Candidate Info

Alesandro Arcuri

Subfields: Economics of Information, Game Theory, Micro Theory, Applied Theory and Strategy

Committee: David Easley*, Lawrence Blume, Tommaso Denti

Job Preferences: Private sector, Government, Academia (US east coast preferred)

Persuasion Through Trial Design

Alesandro Arcuri

October 2021

Introduction

- In Bayesian persuasion models, a sender commits to an information structure.
- Ex: Pharma firms conduct studies to earn FDA approval.
 - Hypothesis test has type I error rate α , type II error rate β , target significance level p^*
 - Chance of significant result maximized when $\alpha=p^*,\,\beta=0$
- In the real world, the sender may have limited control.

Introduction

- My model: a researcher wants to persuade a policymaker to adopt her treatment.
- She can only control the number of iid subjects to enroll in a trial.
 - Under pre-registration, the researcher commits to sample size ex ante.
 - Under sequential sampling, the researcher observes each subject outcome before deciding whether to enroll the next subject.

Introduction

- Pre-registration is common in medicine using sites like clinicaltrials.gov.
- Even in fields without formal pre-registration, researchers often commit to sample sizes at outset of trials.
- Sequential sampling can provide one avenue for experimenter bias.
- To quantify this, compare against the Bayesian persuasion benchmark.

Research Question + Preview of Results

What outcomes can be induced under pre-registration / sequential sampling?

- As subject outcomes become arbitrarily uninformative...
 - under SS, researcher payoff approaches first-best, and policymaker payoff approaches first-worst.
 - under PR, optimal trial approaches full revelation, and policymaker payoff approaches first-best.
- However, when subject outcomes are highly informative, the policymaker may prefer sequential sampling.

Related Literature and Contribution

- Bayesian persuasion: Kamenica and Gentzkow (2011), many others
 - My model explores which BP outcomes can be induced in a simple model of trial design.
- Bayesian persuasion through sequential sampling: Brocas and Carillo (2007), Morris and Strack (2019), Henry and Ottaviani (2019)
 - My paper is the first to study how the set of inducible outcomes differs under pre-registration.

Model

- State is $\omega \in \{0,1\}$, with $Pr(\omega = 1) = \mu \in (0,1)$
- Policymaker must choose $a \in \{0, 1\}$ and earns payoff $u(a, \omega)$, parameterized below
- He maximizes EU, chooses action 1 when $Pr(\omega = 1|\cdot) \ge z$

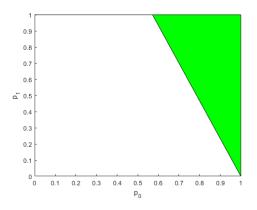
$u(a,\omega)$	a = 0	a=1	
$\omega = 0$	0	-z	for some $z \in (\mu, 1)$
$\omega = 1$	0	1-z	•

Model

- Researcher earns utility v(a) = a
- Before policymaker acts, researcher conducts public trial to maximize her EU
- Characterize trials by induced action distributions $p = (p_0, p_1) = (Pr(a = 0 | \omega = 0), Pr(a = 1 | \omega = 1))$
 - Researcher EU: $V(p) = \mu p_1 + (1 \mu)(1 p_0)$
 - Policymaker EU: $U(p) = \mu(1-z)p_1 (1-\mu)z(1-p_0)$

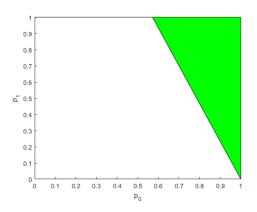
Bayesian Persuasion

- p_0 = prob of rejecting bad treatment, p_1 = prob of adopting good treatment
- Bayesian persuasion can induce any (p_0, p_1) subject to incentive-compatibility: $\frac{\mu p_1}{\mu p_1 + (1-\mu)(1-p_0)} \geqslant z$



Bayesian Persuasion

- Policymaker's favorite point is upper-right hand corner, full revelation
- Researcher's favorite point is upper-left corner, inequality binds, and $V^{BP}=\mu+\frac{\mu(1-z)}{z},\,U^{BP}=0$



Model

- Now suppose researcher can only control size of trial
- Trial consists of some number of treated subjects, under either *pre-registration* or *sequential sampling* regime
- Each subject either improves (s_1) or not (s_0) , with distribution

Trial Design

• Likelihood of seeing good outcome in bad state is same as seeing bad outcome in good state

• Successes and failures "cancel out"

• Instead of # of successes x, look at difference d = x - (n - x)

Trial Design

• When d positive, posterior given by $Pr(\omega = 1|d) = \frac{\mu \rho^d}{\mu \rho^d + (1-\mu)(1-\rho)^d}$

• When d negative, posterior given by $Pr(\omega = 1|d) = \frac{\mu(1-\rho)^{-d}}{\mu(1-\rho)^{-d} + (1-\mu)\rho^{-d}}$

• Policymaker adopts if
$$d \ge d^* = \left\lceil \frac{\ln(\frac{1-\mu}{\mu}\frac{z}{1-z})}{\ln(\frac{\rho}{1-\rho})} \right\rceil \ge 0$$

Sequential Sampling

• Under sequential sampling, researcher's choice is over stopping rules

• Each stopping rule T is associated with some induced p(T)

• Researcher's optimal stopping rule T^* : stop enrolling subjects iff $Pr(\omega = 1|s_1,...) \ge z$, that is iff $d \ge d^*$

Sequential Sampling

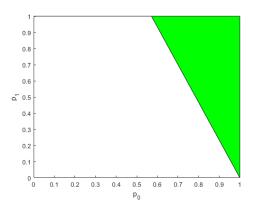
Proposition

Under sequential sampling, as $\rho \to_+ .5$, $V(p(T^*)) \to \mu + \frac{\mu(1-z)}{z} = V^{BP}$

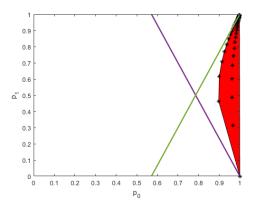
- Define $\hat{z}(d^*)$ to be posterior belief after seeing difference d^* starting from prior μ
- Brocas and Carillo (2007): optimal stopping rule yields researcher payoff $\mu + \frac{\mu(1-\hat{z}(d^*))}{\hat{z}(d^*)}$
- $z \leqslant \hat{z}(d^*) \leqslant \frac{z\rho}{z\rho + (1-z)(1-\rho)}$ implies $z \leqslant \lim_{\rho \to +.5} \hat{z}(d^*) \leqslant z$

Bayesian Persuasion

- Corollary: researcher's trial approaches upper-left corner
- Policymaker payoff approaches 0
- Sender can approach any BP outcome



- Under pre-registration, researcher chooses sample size $n \in \{0, 1, ..., \infty\}$, and can randomize.
- Each choice of n induces some p(n).
- Below: $\mu = .3, z = .5, \rho = .68(d^* = 2)$



Proposition

Under pre-registration, for any $n(\rho)$, as $\rho \to_+ .5$, $p_0(n(\rho)) \to 1$

• From Hoeffding's inequality:

$$1 - p_0 = Pr(d \ge d^* | \omega = 0, n) \le e^{-2(\frac{1}{2} + \frac{d^*}{2n} - (1 - \rho))^2 n}$$

- \bullet From first derivative: bound gets tighter as n increases
- When $n = d^*$, bound approaches 0 as $\rho \to_+ .5$

➤ Full Proof

• As $p_0 \to 1$, researcher can do no better than full revelation

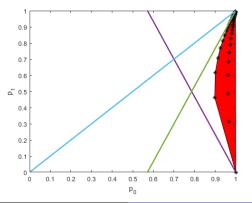
• This uniquely maximizes policymaker welfare

Proposition

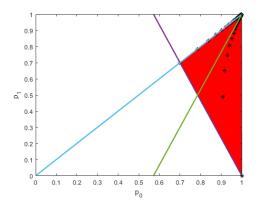
Under pre-registration, $p_1(n) \leq p_0(n)$ for all n

Proof:

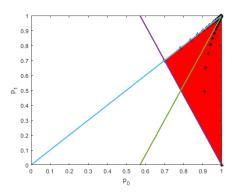
•
$$p_1 = Pr(d \ge d^*|n, \omega = 1) = Pr(d \le -d^*|n, \omega = 0) \le p_0$$



- Bound attainable when $\rho^* = \frac{\frac{z(1-\mu)}{(1-z)\mu}}{1+\frac{z(1-\mu)}{(1-z)\mu}}$, seeing d=1 makes policymaker in different between actions
- If $\rho \geqslant \rho^*$ and n = 1, $p_0 = \rho = p_1$



- Researcher's optimal p determined by indifference curve
 - When $\mu < .5$ and $\rho > \rho^*$, n = 1 is optimal for researcher
 - When $\mu > .5$, full revelation is optimal for researcher $\forall \rho$
- Different bias levels lead to different slopes of (linear) IC



Discussion

- When $\rho > \rho^*$ and $\mu < .5$, policy maker prefers sequential sampling
 - Under pre-registration, researcher will choose n=1
 - Under sequential sampling, audience may see more info

Conclusion

• Requiring researcher to commit to a sample size can greatly affect inducible outcomes and policymaker welfare.

• Policymaker prefers pre-registration when ρ small or $\mu > .5$, prefers sequential sampling when ρ large and $\mu < .5$.

Candidate Info

Alesandro Arcuri

Subfields: Economics of Information, Game Theory, Micro Theory, Applied Theory and Strategy

Committee: David Easley*, Lawrence Blume, Tommaso Denti

Job Preferences: Private sector, Government, Academia (US east coast preferred)

Proof of Proposition

Proposition: Under PR, for any $n(\rho)$, as $\rho \to_+ .5$, $p_0(n(\rho)) \to 1$

- Hoeffding's inequality states that if $X_i \in [0, 1]$ independent $\forall i$, then $Pr(\sum_i X_i E[\sum_i X_i] \ge t * n) \le e^{-2nt^2}$
- Define $X_i = 1$ if subject i improves, $X_i = 0$ otherwise
- $Pr(d \ge d^*|n,\omega) = Pr(x \ge \frac{n+d^*}{2}|n,\omega)$, where $x = \sum_i X_i$
- Write $1 p_0 = Pr(x \ge \frac{n+d^*}{2} | \omega = 0) = Pr(x n(1-\rho) \ge \frac{n+d^*}{2} n(1-\rho) | \omega = 0) = Pr(x n(1-\rho) \ge \frac{n+d^*}{2} n(1-\rho) \ge n$ $\frac{n+d^*}{2} n(1-\rho) \ge n = 0$ $\frac{n+d^*}{2} n(1-\rho) \ge n$

◆ Back

Proof of Proposition

• Have
$$1 - p_0 \le e^{-2(\frac{1}{2} + \frac{d^*}{2n} - (1 - \rho))^2 n}$$

$$\bullet \ \, \frac{d}{dn} \big[-2 \big(\frac{1}{2} + \frac{d^*}{2n} - (1-\rho) \big)^2 n \big] = -2 \big(\frac{1}{2} + \frac{d^*}{2n} - (1-\rho) \big) \big[\frac{1}{2} - (1-\rho) \big]$$

• Since
$$(1 - \rho) < \frac{1}{2}$$
, derivative < 0 , and $[-2(\frac{1}{2} + \frac{d^*}{2n} - (1 - \rho))^2 n] < 0$

Proof of Proposition

• When $n = d^*$, bound becomes $1 - p_0 \le e^{-2(\frac{1}{2} + \frac{1}{2} - (1 - \rho))^2 d^*}$

• Approaches 0 as $\rho \to_+ .5$

 \bullet For larger n the bound is tighter; smaller n never chosen

• Hence regardless of choice of $n, 1 - p_0 \to 0$ as $\rho \to_+ .5$.