42***              | 29.02***                             |
|                                     | (3.45)   | (2.94)                          | (3.23)                | (3.33)                               |
| % Change in Gap                     |          | -16.9 %**                       | 42%***                | -28.26%***                           |
| Relative to Baseline                |          | (7.04)                          | (7.74)                | (7.96)                               |
| Low SES                             |          |                                 |                       |                                      |
| Difference                          | 41.1***  | 35.05**                         | 58.2***               | 23.9***                              |
|                                     | (2.69)   | (2.71)                          | (2.95)                | (3.08)                               |
| % Change in Gap                     |          | -14.7%**                        | 41.5%***              | -41.8%***                            |
| Relative to Baseline                |          | (6.38)                          | (6.95)                | (7.27)                               |
| White High SES<br>Bachelor's attain | 54.8     |                                 |                       |                                      |
|                                     | Robu     | st standard errors in pa        | rentheses             |                                      |

# Decomposition: High Scorers

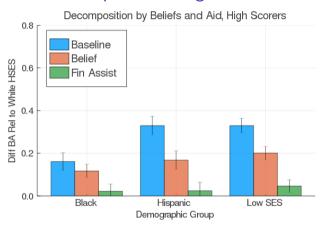



Figure: Shows relative BA attainment of Black, Hisp, Low SES relative to White High SES High Scorers. Decomposition Table Main Questions

# Policy Effect on Inequality

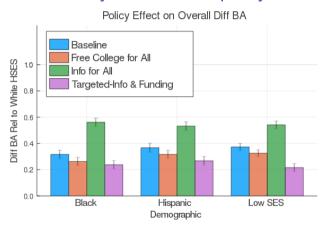



Figure: Shows differences in type independent bachelors attainment relative to high-SES White high-scorers after policy implementation. Standard errors are bootstrapped standard errors.

# Mismatch Policy

Table 10: Mismatch: Percentage of Population Switch with Type Knowledge

| Policy               | % Pop Mismatched | % Pop Mismatched | % Pop Mismatched |
|----------------------|------------------|------------------|------------------|
|                      | Overall          | High-Scorer      | Low-Scorer       |
| Baseline             | 27.1 %           | 21.3 %           | 5.8 %            |
| Free College For All | 30.5%            | 21.5 %           | 9.1 %            |
| Info for All         | 4.4 %            | 4.1 %            | 0.3 %            |
| Targeted             | 19.1%            | 13.3 %           | 5.9%             |

Main Questions

## Stage 1: Enrollment Decision

• Begin with belief P, net tuition  $f_1$ , assets  $b_1$ , and non-pecuniary utility  $\vec{\varepsilon}_1 = (\varepsilon_{c,1}, \varepsilon_{w,1})$ .

(3) 
$$V_1(P, f_1, b_1, \vec{\varepsilon_1}) = \max\{V_w(w_n, b_1, 1) + \varepsilon_{w,1}, V_{c,1}(P, f_1, b_1) + \varepsilon_{c,1}\}$$

$$s.t.$$

$$V_{c,1}(P, f_1, b_1) = \max_{b_2 \ge -\tilde{B}_{s,1}} [u(Rb_1 - f_1 - b_2) + \beta \mathbb{E}_{g,\varepsilon}(V_2(P'(g, P), f_2, b_2, \vec{\varepsilon_2})) \mid P]$$

ullet  $arepsilon_{c,1},arepsilon_{w,1}$  are iid Type 1 Extreme Value and  $ilde{B}_1^s > ilde{B}_1(w)$ 

Enrollment Model Ingredients

# **Belief Updating**

• Beliefs updated after realizing GPA  $g_k$  for k = l, m, h by Bayes Rule.

$$P'(g_k, P) = rac{P \cdot \pi(g_k, au_h)}{P \cdot \pi(g_k, au_h) + (1 - P) \cdot \pi(g_k, au_l)}$$

• Where  $\pi(g_k, au_h) = Prob(g_k | au = au_h)$ Model Ingredients

# Stage 2: Continue/Exit Decision

• Begin with belief P', net tuition  $f_2$ , debt  $b_2$ , and non-pecuniary utility  $\vec{\varepsilon}_2 = (\varepsilon_{c,2}, \varepsilon_{w,2})$ .

(5) 
$$V_2(P', f_2, b_2, \vec{\varepsilon}_2) = \max\{V_w(w_s, b_2, 2) + \varepsilon_{w,2}, V_{c,2}(P', f_2, b_2) + \varepsilon_{c,2}\}$$
  
s.t.

$$\begin{aligned} V_{c,2}(P',f_2,b_2) &= \max_{b_3 \geq -\tilde{B}_{s,2}} [u(Rb_2 - f_2 - b_3) + \beta(P'[V_w(w_c(\tau_h),b_3) + \mu(\tau_h)] \\ &+ (1 - P')[V_w(w_c(\tau_l),b_3) + \mu(\tau_l)]) \end{bmatrix} \end{aligned}$$

•  $arepsilon_{c,2}, arepsilon_{w,2}$  are iid Type 1 Extreme Value and  $ilde{B}_2^s > ilde{B}_2(w)$ 

Completion Degree Attainment Model Ingredients

#### Workers Problem

• Work problem depends on age t.

(1) 
$$V_w(w, b, t) = \max_{\{b_n \ge -\tilde{B}_n(w)\}_{n=t}^T} \sum_{n=t}^T \beta^{n-t} u(w + Rb_n - b_{n+1})$$

Per period utility is CRRA

$$(2) \quad u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$$

Borrowing constraints

$$ilde{\mathcal{B}}_{\mathcal{T}-n}(w) = \sum_{m=1}^n w(1+r)^{-m} \quad \text{for } n \geq 1 \qquad ilde{\mathcal{B}}_{\mathcal{T}} = 0$$

Model Ingredients