Sequential Learning, Asset Allocation, and Bitcoin Returns

with James Yae

AFA 2022 Annual Meeting

George Tian University of Houston

Structural Break

Presented by George Tian Sequential Learning, Asset Allocation, and Bitcoin Returns

Bitcoin Return Predictability Puzzle

_	<i>i b</i> , <i>t</i> +1 =	$a_0 + a_1 x_t$	$r c_{t+1}$	
-	$\begin{array}{c} \text{Predictor} \\ x_t \end{array}$	$\stackrel{\rm coefficient}{a_1}$	t-statistic (NW)	R^2 (%)
×	ρ_t	0.001	0.049	0.000
×	β_t	-0.002	-0.735	0.063
×	cov_t	2.682	0.664	0.063
\checkmark	$\Delta \rho_t$	-0.153	-3.682	1.055
	$\Delta \rho_t \text{ (pre-COVID)}$	-0.153	-2.888	1.079
	$\Delta \rho_t \ (\text{LAD})$	-0.129	-3.816	1.017
	$\Delta \rho_t \ (\text{Rank})$	-0.142	-4.085	1.039
	$\Delta \rho_t \ (INT)$	-0.134	-3.598	1.787
	$\Delta \rho_t$ (Trimmed)	-0.245	-2.824	1.255

 $r_1 \dots = a_0 \perp a_1 r_1 \perp \varepsilon_{1,1}$

In this analysis, we use post-futures data at daily frequency.

Bitcoin Return Predictability Puzzle

_	, b, t+1 =	$u_0 + u_1 x_t$		
-	$\begin{array}{c} \text{Predictor} \\ x_t \end{array}$	$\begin{array}{c} \text{coefficient} \\ a_1 \end{array}$	t-statistic (NW)	R^2 (%)
\times^{-}	$ ho_t$	0.001	0.049	0.000
×	β_t	-0.002	-0.735	0.063
×	cov_t	2.682	0.664	0.063
\checkmark	$\Delta \rho_t$	-0.153	-3.682	1.055
	$\Delta \rho_t$ (pre-COVID)	-0.153	-2.888	1.079
	$\Delta \rho_t \ (\text{LAD})$	-0.129	-3.816	1.017
	$\Delta \rho_t \ (\text{Rank})$	-0.142	-4.085	1.039
	$\Delta \rho_t \ (INT)$	-0.134	-3.598	1.787
	$\Delta \rho_t$ (Trimmed)	-0.245	-2.824	1.255

 $r_1 \dots = a_0 \perp a_1 r_1 \perp c_{1,1}$

In this analysis, we use post-futures data at daily frequency.

No Bitcoin return predictability from ρ_t , β_t , or cov_t \geq

 \mathbf{Y} we would expect investors directly learn ρ_t

> Increase in correlation ρ_t predicts lower Bitcoin returns

high $\rho_t \rightarrow small$ benefits from diversification $\rightarrow expect$ high RP to compensate

 \rightarrow but negative coefficient of $\Delta \rho_t$ suggests lower returns after an increase in correlation

the optimal weight on Bitcoin

$$w_{b,t} = \frac{\mu_t^* - \rho_t \sigma_t^*}{(\mu_t^* - \rho_t \sigma_t^*) + (\sigma_t^* - \rho_t \mu_t^*)\sigma_t^*}$$

Max Sharpe Ratio!

Conditional risk premium ratio $\mu_t^* = \mu_{b,t} / \mu_{m,t}$

Conditional volatility ratio $\sigma_t^* = \sigma_{b,t} / \sigma_{m,t}$

the optimal weight on Bitcoin

$$w_{b,t} = \frac{\mu_t^* - \rho_t \sigma_t^*}{(\mu_t^* - \rho_t \sigma_t^*) + (\sigma_t^* - \rho_t \mu_t^*)\sigma_t^*} \quad \text{Max Sharpe Ratio!}$$

Conditional risk premium ratio $\mu_t^* = \mu_{b,t} / \mu_{m,t}$

Conditional volatility ratio $\sigma_t^* = \sigma_{b,t} / \sigma_{m,t}$

 $\implies w_{b,t}(\mu_t^*, \sigma_t^*, \rho_t)$ as a proxy for conditional Bitcoin demand!

Investors learn about $(\mu_t^*, \sigma_t^*, \rho_t)$ and adjust their portfolios

1. First layer Bitcoin demand decomposition

$$w_{b,t} - \overline{w}_b \approx \underbrace{[w_{b,t}^{(c+v)} - \overline{w}_b]}_{\text{Non-speculative}} + \underbrace{[w_{b,t}^{(mean)} - \overline{w}_b]}_{\text{Speculative}}$$

$$\overline{w_b} = w_b(\overline{\mu^*}, \overline{\sigma^*}, \overline{\rho})$$

$$w_{b,t}^{(mean)} \triangleq w_b(\mu_t^*, \overline{\sigma^*}, \overline{\rho}) \implies \text{investors only learn } \mu_t^*$$

$$w_{b,t}^{(c+v)} \triangleq w_b(\overline{\mu^*}, \sigma_t^*, \rho_t) \implies \text{investors only learn } (\sigma_t^*, \rho_t)$$

1. First layer Bitcoin demand decomposition

$$w_{b,t} - \overline{w}_b \approx \underbrace{[w_{b,t}^{(c+v)} - \overline{w}_b]}_{\text{Non-speculative}} + \underbrace{[w_{b,t}^{(mean)} - \overline{w}_b]}_{\text{Speculative}}$$

$$\overline{w_b} = w_b(\overline{\mu^*}, \overline{\sigma^*}, \overline{\rho})$$

$$w_{b,t}^{(mean)} \triangleq w_b(\mu_t^*, \overline{\sigma^*}, \overline{\rho}) \implies \text{investors only learn } \mu_t^*$$

$$w_{b,t}^{(c+v)} \triangleq w_b(\overline{\mu^*}, \sigma_t^*, \rho_t) \implies \text{investors only learn } (\sigma_t^*, \rho_t)$$

2. Second layer Bitcoin demand decomposition

$$w_{b,t}^{(c+v)} - \overline{w}_b \approx \underbrace{[w_{b,t}^{(cor)} - \overline{w}_b]}_{\text{from correlation}} + \underbrace{[w_{b,t}^{(vol)} - \overline{w}_b]}_{\text{from volatility}}$$

Sequential Learning, Asset Allocation, and Bitcoin Returns

3. Bitcoin demand change decomposition

$$\Delta w_{b,(t-1):t} \stackrel{\Delta}{=} w_{b,t} - w_{b,t-1} = \Delta w_{b,(t-1):t}^{(cor)} + \Delta w_{b,(t-1):t}^{(vol)} + \Delta w_{b,(t-1):t}^{(mean)} + e_t$$

3. Bitcoin demand change decomposition

$$\Delta w_{b,(t-1):t} \stackrel{\Delta}{=} w_{b,t} - w_{b,t-1} = \Delta w_{b,(t-1):t}^{(cor)} + \Delta w_{b,(t-1):t}^{(vol)} + \Delta w_{b,(t-1):t}^{(mean)} + e_t$$

non-speculative speculative

3. Bitcoin demand change decomposition

Equilibrium Model: Intuition

conditional correlations affect subsequent Bitcoin prices through asynchronous portfolio rebalancing

Equilibrium Model: Intuition

Data Description

1. Data Source

- Cryptocurrency price levels from coinmarketcap.com
- Bitcoin attributes data from Blockchain.com
- Equity market and forex data from investing.com
- Daily treasury yield from US Department of Treasury

Data Description

1. Data Source

- Cryptocurrency price levels from coinmarketcap.com
- Bitcoin attributes data from Blockchain.com
- Equity market and forex data from investing.com
- Daily treasury yield from US Department of Treasury

2. Specs

- Daily closing price; different closing hours
- Holidays and weekends
- International equity markets
- Bitcoin future contracts introduced in December 2017
 - ✓ whole period 01/01/2015 12/31/2020
 - ✓ pre-futures period 01/01/2015 12/17/2017
 - ✓ post-futures period 12/18/2017 12/31/2020

Predictive Regression

effects of change in demand due to the learning of correlation on subsequent BTC returns **Control variables**

- \circ $r_{b,t}, \beta_t, Volume_t, and EPU_t$
- Market attributes (M)
- Blockchain attributes (B)
- Extra lagged returns (L)

Predictive Regression

effects of change in demand due to the learning of correlation on subsequent BTC returns

Stambaugh bias?

Sample size sufficient?

Look ahead bias?

Control variables

- \circ $r_{b,t}, \beta_t, Volume_t, and EPU_t$
- Market attributes (M)
- Blockchain attributes (B)
- Extra lagged returns (L)

				0,(l-1).l								
Predictor		(12/18/2	Post-futu 2017 to 12	res 2/31/2020))	Post-futures before COVID-19 $(12/18/2017 \text{ to } 02/29/2020)$						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		
$\Delta w^{(cor)}_{b,(t-1):t}$	$\begin{array}{c} 0.51 \\ (4.15) \end{array}$		$\begin{array}{c} 0.47 \\ (2.89) \end{array}$	0.47 (2.91)	0.47 (2.80)	$0.50 \\ (3.16)$		0.48 (2.78)	0.47 (2.63)	0.48 (2.37)		
$\Delta w^{(vol)}_{b,(t-1):t}$		0.06 (0.42)	0.03 (0.28)	0.04 (0.30)	0.03 (0.20)		-0.19 (-1.27)	-0.23 (-1.66)	-0.22 (-1.67)	-0.20 (-1.56)		
$r_{b,t}$			-0.42 (-1.79)	-0.42 (-1.76)	-0.42 (-1.74)			-0.22 (-0.83)	-0.23 (-0.83)	-0.22 (-0.82)		
β_t			$0.04 \\ (0.22)$	$\begin{array}{c} 0.06 \\ (0.31) \end{array}$	$\begin{array}{c} 0.07 \\ (0.31) \end{array}$			$0.06 \\ (0.28)$	$\begin{array}{c} 0.07 \\ (0.32) \end{array}$	$\begin{array}{c} 0.09 \\ (0.40) \end{array}$		
$Volume_{b,t}$			-0.58 (-2.59)	-0.55 (-1.35)	-0.55 (-1.39)			-0.74 (-3.52)	-0.91 (-1.93)	-0.87 (-1.78)		
$EPU_{b,t}$			$0.63 \\ (1.71)$	$0.64 \\ (1.68)$	$\begin{array}{c} 0.63 \\ (1.76) \end{array}$			$\begin{array}{c} 0.21 \\ (0.98) \end{array}$	$\begin{array}{c} 0.20 \\ (0.93) \end{array}$	$\begin{array}{c} 0.21 \\ (0.96) \end{array}$		
Controls			М	MB	MBL			М	MB	MBL		
$egin{array}{c} R^2 \ (\%) \ Adj.R^2 \end{array}$	$\begin{array}{c} 1.15 \\ 1.02 \end{array}$	0.01 -0.12	$3.94 \\ 2.92$	$3.99 \\ 2.71$	$4.00 \\ 2.47$	$\begin{array}{c} 1.17 \\ 0.99 \end{array}$	0.16 -0.02	$4.04 \\ 2.62$	$\begin{array}{c} 4.14 \\ 2.36 \end{array}$	$4.38 \\ 2.24$		

$r_{b,t+1} = b_0 + b_1 \Delta w_{b,(t-1):t}^{(cor)}$	$+ b_2 \Delta w_{b,(t-1):t}^{(vol)}$	$+ Z_t \gamma + \varepsilon_{t+1}$
--	--------------------------------------	------------------------------------

Newey-West t statistics are reported in parenthesis.

-) -			_	$0,(\iota - 1)$).(0,(l	-1).t	- ,		_
Predictor		(12/18/2)	Post-futuı 2017 to 12	es 2/31/2020)	Ι	Post-futur (12/18/2	es before 017 to 02	COVID-1 /29/2020)	19)
	(1)	(2)	(3)	(4)	(5)	 (6)	(7)	(8)	(9)	(10)
$\Delta w^{(cor)}_{b,(t-1):t}$	$0.51 \\ (4.15)$		0.47 (2.89)	0.47 (2.91)	0.47 (2.80)	$0.50 \\ (3.16)$		0.48 (2.78)	0.47 (2.63)	0.48 (2.37)
$\Delta w^{(vol)}_{b,(t-1):t}$		0.06 (0.42)	0.03 (0.28)	0.04 (0.30)	0.03 (0.20)		-0.19 (-1.27)	-0.23 (-1.66)	-0.22 (-1.67)	-0.20 (-1.56)
$r_{b,t}$			-0.42 (-1.79)	-0.42 (-1.76)	-0.42 (-1.74)			-0.22 (-0.83)	-0.23 (-0.83)	-0.22 (-0.82)
β_t			0.04 (0.22)	$\begin{array}{c} 0.06 \\ (0.31) \end{array}$	$\begin{array}{c} 0.07 \\ (0.31) \end{array}$			0.06 (0.28)	$\begin{array}{c} 0.07\\(0.32) \end{array}$	$0.09 \\ (0.40)$
$Volume_{b,t}$			-0.58 (-2.59)	-0.55 (-1.35)	-0.55 (-1.39)			-0.74 (-3.52)	-0.91 (-1.93)	-0.87 (-1.78)
$EPU_{b,t}$			$0.63 \\ (1.71)$	$0.64 \\ (1.68)$	$0.63 \\ (1.76)$			0.21 (0.98)	$\begin{array}{c} 0.20\\(0.93) \end{array}$	0.21 (0.96)
Controls			М	MB	MBL			Μ	MB	MBL
$egin{array}{ll} R^2 \ (\%) \ Adj. R^2 \end{array}$	$1.15 \\ 1.02$	0.01 -0.12	$3.94 \\ 2.92$	$3.99 \\ 2.71$	$4.00 \\ 2.47$	$1.17 \\ 0.99$	0.16 -0.02	$4.04 \\ 2.62$	$4.14 \\ 2.36$	$4.38 \\ 2.24$

 $r_{b,t+1} = b_0 + b_1 \Delta w_{b,(t-1):t}^{(cor)} + b_2 \Delta w_{b,(t-1):t}^{(vol)} + Z_t \gamma + \varepsilon_{t+1}$

Newey-West t statistics are reported in parenthesis.

Uncertainty in Portfolio Weights

Why $\Delta w_{b,(t-1):t}^{(cor)}$ not $\Delta w_{b,(t-1):t}^{(vol)}$? Consider an AR(1) $z_t = a_0 + a_1 z_{t-1} + e_t$ $z_t = (\sigma_t^*, \rho_t) \text{ or } (w_{b,t}^{(vol)}, w_{b,t}^{(cor)})$

z_t	DCC-GA	ARCH est.	Portfolio weights			
	σ_t^*	$\sigma_t^* \qquad ho_t$		$w_{b,t}^{(cor)}$		
a_1	$0.92 \\ (0.01)$	$0.98 \\ (0.01)$	$ \begin{array}{c} 0.92 \\ (0.01) \end{array} $	0.98 (0.01)		
$var(e_t)$	0.16	0.05	11.13	0.37		
$\frac{var(e_t^{(\sigma)})}{var(e_t^{(\rho)})}$		3.48		30.12		

Estimation is obtained by the Post-futures sample. Standard errors are reported in parenthesis.

Uncertainty in Portfolio Weights

Why $\Delta w_{b,(t-1):t}^{(cor)}$ not $\Delta w_{b,(t-1):t}^{(vol)}$? Consider an AR(1) $z_t = a_0 + a_1 z_{t-1} + e_t$ $z_t = (\sigma_t^*, \rho_t) \text{ or } (w_{b,t}^{(vol)}, w_{b,t}^{(cor)})$

z_t	DCC-GA	ARCH est.	Portfoli	o weights
	σ_t^*	$ ho_t$	$w_{b,t}^{(vol)}$	$w_{b,t}^{(cor)}$
a_1	$0.92 \\ (0.01)$	$0.98 \\ (0.01)$	$0.92 \\ (0.01)$	$0.98 \\ (0.01)$
$var(e_t)$	0.16	0.05	11.13	0.37
$\frac{var(e_t^{(\sigma)})}{var(e_t^{(\rho)})}$		3.48		30.12

Estimation is obtained by the Post-futures sample. Standard errors are reported in parenthesis.

Investors disregard the noisy volatility-ratio signals!

Sequential Learning, Asset Allocation, and Bitcoin Returns

Global Equity and Crypto Markets

 $r_{c,t+1} = b_0 + b_1 \Delta w_{b,(t-1):t}^{(cor)} + \varepsilon_{t+1} \quad \text{for} \quad c \in \{BTC, ETH, XRP\}$

	Coefficient estimates			Newe	y-West	t-stat		R^2 (%)		
	BTC	ETH	XRP	BTC	ETH	XRP	BTC	ETH	XRP	
S&P500 NYSE NASDAQ	$\begin{array}{c} 0.51 \\ 0.48 \\ 0.50 \end{array}$	$\begin{array}{c} 0.81 \\ 0.75 \\ 0.86 \end{array}$	$0.68 \\ 0.57 \\ 0.61$	$\begin{array}{c} 4.15 \\ 3.45 \\ 4.20 \end{array}$	4.10 3.73 4.32	2.75 1.91 2.61	$1.15 \\ 1.02 \\ 1.07$	$1.75 \\ 1.51 \\ 1.99$	$\begin{array}{c} 0.83 \\ 0.57 \\ 0.66 \end{array}$	
China Japan India UK Germany France Italy	$\begin{array}{c} 0.55 \\ 0.59 \\ 0.96 \\ 0.46 \\ 0.45 \\ 0.40 \\ 0.21 \end{array}$	$\begin{array}{c} 0.80 \\ 0.68 \\ 1.15 \\ 0.62 \\ 0.67 \\ 0.60 \\ 0.32 \end{array}$	0.78 0.86 0.56 0.74 0.65 0.43	$\begin{array}{c} 3.29 \\ 2.83 \\ 2.05 \\ 3.20 \\ 2.37 \\ 2.57 \\ 1.21 \end{array}$	3.23 2.37 1.83 3.16 3.26 2.79 1.28	$2.97 \\ 2.80 \\ 1.97 \\ 3.29 \\ 3.03 \\ 2.84 \\ 1.89$	$\begin{array}{c} 1.30 \\ 1.42 \\ 4.00 \\ 0.93 \\ 0.92 \\ 0.73 \\ 0.19 \end{array}$	$1.64 \\ 1.13 \\ 3.47 \\ 1.04 \\ 1.23 \\ 0.95 \\ 0.29$	$1.08 \\ 1.22 \\ 1.32 \\ 0.56 \\ 1.04 \\ 0.77 \\ 0.36$	
Equal-weighted GDP-weighted Volume-weighted Combination forecast	$\begin{array}{c} 0.53 \\ 0.62 \\ 0.61 \\ 0.60 \end{array}$	$0.79 \\ 0.94 \\ 0.92 \\ 0.86$	$\begin{array}{c} 0.75 \\ 0.86 \\ 0.80 \\ 0.85 \end{array}$	$3.55 \\ 4.58 \\ 4.91 \\ 3.97$	$3.96 \\ 4.74 \\ 4.85 \\ 4.39$	$3.25 \\ 3.68 \\ 3.50 \\ 3.64$	$1.25 \\ 1.71 \\ 1.62 \\ 1.56$	$1.65 \\ 2.38 \\ 2.24 \\ 1.98$	$1.01 \\ 1.34 \\ 1.16 \\ 1.28$	

Presented by George Tian Sequential Learning, Asset Allocation, and Bitcoin Returns

Out-of-Sample Predictability

Evaluation period	1/2/2019 to $12/31/2020$			1/2	/2019 to	o 2/29/2	2020	Technical details	
	OLS	WLS	LAD	Rank	OLS	WLS	LAD	Rank	• Data before 2019 for training. Re-estimating the
$\Delta w^{(cor)}$ from S&P500									predictor and b1 everyday with an expanding
$\frac{D^2}{D^2} (t)$	- 1.00	1 1 7	0.00	0.07	1.47	1.90	1.07	1.07	window.
$R_{\overline{IS}}^2$ (%)	1.29	1.17	0.92	0.97	1.47	1.36	1.07	1.07	\mathbf{p}^2 · · · \mathbf{p}^2
R_{OS}^{2} (%)	1.07	1.54	2.32	2.33	1.49	2.07	3.49	3.52	• R_{IS}^2 : in-sample R^2
R_{OS}° (%) P-value of DM test	-0.08 0.54	$\begin{array}{c} 0.40\\ 0.31\end{array}$	0.01	$1.20 \\ 0.01$	-0.55 0.56	$\begin{array}{c} 0.04 \\ 0.50 \end{array}$	$1.49 \\ 0.02$	$1.52 \\ 0.02$	• R ² _{OS} : out-of-sample R ² against historical averages
$\Delta w_{i}^{(cor)}$, globally aggregated by GDP									 R^{2*}_{OS}: out-of-sample R² against zeros
	-								• DM test: whether a prediction is better than
R_{IS}^2 (%)	1.49	1.49	1.26	1.16	1.01	0.69	0.38	0.50	Divitest. Wrether a prediction is better than
R_{OS}^2 (%)	1.37	1.95	2.86	2.84	1.56	2.30	3.61	3.67	a naïve forecast of zero
R_{OS}^{2*} (%)	0.23	0.81	1.74	1.71	-0.48	0.27	1.61	1.68	Madala, OLC Waishtad Loast Courses Loast
P-value of DM test	0.47	0.26	0.04	0.04	0.63	0.47	0.06	0.06	• Models: OLS, weighted Least Square, Least
$\Delta \rho_{(t-1):t}$, from S&P500									Absolute Deviation, and a Rank-based regression
P^2 (%)	-	0.02	0.79	0.78	1 5 9	1 49	1 11	1.04	
$R_{IS}(70)$ $R^2(9\%)$	0.02	1.41	0.70	0.70	1.55	1.42 1.07	2.20	2.26	Main takeaways
$R_{OS}(70)$ $R^{2*}(0/2)$	0.92	0.97	2.15	2.17	0.68	0.07	1.29	1.25	main calculuys
$R_{OS}(70)$ P value of DM test	0.62	0.27	0.01	0.01	-0.08	0.54	0.02	0.02	Strong OOS predictability in general
r-value of Divi test	0.05	0.57	0.01	0.01	0.00	0.54	0.02	0.02	A Change in weight unadistan haste shance in
A access globally aggregated by CDP									* Change in weight predictor beats change in
$\Delta p_{(t-1):t}$, globally aggregated by GDI	-								correlation predictor
R_{IS}^2 (%)	1.29	1.27	1.01	0.99	0.95	0.56	0.26	0.40	
R_{OS}^2 (%)	1.22	1.75	2.46	2.55	1.49	2.23	3.47	3.54	Predictability from using global equities is
R_{OS}^{2*} (%)	0.08	0.61	1.34	1.42	-0.56	0.20	1.46	1.54	hetter than that from using S&P500 alone
P-value of DM test	0.61	0.47	0.04	0.04	0.53	0.27	0.01	0.01	

Conclusions

1) Dynamic correlation:

Bitcoin's changing narrative characterized by dynamic correlation with stock markets since the introduction of Bitcoin futures.

- 2) Bitcoin return predictability "puzzle": Increase in daily Bitcoin demand change due to dynamic correlation predicts higher subsequent Bitcoin returns (puzzling predictor & sign)
- 3) Rational asset allocation:

The empirical pattern is consistent with investors' learning on timevarying correlations and practice on rational portfolio optimization

Asynchronous portfolio rebalancing:
 We use an equilibrium model to explain how Bitcoin return predictability can be generated through asynchronous portfolio rebalancing

Thank You!

Presented by George Tian Sequential Learning, Asset Allocation, and Bitcoin Returns